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Abstract

Chest radiography is a common medical diagnostic pro-
cedure, often resulting in a long-tailed distribution of clini-
cal findings. This challenges standard deep learning meth-
ods, which tend to favor more common classes and might
miss less frequent but equally important ”tail” classes.
Chest X-ray diagnoses represent a multi-label problem due
to the potential for multiple simultaneous diseases in pa-
tients. In this paper, we propose straightforward yet highly
effective techniques to address the long-tailed imbalance in
chest X-ray datasets. We specifically utilize EfficientNetV2
and ConvNeXt as our primary architectures, allowing the
image sizes to influence architectural decisions. To counter
dataset imbalance, we employ various basic and advanced
augmentations. Mosaic augmentation is applied, and we al-
ter the method of obtaining the label to manage this multi-
label classification problem. We leverage the Binary Fo-
cal Cross-Entropy loss function and deploy several ensem-
ble strategies to boost performance. These include Strat-
ified K-Fold cross-validation and Test Time Augmentation.
Our proposed method demonstrated its effectiveness during
the Development and Testing phases of the CXR-LT: Multi-
Label Long-Tailed Classification on Chest X-Rays competi-
tion. Our approach yields substantial results with an mAP
of 0.354, securing a position within the top five.

1. Introduction
Diagnostic medical examinations often display long-

tailed distribution patterns, notably in chest radiography.

While some diseases appear frequently, most cases are rare,

resulting in a class imbalance [11]. Although several strate-

gies exist to handle this, recent focus has been on applying

these methods to address the complexity of long-tailed med-

ical image recognition [39, 21]. Deep long-tailed learning,

one of the most formidable problems in visual recognition,

aspires to train efficient deep models from a plethora of im-

ages following a long-tailed class distribution [38].

When diagnosing chest X-rays (CXRs), the problem be-

comes multi-label as patients often show multiple disease

findings simultaneously. Intriguingly, only a few studies

have included label co-occurrence knowledge in the learn-

ing process [5, 4]. Considering the long-tailed class dis-

tribution in chest X-ray datasets, incorporating label co-

occurrence information may offer valuable insights for ad-

dressing imbalanced and infrequent disease categories in

this complex medical imaging task.

The widespread use of large-scale image classification

benchmarks in the medical sector, typically consisting of

single-label images with balanced label distributions, forms

a disparity between conventional deep learning methods

and the challenges associated with long-tailed, multi-label

tasks like disease diagnosis in CXRs. Consequently, tradi-

tional approaches need help tackling the inherent complexi-

ties of class imbalance and label co-occurrence prevalent in

such tasks [11].

Addressing this issue, Wang et al. developed a spe-

cialized benchmark specifically for long-tailed, multi-label

medical image classification [2, 1]. Notably, previous at-

tempts to introduce supplementary classes to MIMIC-CXR-

JPG were made by Holste et al. [11] and Moukheiber et
al. [22], who investigated long-tailed learning techniques

and ensemble methods for few-shot learning on CXRs.

Our study diverges from the coarse-to-fine grouping ap-

proach in multi-label long-tailed chest X-ray classification.

Instead, it directly classifies even the small categories with-

out merging similar classes. The proposed strategy aims to

provide a more detailed and precise classification scheme

by maintaining separate classes for each disease, enhancing

the differentiation between distinct categories, especially

for rare diseases.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Our solution is in the Top 5 of the Development and Test-

ing phases of the CXR-LT: Multi-Label Long-Tailed Clas-

sification on Chest X-Rays competition [1] with the mAP

score of 0.354, compared to the distribution of 0.293±0.063
in the challenge. In summary, our contributions mainly in-

clude the following:

• We deliberately select architectural backbones, lever-

aging EfficientNetV2 [29] and ConvNeXt [18], to

achieve impressive performance on datasets with a

long-tailed distribution.

• Upon examining image sizes, we discover that larger

images deliver superior performance. Therefore, we

aim to exploit the largest possible resolution of im-

ages that a backbone network can support to preserve

as much useful information as possible.

• In addressing the issue of imbalanced datasets, we em-

ploy an array of augmentations ranging from basic to

advanced. Notably, we incorporate Mosaic augmen-

tation [31] into this multi-label classification problem,

significantly enhancing performance.

• We employ the Binary Focal Cross-Entropy loss func-

tion to handle long-tailed datasets.

• We use several ensemble strategies, including Strati-

fied K-Fold cross-validation and Test Time Augmen-

tation, to boost performance.

The content of this paper is organized as follows. In Sec-

tion 2, we briefly review existing methods related to our

work. Then we present our proposed method in Section 3.

Experimental results are discussed in Section 4. Finally, we

conclude our work and present open problems in Section 5.

2. Related Work
2.1. Multi-label Classification

In multi-label classification for chest X-ray images using

deep learning approaches, several influential works have ad-

vanced the field. CheXNet [23] made a significant contribu-

tion by employing a DenseNet [12] trained on the ChestX-

ray14 dataset, achieving impressive AUC results. Subse-

quent research has focused on enhancing model perfor-

mance and addressing specific challenges, such as Ma et
al. [20], who introduced a squeeze-and-excitation (SE)

block and global/local attention modules to capture disease-

specific features while also adopting a two-stage training

method for handling class imbalance. Recently, [25] inves-

tigated state-of-the-art classifiers, revealing extensive bias

patterns with potential vulnerabilities in real-world deploy-

ments, and proposed using multi-source datasets to mitigate

such issues during data collection.

Moreover, transformer-based architectures have gained

prominence, with promising results achieved by pre-

training Vision Transformers (ViTs) [8] on a large chest

X-ray dataset using Masked Autoencoders (MAE) [9] for

reconstructing missing pixels, demonstrating comparable

or superior performance to state-of-the-art CNNs in multi-

label thorax disease classification. Additionally, an impres-

sive approach involved a multi-label classification model

based on the Swin Transformer backbone [17], incorpo-

rating a Multi-Layer Perceptron (MLP) head architecture.

This model achieved state-of-the-art performance on the

Chest X-ray14 dataset, with an average AUC score of 0.810.

2.2. Long-Tailed Data Distribution

Efficiently addressing long-tailed data distributions has

been an active area of research, with various methodolo-

gies like OLTR [19] proposed to handle imbalanced class

frequencies. Zhang et al. [36] introduce MBNM, a Multi-

Branch Network based on Memory Features, for long-

tailed medical image recognition in computer-aided diag-

nosis, utilizing three branches, including a tail learning

branch with a feature memory module, to improve classi-

fication performance for rare diseases in imbalanced med-

ical datasets. Additionally, efforts to address Partial Long-

Tailed Multi-Label Classification (PLT-MLC)[37] explore

re-weighting strategies in Knowledge-Contrastive Learning

(KCL) [30] to mitigate false negatives. Yang et al. [32] use

contrastive learning, category prototypes, and a prototype

recalibration strategy in a single-stage pipeline, achieving

superior performance on medical image datasets by enhanc-

ing feature representation and addressing imbalanced data

distribution effectively.

2.3. Class-balanced Losses

Class imbalance presents a challenge across various clas-

sification tasks, compelling researchers to explore effective

techniques to mitigate its impact. One notable approach is

the introduction of focal loss by Lin et al. [16], tailored

explicitly for dense object detection. Focal loss dynami-

cally re-weights the contribution of hard-to-classify exam-

ples, leading to significant performance improvements, es-

pecially for underrepresented minority classes.

Another noteworthy method, proposed by Shu et al. [26],

centers around a mapping function that explicitly uses sam-

ple weights. This technique effectively addresses class im-

balance issues, yielding substantial performance boosts for

deep neural networks. Researchers have also explored novel

propositions like that of Li et al. [15], who introduced a

parametric cross-entropy loss function with individualized

data augmentation. This integrated approach not only en-

hances the efficacy of handling class imbalance but also ex-

hibits versatility in diverse classification scenarios.

Chen et al. [6] propose class-center triplet loss, which

addresses imbalanced training data in medical image diag-

nosis. The framework effectively separates class distribu-

tions and promotes compact class representations.
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Figure 1: Overall architecture of our proposed method, a multi-label long-tailed classifier for chest X-rays.

3. Proposed Method

In this section, we elaborate on our proposed methods

for effectively training a model when the training sam-

ples follow a long-tailed distribution. The proposed strat-

egy in this study avoids the coarse-to-fine approach, which

groups similar classes, and instead aims to directly classify

even the small categories in multi-label long-tailed chest X-

ray classification. The approach maintains a more detailed

classification scheme by treating each disease as a sepa-

rate class, ensuring accurate differentiation between dis-

tinct categories, including rare diseases. The study intro-

duces highly effective techniques that achieved competitive

results in the CXR-LT competition’s Development and Test-

ing phases. These techniques leverage EfficientNetV2 and

ConvNeXt architectures, utilize advanced augmentations,

implement Mosaic augmentation for multi-label classifica-

tion, and deploy ensemble strategies like Stratified K-Fold

cross-validation and Test Time Augmentation.

3.1. Architecture

A straightforward approach is utilized for training the

multi-label classifier. We construct models that adhere to

the architecture described in Figure 1 to learn representa-

tions from naturally distributed data. The difference lies

in the choice of backbone architectures. Empirically, we

have chosen two different models for the backbone: Effi-

cientNetV2 [29] and ConvNeXt [18]. We thereby briefly

introduce these two backbones.

EfficientNetV2, an extension of the renowned Efficient-

Net model [28], stands out with competitive performance

despite its compact size. Its faster training speed and supe-

rior parameter efficiency, achieved through training-aware

neural architecture search and scaling, make it an ideal

choice for efficiently handling computationally expensive

large input image sizes. This core idea has been piv-

otal in achieving our final competitive results. Notably,

the efficiency of EfficientNetV2 proves particularly valu-

able when dealing with the substantial CXRs (chest X-rays)

dataset [11], demanding significant time and resources for

training. Moreover, EfficientNetV2 has excelled in image

classification tasks [29]. It has recently been utilized for

multi-label classification with high model scores [24], fur-

ther reinforcing its potential as a feature extractor backbone

for multi-label classification.

Since the inception of the Vision Transformer (ViT) [8]

and Swin Transformer [17], transformer-based architectures

have emerged as the dominant paradigm, propelling nu-

merous models to achieve state-of-the-art results in vari-

ous computer vision tasks, notably, by re-evaluating design

spaces and pushing the capabilities of pure CNNs, incre-

mentally enhancing a standard ResNet [10] towards the vi-

sion transformer design. This research introduced a series

of pure CNN models known as ConvNeXt [18]. With Con-

vNeXt’s compelling performance across various computer

vision tasks, we recognize its potential for generalization

in multi-label settings, particularly in addressing the chal-

lenges of long-tailed distributions. Our experiment demon-

strates the efficacy of ConvNeXt in handling such settings,

reaffirming its promise as a compelling choice for multi-

label long-tailed medical image classification, such as chest

X-ray images [11].

The multi-label classification process starts with the

backbone extracting features from the input images. Global

Average Pooling is then applied to summarize the spa-

tial information, reducing the data to a fixed-size vector.

Dropout [27] is also implemented as a network-level reg-

ularization technique, randomly deactivating neurons dur-

ing training to prevent overfitting and improve generaliza-

tion. Finally, the processed data is sent to the classification

head, where the sigmoid function determines the indepen-

dent probabilities for each class.

3.2. Large Area and Sufficient Information

In our experiments, we notice a significant variation in

the aspect ratio between image width and height, ranging

from approximately 0.26 to 2.72 (with a standard deviation

of about 0.15). This diversity in aspect ratio could introduce

inefficiencies during model training, as image sizes must be

standardized during the preprocessing stage. Figure 2 pro-

vides a visual representation of the image size distribution

within the training set.

During our investigation, we observe that the original

images are relatively large, requiring resizing to smaller di-

mensions for training and inference. However, this down-

sizing adversely affects performance. Notably, as we in-

crease the image size, a significant improvement in perfor-

mance is evident.
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Figure 2: Scatter plot illustrating the distribution of image

width (x-axis) and height (y-axis) in the training set.

Downsizing images may lead to the loss of crucial fea-

tures, particularly in long-tailed classes with fewer samples,

making it challenging for models to discern patterns and

features effectively. Consequently, we conclude that uti-

lizing the largest feasible image size (within hardware re-

source constraints) substantially enhances performance.

3.3. Data Augmentation

Data augmentation is crucial in model training, enhanc-

ing the model’s generalization and minimizing overfitting.

This benefits imbalanced datasets, improving the model’s

performance on underrepresented classes. Our augmenta-

tion pipeline includes various techniques such as random

scaling, horizontal flipping, rotation, and random contrast,

saturation, and brightness adjustments. Additionally, we

integrate advanced augmentation methods like CutOut [7],

Mixup [34], and Cutmix [33].

Inspired by Mosaic augmentation [31, 3], we adapt it for

classification tasks. This technique combines four images

to create a single composite image, enabling the model to

identify objects across diverse contexts, and promoting re-

silience to specific context dependencies. This improves the

model’s performance, especially in long-tailed datasets, by

enhancing learning for rare classes and diversifying small

sample classes in various contexts.

We introduce two variations of the Mosaic method, both

using four images from the training set. The first variation

involves random cropping, providing dynamic and gener-

alized contexts, while the second uses full resizing, pre-

serving the maximum amount of label-related information.

These two types of Mosaic augmentation [31, 3] are visu-

ally illustrated in Figure 3.

A significant challenge is determining how to handle la-

bels following the application of Mosaic augmentation, as

in [31, 3]. A typical approach might simply average the la-

bels of all four input images. However, our observations

Figure 3: Visualizations of two types of Mosaic augmenta-

tion applied for chest X-rays images.

indicate that this is ineffective. Instead, we propose an al-

ternative method that is both straightforward and efficient.

Let D = (x1, y1), . . . , (xN , yN ) represent the dataset,

where N denotes the number of training samples. Each

sample-label pair (xk, yk), with k ∈ {1, . . . , N}, consists

of an input sample xk and its corresponding multi-label

vector yk. Here, yk = [y1k, . . . , y
C
k ] ∈ {0, 1}C , with C

being the number of classes. The vector yk contains bi-

nary values, where yck indicates the presence (1) or ab-

sence (0) of class c in the sample xk. Assuming the Mo-

saic augmentation takes four sample-label pairs as input:

(xa, ya), (xb, yb), (xc, yc), (xd, yd), the corresponding new

sample-label pair is calculated as follows:

xresult = MOSAIC(xa, xb, xc, xd)

yresult = CLIP VALUE(ya + yb + yc + yd)

CLIP VALUE function is responsible for constraining

all input values in [0, 1]. This ensures that the output la-

bel generated after the Mosaic augmentation maintains the

presence of classes in the input images. By adhering to this

requirement, the model is motivated to learn patterns and

features from either part or the entirety of the input image,

enabling it to discern the corresponding class accurately. As

a result of this constraint, we observe a notable improve-

ment in the model’s performance. This modification in la-

bel calculation has been applied to other augmentation tech-

niques, such as Mixup [34] and Cutmix [33], further en-

hancing the model’s ability to generalize and achieve robust

performance in diverse scenarios.
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Figure 4: Ensemble strategy in our method.

3.4. Loss Function

In our approach, we leverage the Binary Focal Cross-

Entropy loss function, which has proven effective in dealing

with imbalanced datasets commonly encountered in com-

puter vision tasks. While Binary Cross-Entropy is suitable

for binary and multi-label classification, it treats all samples

equally in the loss computation, making it less favorable for

datasets with long-tailed distributions.

Focal loss [16], on the other hand, addresses this issue by

introducing a modulating factor that down-weights the con-

tribution of easily classified examples to the overall loss. By

doing so, the model focuses more on hard negatives, which

are implicitly amplified by this operation. The formulation

of the Focal loss is given as follows:

FL(pt) = −αt(1− pt)
γ log(pt)

where pt represents the predicted probability for the target

class, αt is the class-specific balancing parameter, and γ
is the focusing parameter. This aspect is particularly ben-

eficial when dealing with imbalanced datasets, as it pre-

vents the model from favoring the majority class and in-

stead encourages learning from less common, challenging

instances. We use αt = 0.25 and the default γ = 2.0 as

described in the original paper.

To further address the issue of class imbalance in binary

classification, we apply a weight balancing technique. This

technique ensures that our model gives equal attention to

both classes, regardless of their prevalence in the dataset.

Additionally, we implement label smoothing with a param-

eter of 10−2, thereby improving the model’s capacity to

generalize and enabling it to make accurate predictions on

unseen data even when the class distribution is skewed.

3.5. Ensemble Approaches

As shown in Figure 4, our ensemble strategy utilizes

Stratified K-Fold cross-validation and Test Time Augmen-

tation, presented in the following two sections.

3.5.1 Stratified K-Fold Cross-Validation

To address the challenges posed by the long-tailed distri-

bution in our dataset and the multi-label classification task,

we employ Stratified K-Fold cross-validation with K set to

5. This approach involves dividing the dataset into five sub-

sets or ’folds’, ensuring that each fold maintains the same

data distribution, including representation of all classes, es-

pecially the scarce ones. Such a balanced representation is

unachievable through conventional random shuffling.

The benefits of this approach are manifold. Firstly, it

significantly minimizes underfitting by using most data for

training. Secondly, it also curbs overfitting, as a substantial

portion of the data is used for the validation set. Moreover,

this method is advantageous in scenarios with unbalanced

datasets, as multiple folds help maintain a representative

sample of the original data. Analyzing the model perfor-

mance for each fold offers insights that allow us to fine-

tune the model further and can even be employed for hy-

perparameter tuning. Ultimately, we can achieve reliable,

generalizable, and highly accurate predictions by averaging

the ensemble of models from all the folds.

3.5.2 Test Time Augmentation

Test Time Augmentation (TTA) is a strategy for applying

various transformations to a test image. These transformed

images are then fed into the trained model. By averaging

the results, a more confident prediction is achieved.

In our experiments, we confine our transformations to

horizontal flipping. This modification does not dramatically

change the input data but provides a unique perspective on

it. The technique aids in enhancing the model’s predictive

accuracy by offering a more robust estimate while preserv-

ing contextual information. It acknowledges potential vari-

ations in the test data that could assist the model in making

more precise predictions, thus improving its generalizabil-

ity.
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Figure 5: Class distribution in the training set of the expanded MIMIC-CXR-JPG dataset. Yellow bars indicate newly added

classes, many of which are scarce in occurrence.

4. Experiments

4.1. Data Overview

MIMIC-CXR-JPG [13] is an extensive publicly available

database with labeled chest radiographs 1. The dataset was

created by converting DICOM-format chest radiographs

from the original MIMIC-CXR into JPEG format, facili-

tating easier use for researchers without specialized knowl-

edge in the medical domain. In total, MIMIC-CXR-JPG

comprises 377,110 chest X-rays associated with 227,835

imaging studies.

The expanded dataset in this shared task introduces 12

new pathologies based on radiology reports from the origi-

nal dataset. This expansion results in a total of 26 classes,

creating a long-tailed class distribution, as shown in Figure

5. This work follows the procedure of Holste et al.[11] and

Moukheiber et al.[22] to establish a benchmark for long-

tailed, multi-label medical image classification. The dataset

is divided into three subsets: training, development, and

testing, with a split ratio of 7:1:2, respectively.

The dataset is organized into levels of patients, studies,

and images. This hierarchical structure enables researchers

to access and analyze medical records from multiple pa-

tients, where each patient has one or more studies, and

each study has one or more images. Importantly, all images

within the same study have the same label, which allows for

the aggregation of information from the images to arrive at

a final decision.

1https://physionet.org/content/mimic-cxr-jpg/2.0.0/

Phase #Images

Train 264,849

Development 36,769

Test 75,492

Table 1: Number of images for each phase of CXR-LT com-

petition.

4.2. Implementation Details

All our models are implemented using Tensorflow’s

Keras. Depending on the configuration, we resize input data

to either 224× 224, 512× 512, or 768× 768, subject to the

mentioned augmentation procedure, and scaled to a range

between 0 and 1.

We employ the Adam optimization algorithm [14], set-

ting the momentum parameters at β1 = 0.9 and β2 =
0.999, with a learning rate of 10−4. Each model undergoes

training for 20 epochs on four NVIDIA Tesla V100 32GB

GPUs.

4.3. Evaluation Metrics

The shared task shows that the difficulty in evaluating

multi-label classification can stem from a significant class

imbalance in the data, which requires proper matrices to as-

sess the result appropriately [11] appropriately.

The mean Average Precision (mAP) is a suitable met-

ric to meet the requirements as it can measure performance

across decision thresholds and be resilient to class im-

balance. This metric provides a “macro-averaged” mAP

across the 26 classes, offering a comprehensive view of the

model’s performance across all categories.
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Index Backbone Image Size K-Fold TTA Development Testing
mAP mAUC mF1 mAP mAUC mF1

(1) EfficientNetV2S 224 0.300 0.805 0.127 - - -

(2) EfficientNetV2S 512 0.322 0.819 0.147 - - -

(3) EfficientNetV2S 768 0.324 0.819 0.146 - - -

(4) EfficientNetV2S 768 x 0.329 0.823 0.166 - - -

(5) EfficientNetV2S 768 x x 0.347 0.834 0.150 - - -

(6) ConvNeXtTiny 224 x x 0.314 0.815 0.123 - - -

(7) ConvNeXtSmall 512 x x - - - 0.343 0.830 0.147

(8) (5) + (6) - - - 0.344 0.832 0.127 0.347 0.836 0.153
(9) (5) + (7) - - - - - - 0.354 0.838 0.148

(10) (5) + (6) + (7) - - - - - - 0.351 0.837 0.137

Table 2: Benchmark results for the Development and Testing phases of the CXR-LT: Multi-Label Long-Tailed Classification

on Chest X-Rays competition [1]. The best results are highlighted.

Another metric often used in research for this dataset

is the Area Under the Receiver Operating Characteristic

Curve (AUC) [22, 35]. However, AUC can be heavily in-

flated under such conditions, leading to overestimating the

model’s performance. Therefore, its role in this context is

limited and does not contribute significantly to addressing

the root problem compared to mAP. In addition, mean AUC

(mAUC) and mean F1 score (mF1) are included as supple-

mentary evaluation metrics for other assessments. Still, they

are not considered the main metrics for evaluating model

performance in imbalanced data. The mAUC provides an

average measure of the model’s ability to distinguish be-

tween classes, while the mF1 score, calculated using a de-

cision threshold of 0.5 for each class, provides a balance

between precision and recall.

4.4. Quantitative Results

In the Development phase, we begin with the baseline

model (1) using the EfficientNetV2S backbone and an im-

age size of 224 × 224. We then progressively increase

the image size to 512 × 512, resulting in significant im-

provements of around 2% for mAP and mF1, and 1.4% for

mAUC. However, as the image size grows, the performance

gains begin to saturate, and we settle on an image size of

768×768. Hence, experiments (1), (2), and (3) consistently

demonstrate improved model performance as the image size

scales from 224× 224 to 768× 768. Experiment (4) incor-

porates Test Time Augmentation (TTA), further enhancing

metrics by 0.5%, 0.4%, and 2% in terms of mAP, mAUC,

and mF1, respectively.

Implementing the Stratified K-Fold strategy results in a

notable mAP improvement from 0.329 to 0.347 during the

Development phase. Although there is a 1.6% drop in mF1,

the effectiveness of our strategy becomes evident as it favors

two of the three metrics.

In a similar approach to the baseline model, we experi-

ment with the ConvNextTiny backbone, utilizing the strat-

ified K-fold and TTA strategies. This approach is compet-

itive compared to the EfficientNetV2S counterpart, achiev-

ing similar performance levels in terms of mAP and mAUC.

However, we cannot provide the Development phase results

of subsequent experiments on the ConvNext backbones, as

this phase has expired.

In the Testing phase, we explore various ensemble meth-

ods to optimize performance. Among these ensembles, the

most effective one, labeled as (8), combines experiments (5)

and (7), achieving an impressive mAUC of 0.838, an mF1

of 0.148, and an mAP of 0.354. However, an exciting obser-

vation arises from the experiment (10), an ensemble of three

models where two models share the same ConvNeXt archi-

tecture. Experiment (10) experiences a significant drop in

mF1, suggesting that ensembles composed of similar mod-

els might slightly penalize performance due to architectural

bias. This architectural bias could be the reason behind the

lower performance in mF1 for ConvNeXt. To counteract

this effect, introducing more models with different back-

bones, such as EfficientNetV2S, might help average the

bias and enhance overall ensemble performance. This ap-

proach could mitigate the architectural bias and contribute

to more balanced predictions, especially for rare classes,

in the multi-label long-tailed classification of chest X-rays

during the Testing phase.

These results underscore the efficacy of our approach,

highlighting the crucial role of utilizing large images in

medical imaging tasks, such as chest X-rays. By incor-

porating additional techniques like Stratified K-Fold Cross-

validation and Test-Time Augmentation (TTA), we achieve

competitive performance in the multi-label long-tailed clas-

sification of chest X-rays.

Out of the 17 teams competing in the CXR-LT: Multi-

Label Long-Tailed Classification on Chest X-Rays compe-

tition, our method achieves a competitive mAP score of

0.354, surpassing the test distribution mean (0.293) with a

low standard deviation of 0.063 by a substantial margin.
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Figure 6: Visualizing inference results of the baseline and our methods on Training set.

4.5. Qualitative Results

Figure 6 provides visualizations of the results obtained

on the Training set using both the baseline and our final

method, shedding light on the distinct performance charac-

teristics of the two approaches. Missing or wrong baseline

predictions are in red. More accurate prediction results of

our method over baseline one are in blue.

Notably, the baseline tends to consistently predict the

majority classes, such as Pleural Effusion and Support De-

vices, despite utilizing Focal Loss to mitigate the impact

of imbalanced data. This tendency can be attributed to the

challenges posed by small image sizes during preprocess-

ing, which may result in the loss of crucial information

unique to rare classes.

In contrast, our proposed method demonstrates enhanced

accuracy in predicting labels that closely align with the

ground truth. In the second row’s leftmost case, our ap-

proach provides a comprehensive multi-label prediction for

the chest X-ray image, capturing multiple pertinent disease

indicators. Meanwhile, the baseline only outputs a single

label, potentially overlooking crucial diagnostic insights.

Additionally, in the two cases on the right in the sec-

ond row, the baseline classifies them as No Finding, which

might be expected given the presence of two rare classes,

namely Nodule and Hernia, in the ground truth. In con-

trast, our method showcases its robustness in providing cor-

rect labels even for these rare classes, thus improving the

model’s capability to handle long-tailed data distributions

effectively.

5. Conclusion
Our study focuses on addressing the challenge of long-

tailed data distribution in chest X-ray datasets, particularly

in multi-label classification tasks for chest X-ray diagnoses.

We leverage advanced models such as EfficientNetV2 and

ConvNeXt to overcome this imbalance while incorporating

various techniques to balance the data. Notably, image aug-

mentations, including Mosaic augmentation tailored at the

label level, are crucial in enhancing performance for this

problem. Furthermore, adopting the Binary Focal Cross-

Entropy loss function contributes to handling long-tailed

datasets effectively. We integrate several ensemble strate-

gies to boost model performance, such as Stratified K-Fold

cross-validation and Test Time Augmentation.

The efficacy of our approach is validated in the CXR-LT:

Multi-Label Long-Tailed Classification on Chest X-Rays

competition, where our team achieves a top-five ranking

with the mAP score of 0.354 with reference to the distri-

bution of 0.293± 0.063 in the challenge. Our contributions

have the potential to significantly enhance diagnostic proce-

dures in healthcare and offer valuable insights into address-

ing long-tailed imbalances in medical image datasets.

Future work includes exploring transfer learning from

medical imaging domains, fine-tuning augmentations, and

self-supervised learning. Emphasizing uncertainty estima-

tion, model interpretability, and engaging medical experts

would enhance performance and clinical relevance.

Acknowledgment: This research is funded by Viet Nam

National University Ho Chi Minh City (VNU-HCM) under

grant number DS2020-42-01.

2736



References
[1] CXR-LT: Multi-label long-tailed classification on

chest x-rays. https://doi.org/10.13026/
721s-vs37,https://codalab.lisn.upsaclay.
fr/competitions/12599.

[2] ICCV CVAMD 2023 Shared Task on Multi-Label

Long-Tailed Classification on Chest X-Rays —

bionlplab.github.io. https://bionlplab.github.
io/2023_ICCV_CVAMD/. [Accessed 24-Jul-2023].

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934, 2020.

[4] Bingzhi Chen, Jinxing Li, Guangming Lu, Hongbing Yu, and

David Zhang. Label co-occurrence learning with graph con-

volutional networks for multi-label chest x-ray image classi-

fication. IEEE journal of biomedical and health informatics,

24(8):2292–2302, 2020.

[5] Haomin Chen, Shun Miao, Daguang Xu, Gregory D Hager,

and Adam P Harrison. Deep hierarchical multi-label classifi-

cation of chest x-ray images. In International conference on
medical imaging with deep learning, pages 109–120. PMLR,

2019.

[6] Kanghao Chen, Weixian Lei, Shen Zhao, Wei-Shi Zheng,

and Ruixuan Wang. Pcct: Progressive class-center triplet

loss for imbalanced medical image classification. IEEE Jour-
nal of Biomedical and Health Informatics, 27(4):2026–2036,

2023.

[7] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[9] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable

vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–

16009, 2022.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] Gregory Holste, Song Wang, Ziyu Jiang, Thomas C

Shen, George Shih, Ronald M Summers, Yifan Peng, and

Zhangyang Wang. Long-tailed classification of thorax dis-

eases on chest x-ray: A new benchmark study. In MICCAI
Workshop on Data Augmentation, Labelling, and Imperfec-
tions, pages 22–32. Springer, 2022.

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[13] Alistair E. W. Johnson, Tom J. Pollard, Seth J. Berkowitz,

Nathaniel R. Greenbaum, Matthew P. Lungren, Chih-ying

Deng, Roger G. Mark, and Steven Horng. MIMIC-CXR-

JPG: A large publicly available database of labeled chest ra-

diographs. CoRR, abs/1901.07042, 2019.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[15] Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Ji-

asi Chen, and Samet Oymak. Autobalance: Optimized loss

functions for imbalanced data. Advances in Neural Informa-
tion Processing Systems, 34:3163–3177, 2021.

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021.

[18] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the

2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976–11986,

2022.

[19] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, and Stella X Yu. Large-scale long-tailed

recognition in an open world. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 2537–2546, 2019.

[20] Yanbo Ma, Qiuhao Zhou, Xuesong Chen, Haihua Lu, and

Yong Zhao. Multi-attention network for thoracic disease

classification and localization. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1378–1382. IEEE, 2019.

[21] Yassine Marrakchi, Osama Makansi, and Thomas Brox.

Fighting class imbalance with contrastive learning. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 466–476. Springer,

2021.

[22] Dana Moukheiber, Saurabh Mahindre, Lama Moukheiber,

Mira Moukheiber, Song Wang, Chunwei Ma, George Shih,

Yifan Peng, and Mingchen Gao. Few-shot learning geomet-

ric ensemble for multi-label classification of chest x-rays. In

MICCAI Workshop on Data Augmentation, Labelling, and
Imperfections, pages 112–122. Springer, 2022.

[23] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang,

Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis

Langlotz, Katie Shpanskaya, et al. Chexnet: Radiologist-

level pneumonia detection on chest x-rays with deep learn-

ing. arXiv preprint arXiv:1711.05225, 2017.

[24] Manuel Alejandro Rodrı́guez, Hasan AlMarzouqi, and Panos

Liatsis. Multi-label retinal disease classification using trans-

formers. IEEE Journal of Biomedical and Health Informat-
ics, 2022.

[25] Laleh Seyyed-Kalantari, Guanxiong Liu, Matthew McDer-

mott, Irene Y Chen, and Marzyeh Ghassemi. Chexclusion:

2737



Fairness gaps in deep chest x-ray classifiers. In BIOCOM-
PUTING 2021: proceedings of the Pacific symposium, pages

232–243. World Scientific, 2020.

[26] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,

Zongben Xu, and Deyu Meng. Meta-weight-net: Learning

an explicit mapping for sample weighting. Advances in neu-
ral information processing systems, 32, 2019.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[28] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,

2019.

[29] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models

and faster training. In International conference on machine
learning, pages 10096–10106. PMLR, 2021.

[30] Tianqi Wang, Lei Chen, Xiaodan Zhu, Younghun Lee, and

Jing Gao. Weighted contrastive learning with false nega-

tive control to help long-tailed product classification. In

Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 5: Industry Track),
pages 574–580, 2023.

[31] Zhiwei Wei, Chenzhen Duan, Xinghao Song, Ye Tian, and

Hongpeng Wang. Amrnet: Chips augmentation in aerial

images object detection. arXiv preprint arXiv:2009.07168,

2020.

[32] Zhixiong Yang, Junwen Pan, Yanzhan Yang, Xiaozhou Shi,

Hong-Yu Zhou, Zhicheng Zhang, and Cheng Bian. Proco:

Prototype-aware contrastive learning for long-tailed medical

image classification. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention,

pages 173–182. Springer, 2022.

[33] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019.

[34] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv preprint arXiv:1710.09412, 2017.

[35] Ruru Zhang, Haihong E, Lifei Yuan, Jiawen He, Hongxing

Zhang, Shengjuan Zhang, Yanhui Wang, Meina Song, and

Lifei Wang. MBNM: Multi-branch network based on mem-

ory features for long-tailed medical image recognition. Com-
puter Methods and Programs in Biomedicine, 212:106448,

Nov. 2021.

[36] Ruru Zhang, E Haihong, Lifei Yuan, Jiawen He, Hongxing

Zhang, Shengjuan Zhang, Yanhui Wang, Meina Song, and

Lifei Wang. Mbnm: multi-branch network based on mem-

ory features for long-tailed medical image recognition. Com-
puter Methods and Programs in Biomedicine, 212:106448,

2021.

[37] Wenqiao Zhang, Changshuo Liu, Lingze Zeng, Beng Chin

Ooi, Siliang Tang, and Yueting Zhuang. Learning in im-

perfect environment: Multi-label classification with long-
tailed distribution and partial labels. arXiv preprint
arXiv:2304.10539, 2023.

[38] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and

Jiashi Feng. Deep long-tailed learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

2023.

[39] Jiaxin Zhuang, Jiabin Cai, Ruixuan Wang, Jianguo Zhang,

and Weishi Zheng. Care: Class attention to regions of le-

sion for classification on imbalanced data. In International
Conference on Medical Imaging with Deep Learning, pages

588–597. PMLR, 2019.

2738


