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Abstract

Recently, computer vision has been significantly im-
pacted by Vision Transformer (ViT) networks. These deep
models have also succeeded in medical image classifica-
tion. However, most existing deep learning-based methods
primarily rely on a lot of labeled data to train reliable clas-
sifiers for accurate prediction. This requirement might be
impractical in the medical field, where the data is limited
and manual annotation is expensive. Therefore, this study
explores the application of ViT in few-shot learning scenar-
ios for medical image analysis, addressing the challenges
posed by limited data availability. We evaluate various ViT
models alongside few-shot learning algorithms (i.e., Pro-
toNet, MatchingNet, and Reptile), perform cross-domain
experiments, and analyze the impact of data augmenta-
tion techniques. Our findings indicate that when combined
with ProtoNets, ViT architectures outperform CNN-based
counterparts and achieve competitive performance against
state-of-the-art approaches on benchmark datasets. Cross-
domain experiments further reveal the effectiveness of ViT
models in few-shot medical image classification.

1. Introduction
Medical image analysis (MIA) is crucial in diagnosing

various diseases and conditions, underpinning its signifi-

cance in healthcare. The sheer amount of data generated

requires creating effective and precise automated MIA tech-

niques. Recently, machine learning, particularly deep learn-

ing, has shown itself as a viable approach to tackle this chal-

lenge, specifically in the context of medical image classifi-

cation (MIC), the central theme of this study. Convolutional

Neural Networks (CNNs) have set the benchmark in nu-

merous medical imaging applications. CNNs operate based

on a localized convolution operation that ensures transla-

tional equivariance, enabling the extraction of local spatial
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features that can be aggregated to form higher-order rep-

resentations. However, their capacity to learn long-range

pixel relationships is limited. The Transformer architec-

ture introduced by [26] has addressed this limitation and

later adapted to computer vision as "Vision Transformer"

(ViT) [8]. Unlike conventional CNNs, ViTs leverage a self-

attention mechanism for understanding the overall repre-

sentation of input images, learning both short-range and

long-range input relationships. This ability makes them par-

ticularly effective for large and complex medical images.

Transformers have even been shown to surpass CNNs when

employed with larger datasets or self-supervised learning

for medical imaging tasks [16]. Furthermore, Transform-

ers incorporate saliency maps that facilitate an understand-

ing of model decisions, enabling experts to validate model

outcomes. Because of the distinct advantages of ViTs, the

research community has made a great attempt to adapt them

for medical imaging applications [10].

Classical supervised deep-learning methods are data-

hungry and perform well when large annotated datasets are

available. However, they may not be practical or successful

when data is limited or manual annotation is costly, which

is often the case in many medical imaging subfields. Few-

shot learning (FSL) [2], a technique that trains a model to

recognize and classify new objects or concepts with mini-

mal examples, has recently emerged as a potential solution

to the problem of limited labeled data in MIC. FSL aims to

mimic human learning, often involving grasping new con-

cepts from a few samples. For example, a computer vision

model trained with FSL approaches can accurately identify

rare diseases after training with a few medical images. As

shown in [24], the feature extractor or encoder learned from

the good neural architecture can produce robust represen-

tations, enabling fast adaption to new tasks at test times.

Moreover, Hu et al. [13] demonstrated that an FSL pipeline

based on the ViT encoder could deliver impressive results

on standard FSL benchmarks. To the best of our knowl-

edge, this approach has not been applied to MIC; hence, it

is unknown whether the few-shot MIC can benefit ViT sim-
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ilarly. Therefore, our study aims to explore the robustness

of ViTs in an FSL setting for MIC.

In this paper, we will primarily investigate the applica-

tion of ViTs in an FSL scenario for MIC and draw com-

parisons with traditional CNNs. For this purpose, we em-

ploy prominent pre-trained ViT models alongside FSL algo-

rithms, such as Prototypical Networks [21], Matching Net-

works [27] and Reptile [18], and compare their performance

with the CNN-based counterparts. The datasets used in-

clude ISIC 2018 [30], BreakHis [23], and Pap Smear [14].

Furthermore, another approach to address the scarcity of la-

beled data is data augmentation, which involves creating ad-

ditional training data by modifying existing data. Accord-

ingly, this research will delve into the influence of augmen-

tation techniques (e.g., Cutout [7], Mixup [29], and Cutmix

[28]) on the effectiveness of ViT for FSL. Similar to [2],

we will also evaluate the effects of domain shift between

base and novel classes in natural-to-medical and medical-

to-medical cross-domain experiments. This evaluation set-

ting is particularly practical since the domains of the source

(e.g., natural images) and target (medical images) are gen-

erally different. Therefore, understanding the effect of do-

main shift can allow us to better assess the generalization

performance of different few-shot learners.

Our major contributions can be summarized as follows:

1. We investigate the efficacy of various ViT models for

few-shot medical image classification.

2. We study how different few-shot learning algorithms

impact the performance of ViT models.

3. We analyze the impact of advanced data augmentation

techniques on ViT models.

4. We explore the effect of a cross-domain scenario on

the performance of few-shot learners.

5. Our methods achieve state-of-the-art performance on

challenging medical datasets of few-shot medical im-

age classification.

2. Related Work
This section reviews the literature on few-shot learning

with ViTs and the application of few-shot learning in medi-

cal image classification.

2.1. Few-shot Learning with ViT

This section discusses recent research papers on few-

shot learning utilizing the ViT architecture. Comprehen-

sive reviews on the current state of few-shot learning can be

found in several survey papers [22, 12].

Limited research has been conducted on applying ViTs

in FSL scenarios. A noteworthy example is the work of Hu

et al. [13], which compared a simple FSL pipeline with ad-

vanced algorithms. Their approach employed ViT small and

ResNet50 as backbone models and outperformed the state-

of-the-art, particularly when using the Transformer back-

bone. Chen et al. [4] proposed an architecture that uses

image masking for few-shot learning, demonstrating supe-

rior performance over a standard ViT. Our research extends

these works by applying a simple ViT-based pipeline to few-

shot medical image classification.

2.2. Medical Image Classification and FSL

Singh et al. [20] presented MetaMed, a meta-learning-

based approach for few-shot learning in medical image clas-

sification, which significantly outperformed transfer learn-

ing. Dai et al. [6] proposed PFEMed, a novel few-shot clas-

sification method for medical images that utilized a dual-

encoder structure. Cherti and Jitsev [5] explored the ef-

fects of the pre-training scale in both in-domain and out-

of-domain transfer settings. These works highlight the po-

tential of few-shot learning approaches in medical image

classification, despite the challenges posed by the scarcity

and quality of annotated medical images.

3. Methodology
This section defines the problem of few-shot medical im-

age classification, outlines the overall system pipeline, and

describes the methodology.

3.1. Problem Definition

Consider a collection D = {D1, D2, ..., Dn} of n
medical datasets, where each dataset Dk includes pairs

(x, y)j , representing an image and its corresponding label

(ground-truth). Each dataset is divided into a meta-test set

(Dmeta−test), comprising classes with fewer representative

images (rare diseases), and a meta-train set (Dmeta−train),

which includes the remaining classes. The strategy is to

leverage the extensive data available in Dmeta−train (base

class data). When using initialization-based methods like

Reptile [18], the objective is to learn better initial weights

and then fine-tune the model with limited data (novel class

data). For metric learning-based methods like MatchingNet

[27] and ProtoNet [21], the aim is to develop a model that

creates an effective embedding space where the feature rep-

resentation of a query is near support features or prototypes

of its corresponding class and far from support features or

prototypes of other classes, respectively. This approach en-

ables easy identification of similar items. The overall sys-

tem pipeline is shown in Figure 1, where ProtoNet, Match-

ingNet, and Reptile function as support set conditioned

models. The figure’s bottom part illustrates the architec-

tures of these models, where fθ denotes the ViT encoder

pre-trained on ImageNet1K (θ is the ViT network parame-

ter).
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Figure 1. Overall System Pipeline.

3.2. Meta-learning

Few-shot learning aims to build machine learning mod-

els that can efficiently generalize to new tasks, given only a

few labeled examples from each class in the target domain.

Few-shot learning tasks’ complexity can be described as N-

way-K-shot, where N denotes the number of classes, and K

represents the number of samples from each class used for

training. Multiple approaches exist for few-shot learning,

including a meta-learning perspective. In this approach, the

model learns to solve new few-shot tasks by gaining expe-

rience from solving other tasks, divided into meta-training

and meta-testing phases. Data is presented episodically in

each phase, with the support set acting as the training set

and the query set as the test set. Transfer learning is an-

other few-shot learning approach, where the model is pre-

trained on a large dataset and then fine-tuned on the limited

support set. However, this approach is less effective when

there is a significant domain gap between the source and

target datasets. Data augmentation is yet another technique

for addressing few-shot learning, where new samples are

created by augmenting samples from a limited support set.

3.2.1 ViT Encoder

The ViT architecture was introduced in [8] as an adapta-

tion of the original Transformer model to the field of Com-

puter Vision. It processes an input image by dividing it into

non-overlapping patches and creating the linear embedding

from these patches based on the linear projection. Posi-

tional encoding is added to this linear embedding to incor-

porate the positional information. Later, these embeddings

are fed into a Transformer encoder. The architecture of a

ViT is depicted in Fig. 2. In this work, we use the ViT

encoder as a feature extractor (fθ) mapping the image to a

D-dimensional space.

The encoder uses Scaled Dot-Product Attention (SDPA),

which calculates attention scores between pairs of input to-

kens, which are then used to compute a weighted average of

the input embeddings. Specifically, query (Q), key (K), and

value (V) matrices are computed by multiplying the input

embeddings (X ∈ R
N×D) with learnable weight matrices

WQ,WK ,, and WV , i.e.,Q = XWQ,K = XWK ,V =
XWV . Then, SDPA is calculated as follows:

SDPA(Q,K,V) = softmax(
QKT

√
dk

)V (1)

To capture diverse dependencies and learn different as-

pects of the input, ViT employs multiple such SDPA heads

stacked together. Each head has its own set of learnable

weight matrices, allowing the model to simultaneously at-

tend to different parts of the input sequence. This mech-

anism is called Multi-Head Self-Attention (MHSA) in the

ViT architecture. It allows the model to capture both local

and global dependencies and relationships between differ-

ent patches in the image, facilitating the learning of rich

and informative representations from images.

To use a ViT model as a backbone of the ProtoNet or

MatchingNet algorithm, we remove the MLP head of the

model and use it as a pure feature extractor. For Reptile, we

replace the existing head with a new head that has an output

size of N (from N-way-K-shot task).

3.2.2 Prototypical Networks and Matching Networks

Prototypical Networks (ProtoNet [21]) aim to learn a pro-

totype for each class in the embedding space. Given a set
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Figure 2. ViT model.

of support samples, the model learns a function fθ to em-

bed the images into features. The feature embedding corre-

sponds to the ViT backbone we presented above.

The prototype μk for class k is computed as the mean of

the embedded support samples belonging to that class:

μk =
1

Nk

∑

(xi,yi)∈S,yi=k

fθ(xi) (2)

Here, S represents the support set, and Nk is the number

of support samples in class k.

For a given query x, the model computes its embedding

and determines the class by finding the prototype with the

smallest Euclidean distance. Specifically, the probability of

the query x belonging to class k is computed as follows:

p(y = k|x) = exp
(−‖fθ(x)− μk‖2

)
∑

k′ exp (−‖fθ(x)− μk′‖2) (3)

Matching Networks (MatchingNet) [27] is similar to

ProtoNet, except it computes an average cosine distance

for each class by comparing the feature representation of

a query with each feature representation from a support set.

Additionally, it uses LSTM for full context embedding from

the whole support set.

3.2.3 Reptile

Reptile [18] is a type of initialization-based meta-learning

and operates by iteratively updating the model’s weights

through a two-level process: inner loop updates and outer

loop updates. The inner loop focuses on learning from in-

dividual tasks, while the outer loop learns across tasks. The

simplicity of Reptile allows for faster training and easier im-

plementation compared to MAML [9], as it does not require

computation of second-order gradients. Cross entropy loss

was used to update the model’s weights in the meta-training

and meta-testing phases. For a task Ti, it is given by

L = −
∑

xi,yi∼Ti

yilog(φfθ(xi) + (1− yi)log(1− φfθ(xi))

(4)

where φ is the parameter of a linear classifier trained on

Dmeta−train and used as the predictor on Dmeta−test

3.3. Data Augmentation Techniques

In deep learning, data augmentation is crucial in achiev-

ing high performance, mainly when working with small

datasets. This importance is amplified in FSL scenarios,

where the available data is limited. Augmentation tech-

niques serve as regularizers that encourage models to learn

more generalized representations, as they need to predict

correct labels based on augmented inputs, effectively reduc-

ing overfitting. These techniques (i.e., Cutout [7], Mixup

[29], and Cutmix [28]) were employed in [20] and signifi-

cantly improved FSL accuracy. However, given that larger

models are used in our research, assessing if these tech-

niques yield similarly promising results is essential. Note

that only Cutout is compatible with the ProtoNet while the

other two techniques are not applicable due to modifying

the support set labels. By applying these augmentation tech-

niques, we aim to improve the performance of ViTs in few-

shot learning scenarios and assess their effectiveness com-

pared to traditional methods.

4. Experiments

4.1. Dataset Description

Three publicly available medical imaging datasets were

chosen for this study. Each dataset contains at least six

classes, allowing for both 2-way and 3-way n-shot learning.

BreakHis) The BreakHis dataset [23] consists of 9,109

microscopic images of breast tumor tissues collected from

82 patients and captured at magnification levels of 40, 100,

200, and 400. The dataset is divided into eight classes, with

five classes selected as meta-train classes and the remaining

classes designated as meta-test classes.

ISIC 2018) The ISIC 2018 Skin Lesion dataset [30]

comprises 10,015 dermoscopic images spanning seven

classes. The distribution of diseases in the dataset reflects

real-world prevalence, with more images for benign lesions

than malignant ones. Four classes with the most samples

were selected as meta-train classes, while the remaining

three were designated for meta-testing.

Pap Smear) The Pap Smear dataset [14] consists of mi-

croscopic images of cervical smears taken at Herlev Univer-

sity Hospital. The dataset contains 917 images, unevenly
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distributed across seven distinct classes. Four classes with

the most samples were selected as meta-train classes, while

the remaining three classes were selected for meta-testing.

4.2. Models

This section discusses various models used in the exper-

iments. These tested models can be grouped into three cat-

egories with the number of parameters for each model:

• Standard ViT: Three models from the ViT fam-

ily [8] were utilized, namely ViT_tiny(5.5M),

ViT_small(22M), and ViT_base(85M).

• Other ViT variants: The Mobile ViT (1.4M),i.e., MViT

[17], DeiT_base(85M) [25], and Swin_base(86M) [15]

models were selected to investigate the performance of

alternative ViT architectures.

• CNN models: The ResNet50 [11] and VGG16 [19]

models were included for comparison with the ViT

models. ResNet50 has 23.5M parameters, while

VGG16 has 134M parameters.

All models were pre-trained on ImageNet1K, a widely used

dataset for training computer vision models.

4.3. Implementation Details

The implementation was done in PyTorch. Pre-trained

model checkpoints were obtained from Timm library [1].

Pre-trained model checkpoints were utilized during the

training phase, and data augmentation techniques were em-

ployed to improve generalization. It is worth noting that the

episodic task sampling in FSL helps mitigate the effects of

class imbalance, as few-shot learners see an equal number

of samples from each class.

For ProtoNet and MatchingNet, the model was trained

for 20 epochs, as further training epochs resulted in overfit-

ting. Each epoch consisted of 500 episodes or tasks. The

stochastic gradient descent (SGD) optimizer was used with

a learning rate of 10−5 or 10−6 on the model, and a momen-

tum of 0.9, depending on the dataset. A cosine annealing

learning rate schedule was also employed.

For Reptile, the SGD optimizer was used with a learn-

ing rate of 10−3 for the inner optimization problem and

SGD with a learning rate (step size) of 10−1 for the outer

meta-update step. The backbone was trained for 100 meta-

iterations with a batch size of 10 tasks during meta-training.

The batch size was set to 10 tasks per meta-iteration in both

training and testing. The inner problem was experimented

with 50 adaptation steps on each task.

Evaluation Protocol. Accuracy (%) was used as the

evaluation metric, a common performance indicator for

few-shot classification tasks. To assess performance on the

BreakHis, ISIC 2018, and Pap Smear datasets, 400 episodes

from the novel classes in the test set were randomly selected

Table 1. Transfer learning results on ISIC 2018

Setting Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Baseline
ViT_small 75.50 81.88 85.93 61.77 66.78 74.48

ResNet50 70.63 72.18 73.88 52.73 57.35 60.67

Baseline-PN
ViT_small 81.08 83.59 88.30 68.88 73.68 79.27
ResNet50 73.95 77.86 81.00 59.23 63.05 68.33

Table 2. Transfer learning results on BreakHis

Mag Meta-learning Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

40

Baseline
ViT_small 78.80 84.18 88.13 68.15 74.70 81.05

ResNet50 76.48 82.33 84.88 65.35 69.68 74.37

Baseline-PN
ViT_small 82.41 84.08 87.83 72.19 76.96 82.43
ResNet50 69.08 74.49 79.22 58.57 63.30 68.53

100

Baseline
ViT_small 73.23 78.98 84.13 61.32 67.67 75.25

ResNet50 75.10 81.83 84.10 63.82 69.72 71.92

Baseline-PN
ViT_small 76.29 81.09 84.24 68.07 72.93 77.83
ResNet50 74.19 78.79 82.61 63.32 68.55 73.40

200

Baseline
ViT_small 70.45 74.80 81.88 58.87 66.42 73.02

ResNet50 67.08 72.90 77.35 55.18 61.57 65.72

Baseline-PN
ViT_small 72.39 78.11 82.36 61.93 69.03 73.99
ResNet50 62.56 66.74 73.40 51.39 55.47 60.77

400

Baseline
ViT_small 72.93 78.43 82.50 62.75 67.75 72.98
ResNet50 68.00 72.43 76.23 54.02 59.77 63.88

Baseline-PN
ViT_small 75.00 79.19 83.28 65.12 69.50 72.66

ResNet50 62.71 65.76 68.64 48.59 53.02 58.31

Table 3. Transfer learning results on Pap Smear

Meta-learning Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Baseline
ViT_small 86.43 90.95 93.06 78.13 83.69 87.32

ResNet50 77.58 81.05 86.28 66.12 69.83 75.17

Baseline-PN
ViT_small 92.58 94.17 95.85 85.10 88.09 91.39
ResNet50 81.83 84.58 86.71 70.70 73.97 77.30

each time, and the average accuracy rate for image classifi-

cation was computed.

4.4. Result Analysis

4.4.1 Transfer Learning Results

This section provides the results for transfer learning, which

is used as our baseline. We have 2 different transfer learn-

ing settings, which all start with a pre-trained model check-

point: (1) "Baseline" - fine-tune the model on base classes

in a supervised manner and perform 50 adaptation steps for

tasks from novel classes during the evaluation phase, (2)

"Baseline-PN" - fine-tune the model on base classes in a su-

pervised manner and perform inference using the ProtoNet

algorithm without performing meta-training. These results

are summarized in Tables 1-3.

From transfer learning results, it can be observed that

a fine-tuned ViT_small outperforms ResNet50 in all tests

except for the 2-way-5-shot task on BreakHis X100 dataset.

Regarding the comparison between settings, ViT_small in

the Baseline-PN demonstrated higher scores in the majority

of cases when compared with the Baseline.
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Table 4. Performance of models using different meta-learning al-

gorithms for ISIC 2018 dataset.

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet

MViT 74.64 76.94 81.50 60.60 64.23 69.23

ViT_tiny 81.03 83.61 86.52 67.84 71.82 77.68

ViT_small 84.35 86.70 89.72 72.10 76.18 81.45

ViT_base 83.94 86.02 90.26 72.75 77.69 81.99
DeIT_base 72.17 76.53 81.40 57.86 62.38 69.07

Swin_base 82.49 84.17 89.12 70.75 74.67 79.92

ResNet50 66.62 68.65 72.81 51.43 53.83 58.34

VGG16 74.11 78.17 82.11 60.68 64.58 70.84

Reptile

MViT 62.80 67.00 71.80 53.00 54.47 60.33

ViT_tiny 75.80 78.40 83.50 64.13 68.67 75.13

ViT_small 70.30 76.10 80.40 63.13 72.13 78.53

ViT_base 59.30 67.40 72.70 53.27 62.27 70.53

DeIT_base 72.80 79.40 83.00 61.73 64.73 73.60

Swin_base 67.30 74.20 81.10 60.60 69.00 75.93

ResNet50 71.70 72.70 76.50 47.60 51.60 54.93

VGG16 64.70 72.90 78.60 56.53 62.40 70.67

MatchingNet

MViT 72.41 75.70 78.59 58.79 62.00 65.62

ViT_tiny 76.66 79.88 83.41 63.42 66.62 71.95

ViT_small 78.40 81.61 86.34 65.50 70.00 76.47

ViT_base 79.81 84.19 88.21 67.70 73.30 79.17

DeIT_base 73.67 77.11 81.60 58.23 62.54 70.47

Swin_base 72.84 75.60 80.12 58.66 63.09 68.34

ResNet50 67.99 71.69 75.66 52.93 56.53 61.60

VGG16 72.20 75.94 79.90 59.76 61.63 67.98

Table 5. Performance of models using different meta-learning al-

gorithms for BreakHis with X40 magnification dataset.

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT 76.19 80.92 84.51 64.38 69.84 76.57

ViT_tiny 69.91 73.42 77.40 56.58 62.02 66.73

ViT_small 77.18 81.79 84.80 69.69 73.44 76.63

ViT_base 78.05 81.59 85.21 68.54 74.29 79.61

DeIT_base 72.80 77.71 82.81 60.88 67.16 73.37

Swin_base 81.16 85.78 90.00 73.01 78.98 83.79

ResNet50 70.03 73.76 77.48 57.37 62.98 67.58

VGG16 77.10 81.62 84.97 66.66 72.19 77.51

Reptile

MViT 72.10 78.50 81.20 53.40 55.53 61.27

ViT_tiny 63.50 69.90 81.50 53.13 64.80 73.40

ViT_small 69.90 79.20 84.80 57.47 64.47 72.73

ViT_base 65.10 67.90 67.20 47.53 56.20 63.33

DeIT_base 74.40 81.80 87.90 54.00 67.67 76.13

Swin_base 68.90 71.00 81.70 53.13 57.87 73.07

ResNet50 67.50 71.00 76.20 56.47 63.67 64.13

VGG16 74.80 77.10 84.30 61.13 71.67 79.13

MatchingNet

MViT 74.92 80.70 85.10 64.79 70.76 78.16

ViT_tiny 68.86 74.31 80.86 55.31 62.21 71.71

ViT_small 77.81 82.34 89.45 67.06 74.23 82.10

ViT_base 80.66 84.66 90.10 71.27 78.77 86.22
DeIT_base 73.31 78.69 83.93 61.94 68.07 76.20

Swin_base 77.92 83.61 88.74 68.20 74.77 81.52

ResNet50 71.30 73.98 78.20 57.84 62.93 69.57

VGG16 76.51 81.66 86.46 65.99 71.37 79.08

4.4.2 Meta-Training Results

This section delves into analyzing the performance of few-

shot classification models utilizing ProtoNet, MatchingNet

and Reptile meta-learning algorithms. The findings are

presented in Tables 4 through 9, where the highest scores

within the algorithm are underlined, and the highest scores

across all algorithms are given in bold. By comparing these

results with baselines, it can be observed that the best ViTs

in conjunction with ProtoNet or MatchingNet demonstrated

substantial performance improvements across most tasks.

This shows the effectiveness of performing meta-training

with ProtoNet or MatchingNet. Inferior results were de-

tected in 1 task of BreakHis X40, 4 tasks of BreakHis

X400, and 4 tasks of Pap smear datasets. ViT_small paired

with the ProtoNet showed the highest average accuracy

across all datasets outperforming larger models. Gener-

ally, ViT_small and ViT_base have the highest scores when

Table 6. Performance of models using different meta-learning al-

gorithms for BreakHis with X100 magnification dataset.

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT 76.89 79.60 84.65 64.51 71.43 77.05

ViT_tiny 75.34 79.44 83.53 62.64 69.88 75.18

ViT_small 80.64 83.80 87.62 69.39 75.91 81.47

ViT_base 79.33 81.65 84.62 68.52 73.27 76.38

DeIT_base 68.91 73.81 78.16 56.38 62.25 67.54

Swin_base 79.46 82.86 86.26 68.34 74.28 80.51

ResNet50 68.62 72.12 73.31 55.80 60.28 61.88

VGG16 74.59 78.50 81.84 61.21 65.83 72.16

Reptile

MViT 73.45 80.90 83.70 55.17 60.23 66.57

ViT_tiny 66.60 72.50 78.10 54.13 61.80 71.70

ViT_small 68.10 75.60 81.60 54.40 63.13 72.20

ViT_base 56.25 60.20 66.45 40.63 46.40 55.67

DeIT_base 67.40 71.20 79.05 47.53 51.03 62.50

Swin_base 66.70 72.60 80.00 54.47 59.63 74.40

ResNet50 71.00 76.90 78.30 53.87 58.60 60.80

VGG16 66.00 70.90 79.90 54.33 65.40 75.67

MatchingNet

MViT 78.57 82.78 88.61 67.62 74.79 81.03

ViT_tiny 71.85 75.71 84.16 59.51 67.17 74.78

ViT_small 76.53 82.09 88.33 67.13 72.88 81.80

ViT_base 76.54 82.27 88.39 66.04 73.31 81.83

DeIT_base 69.76 72.86 79.76 55.33 60.59 67.17

Swin_base 77.68 83.24 89.60 67.90 74.61 82.88
ResNet50 73.45 76.58 79.14 59.53 62.70 66.98

VGG16 74.84 78.12 82.29 61.79 66.20 73.38

Table 7. Performance of models using different meta-learning al-

gorithms for BreakHis with X200 magnification dataset.

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT 71.17 75.50 80.92 59.00 64.80 70.63

ViT_tiny 65.83 69.62 73.21 52.42 56.14 61.47

ViT_small 75.10 79.40 83.33 64.16 69.12 75.38

ViT_base 72.20 76.91 81.94 60.54 66.23 71.98

DeIT_base 68.77 74.69 77.33 55.33 60.93 65.48

Swin_base 66.38 67.12 72.69 50.84 54.73 60.52

ResNet50 69.47 72.80 76.30 55.57 60.59 65.37

VGG16 68.12 73.52 78.35 55.24 61.10 66.48

Reptile

MViT 69.90 76.00 79.10 49.67 52.20 60.13

ViT_tiny 59.50 65.70 70.70 47.80 53.13 60.80

ViT_small 62.70 71.00 80.80 47.27 53.80 60.73

ViT_base 57.00 57.30 62.00 39.93 42.47 47.20

DeIT_base 72.80 75.10 80.20 49.47 53.07 64.87

Swin_base 61.70 68.20 73.20 48.20 53.07 66.53

ResNet50 63.90 69.90 72.40 50.93 54.00 60.07

VGG16 64.50 74.70 83.50 50.27 60.80 70.13

MatchingNet

MViT 69.89 73.30 80.40 56.55 63.20 70.01

ViT_tiny 65.50 71.70 78.74 53.64 59.58 68.14

ViT_small 71.83 77.33 84.47 59.64 66.91 75.92

ViT_base 73.05 79.36 87.35 62.42 70.51 79.27
DeIT_base 69.14 74.05 78.94 55.19 61.01 67.53

Swin_base 68.54 73.41 80.71 54.77 60.79 70.50

ResNet50 70.23 73.14 77.92 55.62 60.45 66.75

VGG16 70.30 74.49 81.10 57.07 62.96 70.54

paired with either of ProtoNet or MatchingNet. The former

seems a more favorable choice considering models’ size dif-

ference (22M parameters against 85M). Regarding the per-

formance of CNNs, when used as a backbone of ProtoNet or

MatchingNet, they yielded inferior results compared to ViT

counterparts, especially ResNet50. This pattern coincides

with the findings reported by [3], where ResNet50’s scores

dipped significantly after meta-training with ProtoNet.

As for the performance of models with the Reptile algo-

rithm, we can observe that it is significantly lower when

compared with other algorithms, usually not beating the

baselines. Generally, its performance highly depends on

hyperparameters, especially the number of inner adapta-

tion steps. Typically, the accuracy increases as the number

of inner adaptations steps increases. However, processing

times increase linearly with this number. Considering the

simplicity of use and training, superior performance across
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Table 8. Performance of models using different meta-learning al-

gorithms for BreakHis with X400 magnification dataset.

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT 68.80 73.86 78.12 56.37 61.88 67.61

ViT_tiny 65.71 69.41 73.45 52.54 56.93 62.10

ViT_small 70.45 74.60 80.66 57.99 63.34 69.08

ViT_base 71.04 75.01 80.62 57.49 62.86 66.81

DeIT_base 67.17 70.8 76.48 54.27 59.25 64.04

Swin_base 67.01 71.51 74.58 52.47 56.73 63.00

ResNet50 66.59 68.90 71.74 51.59 54.24 58.50

VGG16 67.20 70.86 75.99 54.16 58.20 63.99

Reptile

MViT 67.40 71.00 80.60 55.27 58.47 61.67

ViT_tiny 57.40 53.90 56.90 49.07 54.60 66.80

ViT_small 63.00 68.90 81.90 47.13 52.27 58.40

ViT_base 60.40 62.70 63.10 42.40 45.40 48.73

DeIT_base 61.30 70.60 78.70 50.13 56.80 67.27

Swin_base 64.00 70.80 79.00 50.20 55.73 64.47

ResNet50 63.80 67.30 72.10 46.40 51.67 53.73

VGG16 67.60 73.70 82.80 51.07 55.80 62.20

MatchingNet

MViT 68.88 73.76 79.74 55.53 62.15 68.97

ViT_tiny 66.47 71.90 77.28 55.16 60.61 68.25

ViT_small 71.66 76.35 82.33 58.14 64.28 72.88

ViT_base 69.85 76.44 83.64 57.63 65.35 76.06
DeIT_base 67.56 71.62 79.88 54.91 61.50 68.31

Swin_base 69.10 74.79 82.47 55.80 62.20 71.18

ResNet50 67.65 69.71 73.90 52.32 55.13 59.41

VGG16 66.05 71.76 78.65 54.93 59.82 67.60

Table 9. Performance of models using different meta-learning al-

gorithms for Pap Smear dataset.

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT 80.84 84.36 86.88 68.04 73.24 78.37

ViT_tiny 84.65 86.96 88.86 74.33 77.92 81.17

ViT_small 92.40 94.05 94.90 86.38 89.09 90.62
ViT_base 92.05 93.26 93.94 85.21 88.48 89.47

DeIT_base 88.88 89.38 91.22 78.77 81.70 85.28

Swin_base 85.42 87.56 89.78 75.73 79.88 82.46

ResNet50 70.49 71.75 69.61 57.74 58.48 59.60

VGG16 88.75 89.34 91.76 79.04 82.53 85.63

Reptile

MViT 80.60 80.20 84.30 72.00 73.20 78.87

ViT_tiny 85.60 88.00 90.10 75.27 82.47 86.00

ViT_small 86.80 90.70 93.90 77.73 82.27 87.00

ViT_base 77.10 81.50 88.00 70.53 78.27 88.07

DeIT_base 84.40 87.30 92.50 76.20 82.33 86.27

Swin_base 81.40 87.20 87.40 80.47 81.53 87.87

ResNet50 80.90 82.00 89.30 73.67 75.87 81.73

VGG16 84.90 88.80 93.20 77.73 81.67 88.60

MatchingNet

MViT 80.10 81.97 85.32 67.61 72.27 76.35

ViT_tiny 86.00 89.09 90.91 77.34 80.92 83.93

ViT_small 90.84 92.56 94.27 84.74 87.02 89.23

ViT_base 89.56 89.50 92.10 78.24 82.53 86.33

DeIT_base 89.25 89.36 91.70 79.43 82.39 85.16

Swin_base 82.01 83.58 86.94 70.34 74.38 78.27

ResNet50 76.01 74.46 77.89 59.66 61.23 64.08

VGG16 87.66 88.30 89.94 77.07 79.60 83.45

datasets and few-shot learning tasks, and reduced algorith-

mic complexity, ProtoNet or MatchingNet with a ViT back-

bone appears to be a more favorable choice than a CNN or

a ViT combined with Reptile. As ViT_small with ProtoNet

showed the highest performance across all datasets, it will

be our primary model in the following sections. ResNet50

will be its CNN counterpart with a similar size despite

demonstrating a lower performance.

4.4.3 Augmentation Results

This study examined the Cutout, Mixup, and Cutmix aug-

mentation techniques on the ISIC 2018 dataset. The find-

ings are compiled in Table 10. For the ProtoNet method,

Cutout was the only applicable technique, which, unfortu-

nately, led to reduced scores for most tasks when imple-

mented with both ViT_small and ResNet50. When it comes

Table 10. Effect of different Augmentation techniques on Few-shot

classification for ISIC 2018 Dataset

Algorithm Model FSL
2-way 3-way

3 shot 5 shot 10 shot 3 shot 5 shot 10 shot

ProtoNet

ViT_small

Standart 84.35 86.70 89.72 72.10 76.18 81.45
CutOut 81.73 85.89 89.22 70.55 76.23 81.13

MixUp - - - - - -

CutMix - - - - - -

ResNet50

Standart 66.62 68.65 72.81 51.43 53.83 58.34
CutOut 65.52 68.75 72.18 49.32 53.81 57.74

MixUp - - - - - -

CutMix - - - - - -

Reptile

ViT_small

Standart 76.05 80.30 85.55 67.50 73.15 77.37

CutOut 75.30 80.35 83.95 64.87 69.97 76.53

MixUp 77.50 79.40 85.75 66.20 71.33 77.87

CutMix 74.85 77.75 85.65 67.40 72.57 79.63

ResNet50

Standart 70.28 75.78 78.83 54.47 58.22 61.58

CutOut 68.73 73.60 76.58 55.70 59.90 64.67

MixUp 70.75 74.15 78.03 55.00 60.65 64.95
CutMix 70.10 74.60 77.95 53.70 58.92 63.62

Table 11. Cross-domain with MiniIN as a source and medical

datasets as targets

Target Algorithm
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ISIC2018
CD + PN 76.67 79.73 84.62 62.84 67.49 72.93

Non CD 84.35 86.70 89.72 72.10 76.18 81.45

BreakHis X100
CD + PN 74.53 78.02 83.33 64.53 67.71 74.20

Non CD 80.64 83.80 87.62 69.39 75.91 81.47

Pap Smear
CD + PN 91.90 93.27 94.70 85.93 87.62 89.21

Non CD 92.40 94.05 94.90 86.38 89.09 90.62

Table 12. Cross-domain ISIC2018-to-BreakHis and -Pap smear

Target Setting
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

BreakHis X100
CD + PN 74.12 78.74 84.11 62.72 68.90 74.72

Non CD 80.64 83.80 87.62 69.39 75.91 81.47

Pap Smear
CD + PN 92.22 94.12 94.85 86.22 88.82 90.47

Non CD 92.40 94.05 94.90 86.38 89.09 90.62

to Reptile, the outcomes were slightly more favorable. The

employment of Cutout resulted in a decline in performance

for most tasks, except for ResNet50’s 3-way k-shot tasks.

CutMix demonstrated similar trends, with lower results for

most tasks. In contrast, the Mixup technique enhanced the

accuracy scores in 4 out of 6 tasks for ResNet50 and 3 tasks

for ViT_small when used for data augmentation. Overall,

Mixup outperformed the other techniques, making it a com-

mendable data augmentation technique.

4.4.4 Cross-domain Results

This section delves into the results of two categories of

cross-domain experiments conducted in this study: natural-

medical and medical-medical. In the first category, MiniIm-

ageNet was utilized as the source dataset, while ISIC2018,

Pap smear, and BreakHis X100 datasets served as target

datasets. In the second category, ISIC2018 was the source

dataset, and the remaining medical datasets (Pap smear and

BreakHis X100) were the target datasets. Results are pre-

sented in Tables 11-12

A comparative analysis of the results from both types

of cross-domain experiments reveals a drop in performance

compared to the non-cross-domain case, suggesting that
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Table 13. Comparison with MetaMed and PFEMed on ISIC 2018

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet
ViT_small 84.35 86.70 89.72 72.10 76.18 81.45
ResNet50 66.62 68.65 72.81 51.43 53.83 58.34

MatchingNet
ViT_small 78.40 81.61 86.34 65.50 70.00 76.47

ResNet50 67.99 71.69 75.66 52.93 56.53 61.60

Reptile

ViT_small 76.05 80.30 85.55 67.50 73.15 77.37

ResNet50 70.28 75.78 78.83 54.47 58.22 61.58

MetaMed[20] 72.75 75.62 81.37 54.83 59.33 69.75

- PFEMed[6] 81.69 83.87 85.14 66.94 69.78 73.81

Table 14. Comparison with MetaMed and PFEMed on BreakHis

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet
ViT_small 80.64 83.80 87.62 69.39 75.91 81.47

ResNet50 68.62 72.12 73.31 55.80 60.28 61.88

MatchingNet
ViT_small 76.53 82.09 88.33 67.13 72.88 81.80
ResNet50 73.45 76.58 79.14 59.53 62.70 66.98

Reptile

ViT_small 68.10 75.60 81.60 54.40 63.13 72.20

MetaMed[20] 78.75 81.38 83.88 63.08 66.42 74.08

- PFEMed[6] 82.16 85.28 86.90 69.21 75.04 78.93

Table 15. Comparison with MetaMed and PFEMed on Pap smear

Algorithm Model
2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet
ViT_small 92.40 94.05 94.90 86.38 89.09 90.62

ResNet50 70.49 71.75 69.61 57.74 58.48 59.60

MatchingNet
ViT_small 90.84 92.56 94.27 84.74 87.02 89.23

ResNet50 76.01 74.46 77.89 59.66 61.23 64.08

Reptile

ViT_small 83.35 87.05 91.96 72.52 81.13 87.94

ResNet50 71.44 74.59 78.39 48.00 49.86 50.44

MetaMed[20] 85.37 86.50 89.37 70.58 72.42 83.00

- PFEMed[6] 95.53 95.87 96.00 92.42 92.48 92.68

cross-domain few-shot learning in this context presents

challenges. This drop in performance could be attributed

to the inherent dissimilarities between the source and target

domains, making the transfer of learning more complicated.

However, when comparing the two types of cross-domain

experiments, it was observed that the medical-medical ex-

periments showed slightly superior performance compared

to the natural-medical ones. This could be because medical

datasets might share more common characteristics or fea-

tures, making the cross-domain adaptation between them

slightly more feasible than when adapting from a natural

image dataset to a medical one.

4.4.5 Comparison with State-of-The-Art

In this section, we compare the performance of our models

with those reported in the MetaMed [20] and PFEMed [6].

We focused on the ViT_small and ResNet50 models, both

of which were used with ProtoNet, MatchingNet, and Rep-

tile. The outcomes are articulated in Tables 13 through 15.

It is crucial to highlight that all models were meta-trained,

devoid of augmentation techniques. However, it is also

noteworthy that MetaMed employed a simple CNN model

(with only 3840 parameters), a standard in few-shot learn-

ing, while PFEMed implemented a model with 72.95M pa-

rameters, significantly larger than the 22M and 23.5M pa-

rameters of ViT_small and ResNet50 respectively.

On examining the results across all datasets, it was ob-

served that ViT_small surpassed the other models in all

tasks when paired with ProtoNet on the ISIC 2018 dataset.

On the BreakHis X100 dataset, it achieved the highest ac-

curacy in the 2-way-10 shot and all 3-way tasks. However,

on the Pap smear dataset, PFEMed outperformed all other

models across all tasks. In general, it appears that the ViT

outcomes scale more favorably with an increase in the num-

ber of shots compared to PFEMed. In contrast, ResNet50

lagged behind other models’ performance.

5. Conclusion

In this paper, we investigated the use of the ViT model

in medical image classification, specifically within an FSL

framework. We examined various ViT and CNN models,

employing the ProtoNet and Reptile algorithms on three

benchmark medical datasets: ISIC 2018, BreakHis, and Pap

smear. Our findings demonstrated that utilizing ViT as the

backbone for ProtoNet outperformed other setups, includ-

ing configurations that involved ResNet50. We also bench-

marked our results against other prominent studies in the

field. The pairing of ViT_small with ProtoNet surpassed

the outcomes presented in other works. These observations

suggest that when combined with ProtoNets, ViTs can be

a highly effective tool for few-shot medical image classifi-

cation tasks. Additionally, we examined the impact of aug-

mentation techniques on the performance of the ViT_small

and ResNet50 models using the ISIC 2018 dataset. Only

Mixup positively affected model performance among other

techniques, improving test scores in 4 and 3 tasks out of

6 for ResNet50 and ViT_small models, respectively, when

used with the Reptile algorithm. Meanwhile, Cutout, the

only one compatible with ProtoNet, decreased performance

in most cases. In cross-domain experiments, we performed

two types of tasks: natural-medical and medical-medical.

The results showed that both setups performed less effec-

tively than the non-cross-domain scenario, signifying the

challenges in cross-domain FSL. Nevertheless, the medical-

medical setup showed slightly better performance than the

natural-medical setup, suggesting that domain similarity

might play a role in cross-domain learning performance.

Looking toward future research, we intend to explore

data generation techniques such as GANs for input augmen-

tation. We also aim to design a specific ViT-based architec-

ture for FSL tasks.
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