
AW-Net: A Novel Fully Connected Attention-based Medical Image Segmentation
Model

Debojyoti Pal1, Tanushree Meena1, Dwarikanath Mahapatra2, Sudipta Roy1,∗

1Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai-410206, India
2Inception Institute of AI (IIAI), UAE

debojyoti.pal@jioinstitute.edu.in; tanushree.meena@jioinstitute.edu.in;
dmahapatra@gmail.com; sudipta1.roy@jioinstitute.edu.in;

Abstract

Multimodal medical imaging poses a unique challenge
to the data scientist looking at that data, since it is not
only voluminous, but also extremely heterogenous. In this
paper, we have proposed a novel fully connected AW-Net
which provides a solution to problem of segmenting multi-
modal 3D/4D medical images by incorporating a novel reg-
ularized transient block. The AW-Net uses the concept of
stacking of consecutive 2D image slices to extract spatial
information for segmentation. Furthermore, dropout lay-
ers are incorporated to reduce the computational cost with-
out affecting the accuracy of the output predicted masks.
The AW-Net has been tested on benchmark datasets such
as BRATS2020 for brain MRI, RSNA2022 cervical spine
dataset for spine CT followed by DUKE and QIN dataset
for breast MRI and PET respectively. The AW-Net achieves
a Dice similarity coefficient (DSC) of 81.3% and 80.5%
for breast cancer segmentation from DCE and T1 images,
89.6% as an average of three segmented tumor classes for
brain tumor segmentation from BraTS2020 dataset, 93.7%
for breast tumor segmentation from breast PET images,
and 71.9% for cervical fracture localization on the RSNA
2022 challenge. These evaluation experiments performed
on public datasets indicate that the proposed AW-Net is
a generalized, reproducible, efficient, and highly accurate
model capable of segmenting and localizing anomalies in
any multi-modal 3D/4D medical imaging data from small
and large data sets. The GitHub link is available at:
https://github.com/Dynamo13/AW-Net.

1. Introduction
The last few decades have seen an exponential rise in

the usage of multimodal medical imaging. The consequent

availability of high-quality data from these imaging modal-

ities has resulted in the rapid development of deep learning

(DL) based models[29], [22] in the past two decades. Nev-

ertheless, addressing the reproducibility of deep learning-

based models on diverse datasets, especially when achiev-

ing highly accurate segmentation masks, is essential prior

to their clinical application. The task of detecting and seg-

menting intricate anomalies such as tumors and target le-

sions proves to be difficult owing to the diverse nature of

these target tissues, coupled with distinct characteristics of

multimodal images. As a result, obtaining a substantial

number of accurate segmentation masks for 3D datasets

is not only difficult, but also time consuming and error

prone. In addition, different image modalities undergo dif-

ferent pre-processing techniques and have a wide variation

of voxel intensities. Therefore, the development of a sin-

gle, consistent, and reproducible model for multiorgan seg-

mentation from multimodal imaging is extremely impor-

tant. The aim of this paper is to develop a generalized

segmentation model which provides accurate segmentation

masks for multiple regions of interest regardless of the vol-

ume of training data. Attention U-Net [23] has shown im-

pressive performance on many benchmark medical datasets

but its ability to generalize complex medical tasks such as

breast cancer segmentation is still limited. Moreover, the

attention mechanism tends to over-fit on complex dataset

due to lack of the regularization techniques in the attention

mechanism. Therefore a novel, generalized, attention-based

segmentation model, namely AW-Net has been proposed to

accomplish the task multiorgan segmentation from multi-

modal medical images. The contribution of the proposed

model is summarized as follows:

• A novel regularized transient block (RTB), comprising

of regularised convolutional blocks and dropout layers,

is introduced between the encoder and decoder path-
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ways for better infusion of low-level and high-level

feature maps.

• A study of the computational cost of the model has

been performed to showcase that the AW-Net is the

most cost-effective model among other state-of-the-art

models.

• Experiments on multimodal datasets (CT, PET, MRI)

have been conducted to validate the effectiveness of

the model for segmentation and anomaly localisation

of multiple organs.

2. Related Work
2.1. 2D segmentation models

The spatial details contained within the voxels of vari-

ous imaging modalities significantly impact the quality of

the segmented mask. In medical imaging, the accuracy

and precision of these segmented masks hold utmost im-

portance, as numerous subsequent decisions rely upon the

precise locations provided by these annotations. Fully con-

volutional models [5], [4] were proposed keeping in mind

the challenging nature of this problem. These networks ei-

ther have stacked a series of convolutional layers together or

have used state-of-the art models such as VGG, as a back-

bone. However, these models use a considerable amount

of training data and don’t address the problem of segment-

ing small lesions. To address the problem of misclassifi-

cation of neighboring pixels, squeeze and excitation blocks

[28] were incorporated in different state-of-the-art architec-

tures. However, the squeeze and excitation blocks increased

the time-complexity of the model. In addition, the usage of

large volume of training data is still an unaddressed prob-

lem. Since segmenting anomalies from complex medical

images by radiologists are a complicated as well as time-

consuming task, it is difficult to obtain a large volume of

annotated/segmented masks for training. As a result, these

models were not used in real-life scenarios. The U-Net [27]

was developed to address the problem of over-fitting and us-

age of large training data to generate segmentation masks.

Over the years, several modifications [33] [37] [16] have

been made on the U-Net architecture to achieve precise and

accurate results for small lesion segmentation and anomaly

localization on multiple medical imaging modalities. One

of the most prominent modification is the usage of atten-

tion gates [23] [24] and transformers [25] [7] on the base-

line U-Net architecture. Attention gates reinforce the model

to learn intrinsic anatomical details of the target lesions by

representing the extracted features in a higher dimensional

space without increasing the model complexity. The incor-

poration of transformers results in faster convergence of the

model by focusing on the regions which are missed by the

convolutional neural network layers due to the large kernel

Figure 1: The workflow diagram of the proposed AW-Net.

size of the incorporated layers. Recent developments in-

clude the addition of meta-heuristic algorithms such as [26]

[35] [10] in DL models to optimize the hyper-parameters

involved in the training.

2.2. 2.5D and 3D segmentation models

The 2D models lack the capability to capture the sup-

plementary spatial insights inherent in 3D medical imag-

ing modalities like CT scans, MRI, and PET scans. These

imaging techniques consist of series of successive 2D slices

stacked together, with each slice containing data about the

examined tissue. 3D models [12] [13] facilitate the extrac-

tion of the geometry of interest through the process of sur-

face determination. These models process a series of con-

tiguous 3D blocks as input and perform voxel segmenta-

tion to provide 3D segmentation masks which permits better

representation and quantification of generated segmentation

masks for multi-modal images. However, these models take

a significant amount of data for training. The computational

cost also increases due to the usage of 3D convolution fil-

ters. The introduction of attention-based 3D U-Net [8] im-

proved the accuracy of the predicted masks by reducing the

number of predicted false positive pixels. The introduction

of transformer-based U-Net variants such as 3D Swin U-

Net [31] also increased the computational complexity, re-

sulting in the requirement of high-performance computers

to train the models. As a result, pseudo 3D models [20]

[19] and 2.5D models [36] [11] came into practice. Pseudo

3D models use three individual 2D slices in different ori-

entation planes namely sagittal, axial, and coronal and re-

construct the 3D volumetric image which was then fed into

the model. It solved the problem of data availability, but the

computational cost was still high. Stacked 2.5D models [17]

[32] solved this problem by stacking neighboring 2D slices

to obtain spatial information. However, unlike 3D models,

only 3 to 5 consecutive images were stacked. These models

considered individual 2D slices and performed pixel-level

segmentation. These DL based segmentation models have

proven to provide better segmentation masks than radiolo-

gists in some cases [21].
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Figure 2: A) The AW-Net architecture for medical image segmentation. The 3D rectangular boxes represent different layers,

red solid arrows represent the skip connections and the novel RTB is highlighted in red. B) The inner structure of the RTB

block with regularized convolutional block. C) Feature maps showing the effectiveness of RTB (shown as red dotted lines)

and the role it plays for the reduction of false positive pixels (shown as yellow dotted circles).

3. Methodology

3.1. Stacked 2.5D slices

The proposed AW-Net has been developed to segment

3D medical images. However, feeding 3D images tradition-

ally results in increased computational cost. A 2.5D stack-

ing algorithm is proposed in this section which takes an en-

tire 3D volume as an input and sequentially processes three

slices at a time, with the target slice being the central slice,

xtarget sandwiched between two adjacent ones, xleft and

xright as illustrated in Figure 1 and formulated in equation

1. Unlike 2.5D stacked models that only consider relevant

slices containing the region of interest, this model consid-

ers all slices regardless of voxel content. In this paper, we

are dealing with multi-modal data i.e., CT, MRI, and PET

as well as multi-sequence data i.e., DCE, T1, and FLAIR to

name a few. In order to efficiently deal with the variability

of the data, the proposed stacking algorithm has two modes:

multi-sequence and single-sequence. In a dataset with mul-

tiple sequences, like the BraTS2020 for brain MRI, the

multi-sequence mode is utilized. This mode processes one

slice from each sequence in the dataset and inputs the con-

catenation of three sequences stacked together for the same

position into the model. This process is repeated until the

entire volume of data is processed. Conversely, the single-

sequence mode would be used for tasks like breast tumor

segmentation from the DUKE dataset, where we want to

focus on segmenting tumors based on a single sequence. In

this scenario, we would concatenate three consecutive slices

of information at a time from the entire 3D dataset and feed

it to the model sequentially. By leveraging the 3D nature

of different data modalities, the stacking approach exploits

spatial features from adjacent slides. Although the individ-

ual constituent layers are 2D, the stacking method provides

efficient training and enables the model to learn the spatial

features from adjacent slides.

3.2. Proposed Network

The proposed novel fully connected network, namely

AW-Net, is shown in Figure 2. The AW-Net is a modified

verision of the attention U-Net architecture which incor-

porates a novel regularized transient block. The proposed

model has A) encoding pathway, B) RTB block C) decoding

pathway. Unlike the U-Net architecture, the encoding path-

way doesn’t connect with the decoding pathway. Instead,

the final block of the encoding pathway (EB-4) is connected

to the novel RTB. The RTB in conjunction with attention

gates is responsible for regularizing and fine tuning the en-

coded feature maps. This not only prevents overfitting of the

model but also forces the model to selectively focus on rel-

evant features. The residual connections in the RTB, com-

bines coarser feature maps with finer feature maps.This al-

lows the network to leverage both low-level and high-level

features for segmentation, which can lead to more accurate

and robust segmentation results. Attention gates are added

to make the model more robust and accurate for small le-

sion segmentation as shown in Figure 2. The input-output

function of the proposed network is represented as:

youtput = fAW-Net(xleft, xtarget, xright|θ) (1)

where youtput is the output of the target, fAW-Net is the pro-

posed model, θ is the model parameter, xtarget is the cen-

tral target slice, xleft and xright represents the neighboring

slices.

3.3. Encoding Pathway

The encoding pathway comprises of four fully connected

encoder block connected by the max-pooling layer. The
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first three blocks comprises of two convolution layers with

a 3×3 filter size stacked together. Each convolution layers

are followed by a ReLu activation and a Batch Normaliza-

tion operation. These convolution layers facilitate the ex-

traction of important features in subsequent blocks. The

feature map of the convolution layers increases by a factor

of 2 for each subsequent layer from 32 to 256. The resultant

neuron nconv after undergoing a dense convolution operation

can be represented as:

conv(x) = max(0,

d∑

i=1

wixi + b) (2)

where x ∈ R1×d represents the individual weights of a d-

dimensional input vector, w ∈ R1×d represents the weight

vector and b represents the bias. An encoder block is con-

nected to the following layer with a max-pooling layer with

filter size of 2×2. The final encoder block, however, has a

dropout layer as an additional layer to individual convolu-

tion layers having a dropout rate of 0.2. It not only prevents

the model from over-fitting but also prevents the misclassi-

fication of pixels.

3.4. Regularized Transient Block

One of the major problems of attention U-Net is the bot-

tleneck. Bottleneck refers to the narrowest part of the net-

work, where the spatial resolution of the feature maps is re-

duced. The reduced spatial resolution leads to loss of fine-

grained details important for accurate segmentation. The

bottleneck of the U-Net architecture is characterized by an

increased number of channels, resulting in feature-rich vec-

tors. However, this can lead to two issues: first, an elevated

risk of overfitting, and second, an increase in the computa-

tional complexity of the model. To solve these problems,

we propose a fully connected layer, named regularised tran-

sient block (RTB) as a replacement of the bottleneck, shown

in Figure 2B. The RTB is comprised of three regularized

weight layers, RW-1, RW-2, and RW-3 connected with each

other. Individual weight layers comprise of a series of con-

volutional layer, ReLU activation function followed by a

batch normalization operation. Unlike the convolution op-

erations mentioned in Section 3.2, we have used L1 regular-

izer on the convolutional filter weights shown in equation 3.

θL1 = γ

d∑

i=1

|wi| (3)

Lθ = −
n∑

i=1

yGT
i log(pi) + θL1 (4)

where γ is the regularization strength hyperparameter, θL1

is the regularization penalty term, n represents the number

of classes, yGT represents the truth label and pi represents

the softmax probability for the ith class. This technique re-

duces the complexity of the proposed model by adding a

penalty term to the loss function that encourages small ab-

solute values for the model weights. The L1 regularization

penalty term is added to the cross-entropy loss to form the

regularized loss function Lθ, shown in equation 4, which is

then minimized during training using an optimization algo-

rithm, Adam. The L1 regularization penalty also optimizes

the number of parameters of the model, θ. The regularised

convolution operation is followed by a dropout layer having

a rate of 0.2. This helps in reducing overfitting and improv-

ing the generalization performance of the model.

The encoded feature vector from EB-4 is passed onto RW-1

of the RTB. The regularised feature vector is down-sampled

via a max-pooling layer. The resultant vector is simultane-

ously processed to both RW-2 and attention layer Attn-1.

Attn-1 generates an attention co-efficient, α (see equation

6) which can identify salient features and prune irrelevant

features which act as noise to the prediction task. This

co-efficient is again reintroduced into RW-2. The RTB in-

creases the model depth, thus making it prone to suffer from

the vanishing gradient problem. To solve this problem, a

skip connection is introduced between RW-1 and RW-3.

However, the down sampling operation results in a shape

mismatch between the aforementioned regularised weight

blocks. As a result, the feature vectors obtained from RW-2

undergoes an up sampling operation. The skip connection

allows the model to combine low-level features (RW-1) with

high level features (RW-3) making the model more robust.

The output of the RTB serves as an input vector for Attn-2.

The RTB is finally connected to the decoder pathway via

DB-1.

3.5. Decoding Pathway

The decoder pathway consists of four fully connected

decoder blocks connected via an up-sampling layer. Each

decoder block has an up-sampled vector and an attention

vector as an input. The attention vector is basically an out-

put of the attention gate, which is discussed in section 3.6,

whereas the up-sampled vector is the output of a transverse

convolution layer of filter size 2×2. Both these vectors are

concatenated and subsequently serve as an input vector for a

series of two convolution layer stacked on top of each other.

However, the first decoder block DB-1, comprises of an ad-

dition dropout layer after each convolution layer to prevent

the model from over-fitting.

3.6. Attention Gate

Convolution blocks provide semantic information for

sufficiently large area of interest. However, when it comes

to distinguishing smaller regions of interest with high vari-

ability as in case of tumor detection, the spatial information

of corresponding voxels plays an important role. The pro-
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Figure 3: The diagrammatic representation of the attention

gate.

posed model, therefore, uses attention gates for better lo-

calization of smaller objects. The attention gates make the

model learn the important features, voxel-wise, in addition

to suppressing irrelevant background pixels. As a result,

the model accuracy increases due to the reduction of false

positive voxels. The stacking of consecutive image slices

helps the attention gates in performing better localization

of small target lesions by providing spatial information of

the surrounding slices as shown in Figure 3. The attention

gates take two vectors as input: a gating-signal vector, xG

and an input vector, xI. The gating vector xG contains con-

textual information which makes the model learn the focus

regions on a subset of target tissues. The feature vector xI

and xG is obtained via skip-connections and gating signals

respectively. The gating vector is passed through an up-

sampling layer whereas the input vector is passed through

a convolutional layer of filter size 3×3. The processed vec-

tors are then added and passed onto a ReLU activation func-

tion (σ1). The resultant vector undergoes a linear transfor-

mation operation using a convolutional layer of kernel size

1×1 to generate intermediate activation maps qA. The gen-

erated activation maps are then passed through a sigmoid

activation function (σ2). The attention gate is formulated as

follows:

qA = ψ(σ1(
∑

i=1

wI
i x

I
i +

n∑

j=1

(xG
j )

TxG
j ) + bσ) + bψ (5)

αi = σ2(qA(x
I , xG|θA)) (6)

where σ2 corresponds to sigmoid activation function, σ1

corresponds to the ReLU activation function, θA represents

the set of parameters for attention gating and ψ represents

the linear transformation operation.

3.7. Dataset Description

We evaluated the proposed AW-Net on benchmark

datasets such as Duke Breast Cancer [30], QIN (Quanti-

tative Imaging Network) breast data set [18], BraTS2020

dataset [3] and RSNA cervical spine fracture detection chal-

lenge [1]. The Duke Breast Cancer consists of DCE (Dy-

Table 1: A summarized table of the datasets used.

Dataset No. of Images Input Size Modality

Duke 320 448×448×3 MRI (DCE, T1)

QIN 240 512×512×3 PET

BraTS 600 256×256×3 MRI (T1w, T2, FLAIR)

RSNA 1400 256×256×3 CT

namic Contrast Enhanced) MRI images and T1 MRI im-

ages of 529 subjects is selected as breast MRI dataset.

The QIN breast data set is used as breast PET dataset.

The BraTS2020 dataset containing annotations of enhanc-

ing tumor (ET), peritumoral edema (ED) and the necrotic

and non-enhancing tumor core (NCR/NET) is considered

as brain MRI dataset. Individual multimodal scans are

available as NifTI files with a native (T1), post-contrast

T1-weighted, T2-weighted and T2 Fluid Attenuated Inver-

sion Recovery (T2-FLAIR) volumes. The RSNA cervical

spine fracture detection challenge consists of 1400 CT stud-

ies with equal negative studies are considered as a dataset

for spine fracture localization. Tumor regions for breast

MRI and PET are manually annotated using MicroDICOM

viewer and exported as DICOM files. The dataset details

are summarized in Table 1.

3.8. Implementation Details

The AW-Net is developed in TensorFlow 2.0 and trained

using an Intel RTX A4000 chip and an Intel i9 processor.

Adam optimizer is used with a learning rate of 0.001 and

a decay rate of 0.89. The model is trained for 150 epochs

with a batch size of 8. Binary crossentropy is used as a

loss function to obtain binary segmentation masks whereas

categorical crossentropy is used to obtain multi-class seg-

mentation for the BraTS dataset. The datasets used for the

evaluation of the model had different image resolutions and

pixel intensities. As a result, individual input slices are nor-

malized. Each dataset has been split into a ratio of 60:20:20

for training, validation, and testing respectively

4. Results And Comparison
4.1. Results

Figure 4 represents the qualitative analysis of the gener-

ated predicted mask for different modalities such as MRI

(breast and brain), PET (breast), and CT scan (Cervical

Spine) from top to bottom.To prove the efficiency and the

robustness of the model, Dice Similarity Coefficient (DSC),

Average Hausdorff distance (HD), and False Positive Rate

(FPR) are used as a performance metrics. The proposed

AW-Net achieves an average DSC of more than 80. The

maximum (Max), minimum (Min), average (Avg) and stan-
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Table 2: Summarized results obtained by the proposed AW-

Net.

Body Parts

Modality
Sequences

DSC

(%)

HD

(mm)

FPR

(mm)

Breast MRI

DCE
81.3±12.3 10.7±0.7 0.04±0.01

89.6-61.5 11.3-9.7 0.15-0.01

T1
80.5±11.5 9.9±0.6 0.04±0.02

87.5-50.2 11.8-9.1 0.16-0.01

Brain MRI T1CE+ T2+FLAIR
89.6±8.6 10.5±0.5 0.1±0.08

96.8-59.5 11.3-8.7 0.18-0.08

Breast PET -
93.7±11.0 00.5±0.6 0.01±0.05

96.8-60.3 02.0-0.5 0.14-0.02

Cervical Spine CT -
71.9±22.1 6.2±1.1 3.5±1.2

95.0-25.6 9.9-2.2 7.2-2.1

*The shaded row (Max - Min) and next to shaded row (Avg ± SD)

Figure 4: A detailed analysis of the predicted mask gener-

ated by the proposed AW-Net with respect to A) 2D visu-

alization of individual segmented masks for a single image

slice, B) 3D visualization of predicted breast tumor and C)

3D visualization of brain tumor.

dard deviation (SD) values in terms of DSC, HD and FPR

for the different modalities and sequences is shown in Table

2. An average DSC of 81.3, 80.5 and 89.6 is reported for

DCE-MRI, T1-MRI, and TICE+T2+FLAIR MRI, respec-

tively. For other modalities such as Breast PET and Cervi-

cal Spine CT an average DSC of 93.7 and 71.9 are reported

respectively. An average HD of 10.7 and 9.9 is observed for

DCE and T1 for breast MRI and 10.5 in brain MRI. Simi-

larly, an average HD of 0.5 and 6.2 is observed for breast

PET and cervical spine CT. Table 2 reports an average FPR

of 0.04 for breast MRI segmentation, 0.1, 0.01 and 3.5 for

brain MRI and breast PET and cervical spine CT, respec-

tively.

4.2. Comparison with other models

A comparative study with other state-of-the-art segmen-

tation models such as U-Net3+ [14], Trans U-Net [25],

Swin U-Net [7], Attention UW-Net [24], LinkNet-b7 [2]

and FPN [34] and 3D segmentation models such as 3D U-

Net [9],3D attention U-Net [15], and 3D LinkNet [6] have

been performed with the proposed AW-Net. Table 3 show-

cases the result of the quantitative analysis done on the

aforementioned models with respect to the proposed AW-

Net. In addition, the number of parameters for the afore-

mentioned models has also been reported in the last column

of Table 3. Figure 5 represents the qualitative analysis of the

proposed model with respect to the other compared models

in terms of the generated segmented masks.

The AW-Net model proposed in this study shows superior

performance compared to other models. It achieves a DSC

score that is at least 0.8 higher for NCR/NET, 1.6 higher

for ET, and 2.4 higher for ED. It also has the least number

of misclassified pixels (FPR) compared to the other mod-

els. This is because of the regularised convolutional block

and the dropout layers in the RTB. Transformer-based U-

Net models perform poorly for breast tumor segmentation,

especially for DCE sequence with the trans U-Net and Swin

U-Net achieves an average DSC of 76.5 and 70.5, respec-

tively. LinkNet-b7 trails the proposed model by a DSC

of 27.9 and 31.0, for small lesion (tumor) segmentation in

DCE and T1 sequence respectively. This is due to the bot-

tleneck of the aforementioned model. In comparison to 3D

segmentation models like 3D U-Net, 3D attention U-Net,

and 3D Link Net, the proposed AW-Net outperforms them

by a significant margin of 10.2, 6.4 and 8.5 in terms of DSC.

The AW-Net also has the lowest FPR of 0.003 for tumor

segmentation from PET imaging. This is because of the

additional attention layer and skip connections in the RTB

layer. Their additive effect made the model sensitive to ad-

jacent pixels with similar intensity as the tumor cells. The

proposed model outperforms the U-Net 3+ for the RSNA

cervical spine dataset, with a DSC score above 75. The

low average FPR score of 0.6 highlights the effectiveness of

the proposed AW-Net in reducing the number of misclassi-

fied pixels. The proposed model also has the least number

of trainable paramters in comparision to SOTA segmenta-

tion models, as is shown in Table 3. AW-Net has 4.68M

parameters involved during training due to the regularized

convolutional operations in RTB. In summary, the proposed

AW-Net is the best-performing model, taking into account

all aspects of the comparison.

5. Ablation Study

An ablation study performed on the proposed AW-Net

showcases the effectiveness of the RTB with respect to DSC

and FPR in Figure 6A and 6B respectively. We vary various
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Table 3: Summarized results for segmentation on breast PET, cervical spine CT, breast, and brain MRI in terms of average

DSC (in %), FPR (in %) and number of parameters (in M). Yellow shaded cells show the performance of the AW-Net

PET CT
MRI Brain No. of

Parameters
(M)

DCE T1 NCR/NET ET ED
DSC FPR DSC FPR DSC FPR DSC FPR DSC FPR DSC FPR DSC FPR

Proposed Model 93.7 0.003 71.9 3.5 81.3 0.12 80.5 0.11 88.9 0.17 84.4 0.19 95.6 0.13 4.68
Trans U-Net 87.6 0.025 55.4 6.9 76.5 0.25 74.8 0.27 87.7 0.18 81.1 0.22 92.8 0.16 86.70

Swin U-Net 82.8 0.022 45.8 7.2 70.5 0.19 71.2 0.18 88.4 0.19 76.5 0.21 93.2 0.18 9.36

Attention UW-Net 89.3 0.01 68.3 3.8 78.1 0.15 77.6 0.22 82.5 0.14 77.7 0.61 88.5 0.17 16.30

U-Net 3+ 79.4 0.07 72.1 3.5 73.4 0.17 74.1 0.29 89.1 0.18 82.8 0.22 93.2 0.17 7.87

LinkNet-b7 82.1 0.03 41.2 8.3 53.4 0.45 49.5 0.62 88.7 0.17 75.7 0.19 92.6 0.13 72.26

FPN 79.8 0.25 30.5 19.4 71.3 0.14 70.9 0.15 80.1 0.2 54.8 1.3 68.33 2.1 20.30

3D U-Net 83.5 0.11 46.2 5.5 77.5 0.13 76.9 0.08 70.2 0.31 67.5 0.82 87.7 0.45 20.90

3D-Attention U-Net 87.1 0.05 55.1 4.9 78.3 0.7 77.9 0.2 83.8 0.15 72.3 0.26 91.7 0.25 26.73

3D LinkNet 85.2 0.04 44.3 3.7 60.5 0.56 61.3 0.7 75.1 0.22 70.4 0.25 90.1 0.19 20.20

Figure 5: The output masks generated by the proposed model and other compared models: U-Net 3+, Attention UW-Net,

Trans U-Net, LinkNet-b7, FPN and Swin U-Net (from left to right) with respect to different modalities: MRI-T1, MRI-DCE,

MRI for stacked T1CE, T2 and FLAIR, PET, and CT (from top to bottom).

parameters of the RTB i.e., the regularizer and the dropout

rate. We have considered attention U-Net as the baseline

model, M. The RTB is represented as a bivariate function

RTB(r, L) which takes two parameters, dropout rate r and

regularizer function L as input. The proposed model is rep-

resented as M + RTB(0.2, L1). In this study we vary the

dropout rate from 0.1 to 0.3 and the regularizer between L1

and L2. We have also considered a model variant without

the regularizers in the RTB to showcase the importance of

regularizers in the transient block. This study has been re-

peated for different modalities as is showcased in Figure 6A

and 6B. The addition of RTB improves the baseline model

M, by a DSC of 4.7 for RSNA dataset and an FPR of 1.55

for BraTS dataset. This study establishes the fact that RTB

with the combination of L1 regularizer and dropout plays a

crucial role in improving model performance and reducing

FPR.

6. Data Growth Study

Figure 7 presents a data growth study, where the model’s

performance is assessed through training on a reduced

dataset and evaluating on the remaining data. The primary

objective is to analyze how the model performs under these

conditions, specifically exploring the impact of data size on

its effectiveness. The study aims to uncover valuable in-

sights about the direct relationship between dataset size and

model performance.The investigation commences by utiliz-

ing 30% of the data for training and reserving 70% for test-

ing. Through a systematic approach, the training data is

incrementally increased by 5%, while the testing data is si-

multaneously reduced by 5%, until reaching a configura-

tion with 80% of the data for training and 20% for testing.

This step-by-step analysis is repeated for other segmenta-

tion models such as U-Net 3+, Trans U-Net, Attention UW-

Net, LinkNet-b7, 3D Attention U-Net, and 3D LinkNet.
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This study offers a deeper understanding of the correlation

between data size and the overall performance of various

2D and 3D segmentation models. However, it is important

to note that configurations with training data less than 30%

are not reported due to the limited availability of training

data for breast PET and MRI images, which have only 240

and 320 annotated images for the experiment. The proposed

model demonstrates remarkable performance in tumor seg-

mentation for breast PET (shown in Fig 7(C)), achieving a

DSC of 88% when trained on 30% of the available data.

This result is significantly better than other segmentation

models like Attention UW-Net, Trans U-Net, and 3D Atten-

tion U-Net. For brain tumor detection from the BraTS2020

dataset in Fig 7(B), the proposed model also performs well,

obtaining a DSC of 82% when trained on the same 30% of

the data. However, in the case of breast MRI tumor segmen-

tation, the AW-Net falls slightly behind the 3D U-Net by

0.9% in DSC when both models are trained on 30% of the

data. Nonetheless, AW-Net demonstrates substantial per-

formance improvement after being trained with 60% of the

data.On a different note, the RSNA challenge data, used for

cervical spine fracture localization, resulted in poorer anno-

tations, leading to a lower DSC of 60% when the model was

trained on only 30% of the data. Despite this limitation, the

reported DSC values exhibit low variance, even when the

model is trained on a small dataset, providing valuable in-

sights into the robustness and effectiveness of the proposed

model.

7. Computational Time

To evaluate the efficiency of the model, a study is per-

formed based on the memory involved while training a sin-

gle epoch (in Mb) with respect to the number of floating-

point operations performed per second (FLOPS). Further-

more, test inference time (in seconds) have also been cal-

culated for these segmentation models to induce the im-

plementation of the developed model for real-time applica-

tions. The results for the proposed AW-Net with respect to

SOTA segmentation models is reported in Table 4. Training

AW-Net for a single epoch takes 62.5 Mb and involves 5.7

G of FLOPS which is the least among other SOTA models.

The proposed model also has the least test inference time of

0.13 seconds, making it suitable for real-world applications.

8. Conclusion

In this paper, we have proposed a novel AW-Net for

the segmentation of multimodal 3D/4D images. The pro-

posed model considers the anatomical features and reduces

pixel misclassification by the introduction of RTB. The reg-

ularised convolutional layers in the RTB not only reduces

the computational complexity but also makes the model

Table 4: Complexity Analysis of the proposed AW-Net.

Model FLOPS (G) Memory Taken (Mb) Test Inference Time (Sec.)
Proposed Model 5.7 62.5 0.13

Trans U-Net 35.1 240.9 0.35

Swin U-Net 32.8 210.5 0.36

Attention UW-Net 12.5 98.4 0.16

U-Net 3+ 132.7 80.3 0.26

LinkNet-b7 29.9 129.4 0.24

FPN 40.4 100.3 0.15

3D U-Net 360.5 319.7 0.52

3D Attention U-Net 250.2 355.4 1.09

3D LinkNet 353.9 325.2 0.52

Figure 6: Stacked plot representing A) Average DSC (in %)

and B) FPR (in %) of the different models in the ablation

study on the proposed AW-Net for different modalities.

Figure 7: Line plots illustrating the performance of AW-Net

for the data growth study with respect to different datasets.

A) RSNA. B) BraTS2020. C) QIN. D) DUKE.

robust. Experiments performed on multiple dataset hav-

ing different modalities and data sequences demonstrate the

effectiveness and the generalizability of the model. The

model consistently outperforms other benchmark segmen-

tation models in terms of DSC and FPR for public bench-

mark datasets. Furthermore, the performance analysis with

respect to the training data shows that the proposed model

works well on smaller datasets. Thus, we conclude that the

proposed model is a generalised, cost effective, and robust

model.
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