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Abstract

In recent years, many mammographic image analysis
methods have been introduced for improving cancer clas-
sification tasks. Two major issues of mammogram classi-
fication tasks are leveraging multi-view mammographic in-
formation and class-imbalance handling. In the first prob-
lem, many multi-view methods have been released for con-
catenating features of two or more views for the training
and inference stage. Having said that, most multi-view ex-
isting methods are not explainable in the meaning of fea-
ture fusion, and treat many views equally for diagnosing.
Our work aims to propose a simple but novel method for
enhancing examined view (main view) by leveraging low-
level feature information from the auxiliary view (ipsilateral
view) before learning the high-level feature that contains
the cancerous features. For the second issue, we also pro-
pose a simple but novel malignant mammogram synthesis
framework for upsampling minor class samples. Our easy-
to-implement and no-training framework has eliminated the
current limitation of the CutMix algorithm which are unreli-
able synthesized images with random pasted patches, hard-
contour problems, and domain shift problems. Our results
on VinDr-Mammo and CMMD datasets show the effective-
ness of our two new frameworks for both multi-view training
and synthesizing mammographic images, outperforming the
previous conventional methods in our experimental settings.

*Thanh-Huy Nguyen and Quang Hien Kha have equal contributions.

Figure 1. Our proposed pipeline for training and synthesizing

mammographic images. Two stages are the supervised training

on ipsilateral views mammograms. and synthesis framework that

takes the saliency map and region malignant annotations.

1. Introduction

Breast cancer has one of the highest rates of mortality

and incidence among women worldwide, making it one of

the most common cancers to cause death. Cancer detection,

in particular at the early stage, must be crucial in screening

mammogram exams. Both the craniocaudal (CC) view and

the mediolateral oblique (MLO) view, which are top-down

and side views of the breast, respectively, can be used to

classify each patient’s breasts. Radiologists frequently ex-

amine both views of the same breast (ipsilateral views) and

the same view of both breasts (bilateral views) to make a

sound, intuitive decision.
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Based on that, prior works nowadays can be classified

into various groups: ipsilateral-only based, bilateral-only

based, and ipsilateral-bilateral combination. Recent papers

expose bilateral-only based, Liu et al. [16] enhanced mam-

mogram mass detection using a contrasted bilateral network

(CBN). Furthermore, Zhao et al. [32] used a well-known at-

tention module between adaptive spatial and channel that

yields the categorization. In contrast, those strategies still

struggle with the conflict between the two breast sides that

cause noise in the model because one patient might have

the disease on one breast while another does not. Another

group is the ipsilateral-bilateral combination approach used

three views or four views as the inputs which create a full

overview of breasts. Liu et al. [14, 15] achieved this by

proposing a remarkable Anatomy-aware Graph Convolu-

tional Network (AGN) that relies on the mass shape and

region to construct the graphical correspondence among dif-

ferent mammographic views. Although the performance of

these models is noteworthy, they require massive computa-

tional, thus might be hardly embedded in hospital facilities.

Continuously, Nguyen et al. [21] proposed four views input,

independently, each view will be learned to extract features

and then fed into Light-GBM [10] classifier for prediction.

Afterward, the result operates the max function between ip-

silateral view sides, which can be inaccurate and lead to a

poor learning process.

Furthermore, mammogram synthesis and augmentation

techniques are also one of the most promising approaches

for handling class imbalance. MixUp [31] reduces the pro-

portion of informative pixels of two images to produce a

new image that shows impressive results in many medical

image applications. Similar to MixUp, the CutMix [30] al-

gorithm generates a simple augmentation methodology that

replaces the patch of two images together. However, both of

these methods might cause a conflict in the label because the

random of choosing a patch in the mammographic image

can create two different classes in the same image. About

MixUp, the algorithm itself uses the image-level mixing

between two images without semantic label preserving for

mammographic cancer classification. Besides, the region

generated from CutMix is random, that might or might not

contain the cancerous information when conducting copy-

paste. CutMix also might create new untrustworthy samples

due to the solid rectangle’s boundary of pasted patches and

the difference in style space.

To take full advantage, we propose a Dual Ipsilateral

Views Fusion Network (DIVF-Net) for mammographic im-

age classification. This network can be separated into three

parts: Low-Level Feature Blocks, Features Fusion Blocks,

and High-Level Feature Blocks. Our network can lever-

age low-level information such as the shape, contour, and

density of the breasts. The DIVF-Net combines two low-

level features for extracting the relevant information before

using it for enhancing the main view feature. The high-

level information part of DIVF-Net aims to focus on the

lesions that highly contain semantic information for cancer

classification. Additionally, a Malignant Lesions Synthesis

Framework also is proposed in this paper which overcomes

the current limitations of CutMix and MixUp algorithms.

It includes three stages: Region Selection, Domain Adap-

tation, and Soft Contour Transformation. The framework

carefully picks the radiologist-annotated region for replac-

ing the benign-information-contained region. The rest of

the framework aims to close the gap of different between

source and target patches before replacing it with a gradient-

contour MixUp algorithm.

In summary, the main contributions of our work are as

follows:

• A novel multi-view network DIVF-Net with two types

of fusion operations that leverages information on both

CC and MLO views for accurate cancer classification.

• A new robust mammogram synthesis framework that

replaces the benign to malignancy region with an in-

formative region. The created patches are also being

smoothed and Fourier-adapted before replacing the in-

dicated regions.

• Experimental results and ablation studies based on a

combination of these two show the robustness and gen-

eralizability on multiple fusion settings and datasets.

2. Related Work
Multi-view Network: Compared with 2D views, 3D ob-

jects have much more knowledge to guide the model, which

is described in visual understanding [6, 24] and stereo vi-

sion [3, 4, 23]. In visual understanding, they set several

cameras around a target object to model region-to-region

and views from various angles. Each view is embedded

in a shared weight Convolutional Neural Network (CNN).

In stereo vision, two cameras are placed closely. This ap-

proach is mainly used in self-driving cars, which manipulate

the depth estimation via disparity map fusion. The depth es-

timation helps the system knows the closeness to itself the

straight object to immediately avoid the car collapse and

keep a safe distance. Multi-view-based approaches [21, 26]

collect features from various 2D views to represent the 3D

object. First, they fed each view into a feature extractor to

learn the appropriate embedding feature. Then, they pro-

posed their work to significantly fuse all of them for 3D

representation.

Inspired by that, mammographic screening also has a dif-

ferentiated imaging process that is efficient to represent 3D

objects. Wu et al [28] proposed the four views mammogram

network to predict the malignant or not malignant classifi-

cation. They aggregate between the bilateral views at the
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Figure 2. Dual Ipsilateral Views Fusion Network (DIVF-Net) for Mammographic Cancer Diagnosis. This framework consists of three

stages: Low-Level Features Blocks (left-top), Features Fusion Blocks (middle-top), and High-Level Features Blocks(right-top). In Ip-

silateral Views Fusion (IVF) Block, there are two operations used to fuse both examined features and auxiliary features: average and

concatenate. After going through IVF Block, the fused features combine with examined features to improve the performance.

first stage and then the softmax layer. Finally, they pre-

sented four strategies with a combination of several layers.

Khan et al [19] enhanced the way mammogram image pre-

processing and decreased the computational complexity in

the backbone. They extract directly a mass via augmented

ROIs and modify a small VGGNet-like architecture used

for the feature extraction stage. In general, ipsilateral views

consist of CC and MLO views of the same breast side. This

advantage in extracting rich information for 3D medical im-

age analysis. Thus, fusing the ipsilateral views increases the

global features in fusion operation beside the local features

from individual views.

Medical Image Synthesis/Augmentation: Augmenta-

tion is one of the most fundamental procedures for syn-

thesizing training data for further generalizability. Exist-

ing works on data augmentation [13, 30, 31] synthesize two

images into soft images. Thus, the generated new training

images direct the model to concentrate more on shape than

texture, which improves classification and object identifica-

tion performances. CutOut [5] revivals the object occlusion,

which is a common issue in many computer vision tasks. It

randomly chooses one defined size patch to remove. While

CutMix [30] replaces the binary mask with another image

and mixes the label via the combination ratio. Mixup [31]

sampling from the mixup vicinal distribution produces vir-

tual feature-target vectors.

In recent years, Generative Adversarial Networks (GAN)

[7] become a well-known deep-learning-based medical im-

age synthesis framework. For the synthesis of mammo-

grams, Dimitrios Korkinof et al [12]. employ a progres-

sive GAN (PGGAN), achieving high resolutions and pos-

itive outcomes when comparing the low-level pixel distri-

butions of real and artificial images. Rui Man et al.’s re-

search [18] focuses on creating synthetic samples, but in

this instance, they create patches of a histopathological im-

age. This AnoGAN (Anomaly Detection GAN) has many

benefits for teaching classification systems. Xiangyuan Ma

et al.’s [17] research focuses on creating samples of mam-

mogram lesion segmentation masks. This enables overcom-

ing image labeling, one of the most difficult tasks involved

in dataset construction. Having said that, the biggest con-

cern of GAN-based approaches is the realism and trustwor-

thiness of synthesized samples. It may not be practical in

real-world applications when using synthesized mammo-

grams for training and testing.

3. Methodology

3.1. Dual Ipsilateral Views Fusion Network

This work aims to exploit the dual-view mammograms

of the same breast using a new proposed network, DIVF-

Net. Our network takes two ipsilateral views (CC and

MLO) of a single breast to assess the cancerous. For each

patient, the model takes one view of the breast as an exam-

ined view, and the other is an auxiliary view to support. As

shown in Fig. 2, both examined view and auxiliary view
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Figure 3. Proposed Soft-Adapted Malignancy Synthesis Framework consists of three phases: 1) Region Selection, extracting the important

region (left); 2) Domain Adaptation, adapting target style to the source image (middle); 3) Soft Contour Transformation, smoothing the

target region with an inverse soft mask and the transformed source region with a soft mask (right).

are fed into Low-Level Features Blocks (the first half of

the popular backbone like ResNet [8]). Then, the output

features of these views are combined by IVF Block. The

IVF Block includes 4 components: Aggregation mecha-

nism, 2D convolutional layer, batch normalization layer [9],

and ReLU activation function [1]. In the aggregation part,

there are two ways to combine two feature maps: Average

and Concatenation, shown in 2.1 and 2.2 of Fig. 2.

For average aggregation, the output feature takes two

feature maps to compute using element-wise average before

being fed to the other three components in IVF Block.

For concatenate aggregation, the output feature is a depth

stack of two input feature maps before the convolutional

layer takes a two-dimension-depth feature map to get the

one-dimension-depth feature map. The batch normalization

layer and ReLU activation function remain the same as av-

erage aggregation for normalizing the input features.

To enhance the examined view with informative infor-

mation, the output feature map of IVF Block and examined

view feature map are combined by element-wise addition.

The High-Level Features Blocks (the last half of the back-

bone) take the enhanced feature maps to learn the high-level

information such as abnormalities. Subsequently, we feed

it into fully connected layers, followed by a softmax layer,

to get the final output binary classification.

This framework’s concept is based on how radiologists

examine mammograms for diagnosis. Instead of treat-

ing two ipsilateral views equally for cancer diagnosis, the

model seeks to distinguish one as the primary view and the

other as a support view. As shown in Part 2 of Fig. 2, the ex-

amined view feature and fused feature play important roles

in classifying breast cancer. The examined view is the radi-

ologist’s main focus, which is kept the same. On the other

hand, the auxiliary view along with examined view is for

comparing these two to having more perspectives.

3.2. Malignant Lesions Synthesis Framework

Inherited from the previous successful use of domain

adaptation on mammogram classification [27], and mam-

mogram detection tasks [20], we proposed a novel frame-

work to create the natural-looking malignant findings syn-

thesis framework. The framework includes three stages:

1. We first propose a way to select the important region

from the benign breast by getting a saliency map from

warm-up pre-trained supervised learning. Then, the

region with a high-intensity score was replaced by a

malignant region that was annotated by radiologists.

2. Secondly, To solve the domain shift issue brought on

by breast density or device differences, we conduct the

style transfer from the source region to the target re-

gion based on Fourier Domain Adaptation [29].

3. Finally, to make the malignant lesions naturally mix

with the destination region, we propose a soft contour

mask and its inverse to combine source and target re-

gions before pasting to a region of the benign sample.
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Figure 4. The synthesis mammogram image with various algorithms. a) Soft Mask: following the Gaussian distribution (bottom) to

generate the blending masks (top), b) Reference image contains malignancy mass and c) Target image will be added malignancy mass,

d) the hard region synthesis CutMix algorithm image, e) the middle smooth region synthesis image with CutMix and Domain Adapted

algorithms, f) Our proposed Soft-Adapted Malignancy Synthesis image.

In the region selection part, the supervised training for

warming up is conducted before getting a saliency map.

Grad-CAM [25] uses the gradient information flowing into

the last convolutional layer of the CNN to assign impor-

tance values to each neuron for a particular decision of in-

terest. Mathematically, with given class c, the saliency map

from Grad-CAM Lc
GC ∈ RH×W of height H and width W

is obtained by computing the gradient of the class c score

and yc with respect to feature map activations Ak of the

convolutional layer (denotes by ∂yc

∂Ak ). To obtain the neuron

importance weights (called ack), these gradients are global-

average-pooled over the width and height dimensions (in-

dexed by i and j, respectively):

ack =
1

Z

∑
i

∑
j

∂yc

∂Ak
ij

. (1)

To obtain Lc
GC , we perform a weighted combination of

forward activation maps followed by a ReLU:

Lc
GC = ReLU

(∑
k

ackA
k

)
. (2)

Based on radiologists’ malignant abnormalities annota-

tions with width Wr and height Hr, coordinates (i, j) are

set as top-left corner starting coordinates. We calculate

the bottom-right saliency area value with beginning coor-

dinates i, j and the shape of regions Hr,Wr. Region value

of class-discriminative localization map from Grad-CAM,

called Iregion (LGC , i, j,Hr,Wr), is defined as:

Iregion (LGC , i, j,Hr,Wr) =

Hr+i−1∑
m=i

Wr+j−1∑
n=j

LGC (m,n).

(3)

For selecting a wanted region given class c as a pasting

destination, we compute the values of regions and find the

highest class-discriminative patch as below:

I∗region = Iregion (LGC , i
∗, j∗, Hr,Wr) , (4)

whereas i∗, j∗ are computed by:

i∗, j∗ = argmax
i,j

Iregion (LGC , i, j,Hr,Wr). (5)

Using i∗, j∗ with Hr,Wr, we can get the patch contain-

ing the benign information for mixing. The detailed pseudo-

code is described in Algorithm 1 below.

Algorithm 1 High class-discriminative Region Selection

Input: H,W,Hr,Wr.

for i = 1 to H −Hr + 1 do
for j = 1 to W −Wr + 1 do

Calculate Iregion using Eq.3 {Compute accumula-

tive intensity of Region saliency map.}
if I∗region < Iregion then

I∗region ← Iregion {Update the biggest intensity

of region.}
(i∗, j∗) ← (i, j) {Update coordinate of the

biggest intensity of region.}
end if

end for
end for
Return: (i∗, j∗) and I∗region.

Next, in the domain adaptation stage, the domain shift

problem between two patches, which brings the different

bright fields and device information, could make the noise
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for model training. Inspired by FDA [29], the proposed

framework conducts spectral transfer, mapping a benign

sample to a malignant sample without changing semantic

content. Given that FA, FP : RH×W×1 → RH×W×1 are

the amplitude and phase components of the Fourier trans-

form F of a mammogram patch, we have:

F (x)(m,n) =
∑
h,w

x(h,w)e−k2π( h
H m+ w

W n), (6)

where k2 = −1.

With mask Mβ contains zero value except for center re-

gion with β ∈ (0, 1) as follows:

Mβ(h,w) = �(h,w)∈[−βH:βH,−βW :βW ], (7)

� indicates an all-ones matrix. As shown in Fig. 3, Benign

patch and Malignant patch are xs ∼ Ds,xt ∼ Dt respec-

tively, FDA algorithm is shown as:

xs→t = F−1
(
Mβ ◦ FA(xt) + (1−Mβ) ◦ FA(xs), FP (xs)

)
,

(8)

where F−1 is the inverse Fourier transform mapping spec-

tral information back to 2D-image space. The center

(low frequency) part of the amplitude of the source image

FA(xs) will be transferred in the target style of xt. This

notation only modifies the amplitude component without

altering the phase component FP . Both components of

the Fourier transform will be inversed back to a new im-

age xs→t, whose remaining content of source image xs but

the style of target image xt.

Finally, the original malignant and domain-adapted be-

nign are used for blending before pasting back to the be-

nign sample. We proposed a novel soft mask and its inverse

for mixing two patches. With any image having height H
and width W , a soft mask S is defined as S ∈ [0, 1]

H×W
.

Therefore, its inverse soft mask is (1 − S) ∈ [0, 1]
H×W

.

The output image mixing between two images xs, xt is for-

mularized as:

x =
(
S ⊗ xt

)⊕ ((1− S)⊗ xs) , (9)

whereas, xs, xt are the source image (benign patch) and tar-

get image (malignant patch) respectively. The label of im-

age x is the label of the target image.

The blending masks are generated following the Gaus-

sian distribution. The gradient radial soft mask is the result

of the outer product of two one-dimensional Gaussian dis-

tributions. It can be seen as:

SW = e−
(x−μW )2

2σ2 , SH = e−
(x−μH)2

2σ2 , (10)

whereas μW , μH , and σ are uniformly sampled from the

input images’ width W, height H ranges, and its spread in

the image space, respectively. A sample of the mask can be

seen in Fig. 3 and 4a.

4. Experimental Settings
4.1. Datasets

CMMD. The Chinese Mammography Database

(CMMD) [2] includes 5.202 screening mammogram

images conducted on 1.775 studies. We trained on 1.172

non-malignant mammograms and 2.728 malignant screen-

ing images with 85%:15% ratio splitting on the training set

and test set. Furthermore, we employ stratified sampling,

resulting in 498 benign and 1157 malignancy ipsilateral

view samples on the training set and 88 benign and 205

malignancy ipsilateral view samples on the testing set.

VinDr-Mammo. A large-scale full-field digital mammog-

raphy dataset [22], which contains 20.000 scans from 5.000

studies of Vietnamese patients. Because of the untrustwor-

thy of BI-RADS 3, the inconsistency between BI-RADS 4

and 5, and the heavy imbalance of BI-RADS 1, we arrange

the image-level labels into two classes: Suspicious Benign

(BI-RADS 2) and Suspicious Malignancy (BI-RADS 4 and

5). So as the preprocessing on CMMD, there are 2.831 ip-

silateral view samples (CC and MLO views on the same

breast) that were split into training set (1870 benign and 395

malignancy cases) and testing set (467 benign and 99 malig-

nancy cases). Besides, for the malignant lesions synthesis

framework, we use all region-level annotations for making

new malignant samples.

4.2. Implementation Details

ResNet family architectures are used for the Feature Ex-

tractor part of the framework, including ResNet-18 and

ResNet-34. In the data loading part, the images are loaded

with a batch size of 32 (two ipsilateral views for each breast

with a total of 16 breasts). The model was trained for 200

epochs using SGD optimizer [11] with an initial learning

rate 1 × 10−3 and decays by 0.1 after 20, 40, 60, and 80
epochs. We resized images to the same 800 x 800 for both

the training and testing phases. Our work was built on

Pytorch version 1.9.1 and trained by using NVIDIA RTX

3090Ti GPU (24GB). We used the Macro F1-Score to eval-

uate and reduce the imbalance effectiveness in the dataset,

which is computed using the arithmetic (unweighted) mean

of all the per-class F1 scores. Besides, the Area under the

ROC Curve (ROC AUC) is used for measuring the model

performance under slightly imbalanced dataset training.

5. Results and Ablation Studies
5.1. Dual Ipsilateral Views Fusion Network

In this section, there are three main approaches we want

to test. 1) No Fusion, a single view is fed into the backbone,
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Table 1. Quantitative results (%) among our proposed DIVF frameworks, normal fusion frameworks, and no fusion approach

Backbone ResNet-18 ResNet-34
Dataset Method F1-Score AUC-ROC F1-Score AUC-ROC

VinDr-Mammo

No Fusion 70.12 68.79 71.48 70.22

Average Fusion 72.54 74.20 73.25 72.88

Concatenate Fusion 73.22 70.66 74.63 72.18

DIVF(Average) 74.00 72.15 74.17 71.67

DIVF(Concatenate) 75.34 74.24 75.98 74.86

CMMD

No Fusion 73.26 76.70 75.52 77.18

Average Fusion 79.22 79.13 79.97 81.80

Concatenate Fusion 75.86 77.10 78.12 77.67

DIVF(Average) 81.45 84.14 82.44 80.92

DIVF(Concatenate) 77.77 80.42 79.51 81.97

no combining of two views CC and MLO in this case. 2)

Average Fusion and Concatenate Fusion, there is no skip

connection with two examined features and fused features

in the Features Fusion Blocks phase. 3) DIVF, contains all

components described in Section 3.1. Table 1 shows the

testing results of our proposed methods on VinDr-Mammo

and CMMD datasets. Our DIVF framework shows a sig-

nificant improvement compared to the conventional tech-

niques, with a mean of around 5% on VinDr-Mammo and

7% on CMMD. For each method of combining features,

the DIVF shows the apparent effectiveness of the feature

fusion mechanism for classifying the benign and malig-

nant. Testing on VinDr-Mammo, DIVF Framework with

concatenate method achieves the highest Macro F1-score

and AUC-ROC on both backbones, 75.98% and 74.86% re-

spectively. Different from VinDr-Mammo, we use average

aggregation with the DIVF method seems to be more robust

on CMMD. This strategy outperforms the normal fusion or

no fusion approaches, which achieved 81.45% on ResNet-

18 and 82.44% on ResNet-34 in Macro F1-score evaluation

metrics.

Fig. 5 highlights the trade-off between the true positive

rate (sensitivity) and the false positive rate (1-specificity)

by plotting the ROC curve for malignant and benign cat-

egorization. The DIVF (Average) achieved the best per-

formance with a sensitivity of 87.8% and a specificity of

70.45%, which resulted in 0.8416 of AUC. Continuously,

the second high performance is the DIVF (Concatenate),

which obtained 80.42%, lower than 3.74% compared with

the best one. In contrast, Average Fusion and Concatenate

Fusion do not outcome the DIVF version which achieved

79.13% and 77.1%, respectively. This overcome can be ex-

plained in the way we support the model by adding the ex-

amined features in the features fusion blocks phase of the

framework. After going through the IVF block, fused fea-

tures might lose detailed information because fusion opera-

Figure 5. AUC-ROC for benign/malignant classification on

CMMD dataset. Testing performance of the average fusion, con-

catenate fusion, EA average fusion, and EA concatenate fusion

tion tends to generalize the feature in both views. Thus, this

alleviates the examined features. Therefore, adding the ex-

amined features prevents two problems: solving the vanish-

ing problem in the IVF block and diversifying information.

5.2. Soft-Adapted Malignancy Synthesis Frame-
work

Table 2 shows the ablation studies of our proposed syn-

thesis framework on VinDr-Mammo malignant sample syn-

thesis. As shown in the table, we can see the effect of each

element contributing to the final F1 score of our method.

The whole framework combined three mechanisms for cre-

ating new samples achieves 77.02% on the F1-Score met-

ric. The limitation of the original CutMix seems to be elim-

inated with Fourier Adaptation and Soft Mask. The new
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Table 2. Ablation studies of our proposed Soft-Adapted Malignancy Synthesis Framework on DIVF Concatenate with ResNet-34 on

VinDr-Mammo Dataset

DIVF
Region Selection

& CutMix
Fourier Adaptation Soft Mask Macro F1-Score

Baseline � 75.98

Proposed Methods

� � 76.54

� � � 76.96

� � � 76.78

� � � � 77.32

samples are no longer containing bad-looking malignant

tumors with different color-style and hard contours when

conducting copy-and-paste patches. The detailed outputs of

each part in our framework are visualized in Fig. 4b-f.

Figure 6. Our framework results on CC (top) and MLO (bottom)

views. a) Reference image b) Target image c) Synthesis image.

Fig. 4d shows the synthesis image using the CutMix al-

gorithm. In the replaced region, the cancer mass seems in-

compatible with the source image in the style. This can

cause the unwanted detect edge in CNN sliding filters, thus

leading to outlier features and poor representation. This

strategy achieved a slight improvement in performance with

(+0.56%) compared with the baseline model, ResNet-34

DIVF Concatenate in Table 1. Furthermore, the results also

increase a bit (+0.42%) when the Fourier Domain Adapta-

tion method is applied. Fig. 4e proves the improvement with

smooth style in the replaced region. However, the suddenly

changing pixel value that occurs on the top-left corner of the

transformed region does not perfectly make the synthesis

image look natural. Afterward, our proposed Soft-Adapted

Malignancy Synthesis Framework can alleviate those prob-

lems which perfectly adapting the target style to the source

image. Fig. 4f and Fig. 6c show natural-looking, yet trust-

worthy, mammography screening that achieved 77.32% on

Macro F1-Score. Those upsampling data shown in Fig. 6c,

created by Fig. 6a,b, are reliable for the training stage to

handle most of the imbalance mammogram dataset. This

framework has shown its robustness on many different types

of lesions including Mass, Calcification, Asymmetry, etc.

6. Conclusion

In this work, we proposed a DIVF framework to lever-

age the ipsilateral multi-view information for classifying

cancerous mammograms. The model learns the low-level

features separately from two ipsilateral views and conducts

feature aggregation for fusion learning on the high-level

features. Our model learned low-level features from two

ipsilateral views and effectively fused high-level features.

The IVF block enhanced the examined view, resulting in

improved classification. Additionally, our natural-looking

malignant lesions synthesis framework generated reliable

samples, leading to state-of-the-art performance and gener-

alizability across two datasets. Our research shows promise

for enhancing breast cancer diagnosis and treatment. Fu-

ture work aims to extend our research to lesion detection

and density classification tasks and conduct further statisti-

cal analyses to gain deeper insights.
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