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Abstract

Anomaly detection and segmentation pose an important
task across sectors ranging from medical imaging analy-
sis to industry quality control. However, current unsuper-
vised approaches require training data to not contain any
anomalies, a requirement that can be especially challeng-
ing in many medical imaging scenarios. In this paper, we
propose Iterative Latent Token Masking, a self-supervised
framework derived from a robust statistics point of view,
translating an iterative model fitting with M-estimators to
the task of anomaly detection. In doing so, this allows the
training of unsupervised methods on datasets heavily con-
taminated with anomalous images. Our method stems from
prior work on using Transformers, combined with a Vector
Quantized-Variational Autoencoder, for anomaly detection,
a method with state-of-the-art performance when trained on
normal (non-anomalous) data. More importantly, we utilise
the token masking capabilities of Transformers to filter out
suspected anomalous tokens from each sample’s sequence
in the training set in an iterative self-supervised process,
thus overcoming the difficulties of highly anomalous train-
ing data. Our work also highlights shortfalls in current
state-of-the-art self-supervised, self-trained and unsuper-
vised models when faced with small proportions of anoma-
lous training data. We evaluate our method on whole-body
PET data in addition to showing its wider application in
more common computer vision tasks such as the industrial
MVTec Dataset. Using varying levels of anomalous train-
ing data, our method showcases a superior performance
over several state-of-the-art models, drawing attention to
the potential of this approach.

Figure 1. Our approach can take anomalous training data without

prior segmentation labels and train a Transformer to progressively

remove the influence of anomalies from training such that, during

inference, the model can detect new anomalies.

1. Introduction

Anomaly detection aims to identify samples containing

anomalous patterns that deviate from those seen in normal

instances. The detection of these abnormal characteristics

can be a challenging task in computer vision but is still cru-

cial in a wide range of applications from medical imaging

analysis [1, 19, 20] to manufacturing defect detection [3]

and video surveillance [6]. One of the primary difficul-

ties is the data requirements to train models. Usually, su-

pervised anomaly detection requires large amounts of data

with accurate annotations of the locations of said anoma-

lies in the data. On the other hand, unsupervised methods

require a sufficient number of instances that covers the nor-

mal variability of the data, but these instances must not con-

tain anomalous patterns. Both these approaches thus require

some form of labeling: segmentation maps for the super-

vised techniques and image-wide abnormality labels for the

unsupervised approach, which can be challenging in spe-
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cific applications. Lastly, for certain applications, all avail-

able images from the training set may present some form

of local anomalies. A typical example of this is in medi-

cal imaging, where some modalities are collected only from

patients with pre-existing suspicions of pathologies. Using

certain modalities on healthy patients would be deemed un-

ethical and potentially harmful due to radiation exposure.

It is scenarios like this where obtaining a complete dataset

without the presence of any anomalies for unsupervised

training can be difficult, yet also greatly challenging and

time-consuming to generate a large annotated dataset for

supervised training given the size of 3D medical images.

A particular challenge for unsupervised anomaly detec-

tion is the development of training methods that allow the

model to learn suitable features for the task without prior

knowledge of the type and distribution of anomalies that

may be present. Top-performing anomaly detection models

commonly rely on models pre-trained on large datasets such

as ImageNet to extract deep features [29, 21, 15] to cir-

cumvent the need for their model to learn relevant features.

Even though effective, this generalised approach based on

ImageNet falls short in specialised domains such as medi-

cal imaging [18]. Without pre-training, many methods rely

on normative generative modelling, which can generate a

pixel-wise anomaly score based on reconstruction residu-

als [5, 1]. However, the efficacy of such approaches is

limited by the requirement of uncontaminated training data

(i.e., normal only).

Until recently, the variational autoencoder (VAE) and its

variants held the state-of-the-art for the unsupervised deep

generative approach. For example, the spatial VAE ap-

proach [1] learns a normal data manifold by constraining

the latent space to conform to a given distribution. This ap-

proach and varying autoencoder-only methods suffer from

low-fidelity reconstructions caused by the latent-space in-

formation bottleneck and unwanted reconstructions on un-

seen anomalies. Recently, unsupervised anomaly detectors

based on autoregressive transformers coupled with Vector-

Quantized Variational Autoencoders (VQ-VAE) were pro-

posed to overcome these issues [20, 19] showcasing state-

of-the-art results in a range of 3D medical imaging anomaly

detection tasks. In Pinaya et al. [20], the authors explore

the advantage of tractably maximizing the likelihood of

the normal data as well as the capacity of the attention

mechanisms to better model the long-range dependencies

of the training data. Patel et al. [19] takes this transformer-

based method a step further by showing a greater resilience

to training data containing anomalies through dropout and

multiple sampling from the transformer used to generate a

non-parametric Kernel Density Estimation (KDE) anomaly

map. Even so, it was shown that the presence of anomalies

in the training data was still detrimental to the model’s final

performance when compared to anomaly-free training data.

Recently, self-supervised methods have shown promis-

ing results in computer vision tasks using data augmentation

strategies on unlabelled data to mimic real anomalies. Cut-

Paste [16] and Natural Synthetic Anomalies (NSA) [24]

were shown to be effective for anomaly detection training

paradigms. They generate synthetic anomalies by extract-

ing random patches from the same or different training im-

ages and applying some form of transformation to the patch

before blending it back into the images. Although impres-

sive when trained on normal data alone, there is concern

that the realism of such presented anomalies varies signif-

icantly from those seen in real data. The work in [17] at-

tempted to tackle this problem via a self-trained knowledge

distillation approach (STKD), in which a CutPaste model

was trained on a mix of unlabelled normal and anomalous

data to progressively filter out samples of high anomaly

probability in the training data in an iterative manner. Al-

though this method showcased improvements, it still dis-

played large performance degradation as the proportion of

anomalous training increased and was only tested to low

levels of anomaly contamination in the training data, levels

that could likely be greatly exceeded in a medical imaging

scenario.

For unsupervised generative models, given that the dis-

tribution of anomaly patterns is often unknown in advance,

the primary goal is to train models to learn patterns of nor-

mal instances. Then during inference, anomalies are de-

tected as deviations from the learnt representation of nor-

mality. Respectively for self-supervised anomaly detection,

the assumption is that all anomalies present within the train-

ing data are synthetic and clear deviations from the normal

data, and as such, the model learns to locate these synthetic

anomalies. In both approaches, training data is assumed to

be normal. However, there is little evidence and research

to showcase the efficacy of said approaches when normal

training data alone is unattainable. The difficulty is task-

specific. For example, it may be infeasible to review long

videos in video surveillance data to ensure each frame is

without anomalous objects. For medical imaging, this can

be an ethical challenge in that certain imaging modalities,

i.e. those resulting in radiation exposure, should not be used

on patients without prior suspicions of pathologies. In such

scenarios, you may find datasets with a heavy bias towards

containing anomalous samples with little to no normal train-

ing samples [19].

Given the prevalence of datasets contaminated with out-

liers and anomalies, robust statistical approaches have been

implemented, however, there are limited applications of

such approaches to imaging data. Some of the earliest work

tackled simple regression problems with outliers present.

Notable solutions include Least Trimmed Squared [23], an

iterative fitting approach that aims to minimise the sum of

squared residuals to a subset of the data and Least-Median-
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of-Squares [22], a fitting technique that seeks to minimise

the median of squared residuals. Although effective for

model fitting in the presence of anomalies, these approaches

are unfeasible and unsuitable for higher dimensional imag-

ing problems. One perhaps more suited robust approach is

Random Sample Consensus (RANSAC) [12]. This method

fits a model to random subsets of the data and returns the

model with the best fit (or least error) to its specific subset.

The reasoning behind this is the assumption that a model

will be able to fit well to inliers with minimal error whilst

producing a higher error when fit to data with outliers. Sim-

ilar to work like STKD however this approach is only suit-

able for datasets with lower levels of outliers and not high

levels of anomalous samples, a specific challenge we are

attempting to tackle in medical imaging where all the data

could potentially contain anomalies. However the concept

of iterative/multiple training cycles and robust fitting tech-

niques to data with outliers is of importance and where we

take inspiration for our approach.

Given such challenges, we propose Iterative Latent To-

ken Masking (ILTM), a robust statistical approach to self-

supervised anomaly detection that uses the VQ-VAE -

Transformers pipeline with self-supervised token masking

(Figure 2). On 3D whole-body PET anomaly detection, we

showcase that our method outperforms leading methods and

presents minimal deterioration in performance when faced

with highly anomalous training data. Furthermore, to show-

case the efficacy of this approach on wider computer vision

tasks, we also report the results of the proposed on the 2D

industrial MVTec dataset.

2. Background
The driving components behind the proposed method

use VQ-VAE and Transformer models to learn the proba-

bility density function of the training images. To use Trans-

former models, images must be presented in a 1D sequence

of values that are ideally categorical. Using voxel values

alone flattened into a sequence is infeasible, given the size

of the images. Based on previous work [19, 20, 26], we use

a VQ-VAE model to learn a discrete latent representation of

the images that are then fed into the Transformers.

2.1. VQ-VAE

The VQ-VAE offers state-of-the-art reconstruction re-

sults while providing an ideal encoding of images in a dis-

crete format for the Transformer network. The VQ-VAE is

composed of an encoder that maps an image x ∈ R
H×W×D

onto a smaller latent representation Z ∈ R
h×w×d×nz where

nz is the latent embedding vector dimension. This represen-

tation Z is then passed through a quantization block where

an element-wise quantization is done to map each feature

column vector to its nearest codebook vector. Each spa-

tial code Zijl ∈ R
nz is then replaced by its nearest code-

book element ek ∈ R
nz , k ∈ 1, ...,K where K denotes

the codebook vocabulary size, thus obtaining Zq . Given

Zq , the VQ-VAE decoder then reconstructs the observations

x̂ ∈ R
H×W×D. For detailed formulations of losses, archi-

tectures, and training processes, please refer to Appendix

A.

2.2. Transformer

After training a VQ-VAE model, the next stage is to learn

the probability density function of the discrete latent repre-

sentations from the training data. Using the VQ-VAE en-

coder and quantization block, we can obtain a discrete rep-

resentation of the latent space by replacing the codebook el-

ements in Zq with their respective indices in the codebook

yielding Ziq . To model the imaging data, we require the dis-

cretized latent space Ziq to take the form of a 1D sequence

s. In this work, we used a raster scan ordering to transform

Ziq into s. The Transformer is then trained to maximize the

log-likelihoods of the latent sequence tokens in an autore-

gressive manner. By doing this, the Transformer can learn

the codebook distribution for any position i within s with

respect to previous codes p(si) = p(si|s<i). For Trans-

former formulations in addition to architectural and training

details, please refer to Appendix B.

By learning the conditional probability of tokens in the

sequence at a given location with respect to all previous to-

kens in the sequence (p(si) = p(si|s<i)), the Transformer

can single out low probability or anomalous tokens during

inference, a key mechanism for the anomaly detection and

token masking pipeline used in this work.

3. Method
3.1. Anomaly Detection with M-estimators

A robust statistics perspective is adopted to account for

anomalies in the training data. An M-estimator, a class of

robust estimator, can be used to estimate the parameters

θ of a model that maximize the log-likelihood function of

the data. Given the objective function for training a trans-

former, the transformer takes the form of our M-estimator

in this scenario. The objective is to learn the distribution

of the latent tokens p(si) = p(si|s<i) by maximizing the

log-likelihood of the training data expressed as:

L(θ) =
N∑
i=1

log p (Zi, θ) (1)

where N represents the number of training examples, Zi is

the quantized latent code for the ith sample, and θ repre-

sents the parameters of the transformer model.

Although traditionally the M-estimator would seek to

minimize the influence of outliers or anomalies in the data,

this cannot be guaranteed in this setting. However, from
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Figure 2. Proposed Iterative Latent Token Masking training pipeline. Training samples are quantized using the trained VQ-VAE’s encoder,

where a trained Transformer replaces anomalous tokens with multiple samplings. After decoding multiple latent codes with dropout, a

KDE anomaly map is generated. This map is then thresholded and downsampled to give a binary mask of the same dimension as the latent

space. These binary masks are then rasterized and used to mask tokens in the next Transformer training (as shown in the green box).

prior research [19] and knowledge of the spatial distri-

bution of anomalies, we can assume that the influence of

outliers will be such that the estimator will still adequately

model the inlier distribution. To improve on this however

we can use a second objective function to identify and re-

move outlier tokens, to improve fitting in the presence of

anomalies.

Letting f(xi
zj , θ) denote the anomaly score for the jth

latent code in the ith image and its corresponding quantized

latent code. This function defines the likelihood or anomaly

level of that token. To do so. we need a robust method for

determining outliers in the training data.

This is inspired by the Robust Kernel Density Estima-

tion (RKDE) [14] approach of combining an M-estimator

approach with Kernel Density Estimation. The work in [14]

states that as the sample mean is sensitive to outliers, we es-

timate the KDE robustly via M-estimation. Inspired by this

work, we employ M-estimation through our trained trans-

former to generate the data to calculate our KDE to calcu-

late the outlierness of latent tokens. As previously stated,

the spatial distribution of anomalies would reduce the influ-

ence of outliers in the training of the Transformer model,

and therefore an M-estimator that is resilient to outliers, to

a certain degree. As such, we believe we can reduce the

influence of outlier tokens by resampling new tokens from

the transformer when faced with low likelihood tokens.

To do so, we generate multiple reconstructions of in-

put images, with low likelihood tokens resampled from the

Transformer.

This is done through the inferred likelihoods that rep-

resent the probability of each token appearing at a certain

position in the sequence with respect to all previous tokens

in the sequence p(si) = p(si|s<i). This can then be used to

single out tokens with low probability, i.e. tokens that might

be anomalous. We can then highlight those with likelihoods

below a given arbitrary threshold to generate a binary re-

sampling mask which indicates anomalous tokens p(si) < t
where t is the resampling threshold. In this work, a value

of 0.005 is used for t based off [19]. Using this resampling

mask, anomalous tokens can be replaced with higher likeli-

hood tokens by resampling from the Transformer. In doing

so, these high-likelihood tokens are more likely to repre-

sent non-anomalous data in the reconstructed image. We

can then reshape the “healed” sequence back into its 2D

or 3D quantized representation to feed back into the VQ-

VAE to generate a non-anomalous reconstruction xr with-

out anomalies. However, instead of generating one recon-

struction, we sample multiple times for each position i with

a likelihood p(si) < t, i.e. below the resampling thresh-

old. In each of these samplings, the Transformer outputs

the likelihood for every possible token at position i. Based

on these probabilities we can create a multinomial distri-

bution showcasing the probability of each token appearing

at position i in the sequence from which we can sample

from. When this is applied over all low-likelihood tokens,

this gives multiple “healed” latent spaces. Each of these

latent values is then fed into the VQ-VAE decoder, where

each is then decoded multiple times with dropout. In doing

so, we get many possible normal realizations of the origi-

nal image. At this point, a KDE is fit independently at each

voxel position in the image to generate an estimate of the

probability density function f . Letting (x1, ..., xn) be the

intensity values at a given voxel position across reconstruc-

tions, we can generate an estimation for the shape of the

density function f for pixel x as:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(2)

where K is a given kernel shape and h is a smoothing band-
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width calculated via the Silverman method [25] as:

h =

(
4σ̂5

3n

)1/5

+ ε (3)

where σ̂ represents the standard deviation across recon-

structions at the given pixel position and ε is a scalar regu-

larisation parameter chosen as 12.75 for the MVTec dataset

and 0.05 for AutoPET based off [19]. From this, we can

then score each voxel position from its estimated density

function at the intensity of the original image at the voxel

level to generate the KDE anomaly map.

For a given voxel position (i, j, k), the KDE-based log-

likelihood score (L) is calculated as:

Lijk = log

[∑ K (xn(i, j, k), x(i, j, k))

h

]
(4)

where K is the kernel function, xn(i, j, k) represents

the pixel intensity of reconstruction n at position (i, j, k),
x(i, j, k) represents the original pixel intensity at position

(i, j, k), and h is the bandwidth parameter. Voxels with log-

likelihood scores below a specified threshold are classified

as outliers. For this work, we used a likelihood of 0.005,

however this value was arbitrarily chosen and has not been

subject to any tuning on separate labelled datasets making

the approach fully unsupervised and self-trained. Further

tuning of this value could generate improved results.

The implementation of the KDE approach in this work

used sampling 60 times for each anomalous token in s.

Then, each of the 60 healed latent representations is de-

coded with dropout five times to yield 300 reconstructions

used to calculate the density functions.

3.2. Iterative Latent Token Masking

Our proposed self-supervised anomaly masking method

consists of an iterative method of training our M-estimator

- the transformer, and using the KDE anomaly detection

method on the training data to create intermediate anomaly

maps to guide the token masking (Figure 2). The method

uses the fact that within the training data we can assume

that the inliers belong to a given distribution independent

and separate from the outliers. We thus want to be able

to train the transformer such that θin+out approximates to

θin with minimal discrepancy, where θ represents the trans-

former model parameters trained on inliers + outliers and

only inliers respectively. Of course this error is still present

and we require a way to move θin+out towards θin. For

this, we use the robust anomaly detection described in sec-

tion 3.1 to highlight suspected anomalies in the training data

and then retrain the model while removing their influence

during training. In doing so and repeating this process over

m iterations, we expect:

lim
m→∞ θin+outm = θin (5)

Of course, retraining a large number of times is both

inefficient and unnecessary, and we can stop the iterative

process once a suitable convergence has been displayed.

Like self-training methods [11, 17], we use an initial train-

ing iteration to generate pseudo labels for the training data.

However, unlike this work in [11] that uses a small sub-

set of labelled date we use the entire anomalous training

dataset in a fully unsupervised way with no labels. Addi-

tionally, these pseudo labels are used to mask or remove

the influence of suspected anomalies in the training data so

that we can emulate a fully unsupervised learning approach

with normal data only – this is opposed to learning from

the pseudo labels directly. We can repeat this process sev-

eral times, where the model can perform better over each

iteration, highlighting and masking anomalies in the train-

ing data to a point where the data is almost entirely void of

anomalies. In contrast to the STKD method in [17] that also

uses no labels, instead of removing anomalous samples en-

tirely from the training set, we simply mask anomalies and

learn from the normal areas in the image, therefore retain-

ing our training data size and making our approach more

robust to higher levels of anomalies - an observed difficulty

presented in the STKD approach.

The core concept behind our approach is token mask-

ing in the Transformer. This concept is not unfamiliar in

that the nature of autoregressive self-attention requires to-

ken masking during training to prevent look-ahead bias of

future values in the sequence [28]. Similarly, masking has

been a common training mechanism in language and gen-

erative modeling for natural images [9, 4]. The approach

from our study more closely resembles the masking used in

autoregressive self-attention as we are trying to remove the

influence of the masked tokens during training.

To do this, we perform anomaly detection on the training

data to generate a KDE map for each training sample and

therefore segmentations of the anomalies in this training

cycle. Using an optimal Transformer resampling threshold

based on [20, 19] and an arbitrary KDE likelihood thresh-

old of 0.005, we can turn our KDE map into a binary seg-

mentation map. This threshold is an arbitrary choice that

has undergone no parameter tuning. Further exploration of

this value is beyond the scope of this work. In doing so,

we can generate a binary segmentation map for each sam-

ple in the training data without using any labelled data. We

can take away from the work in [20, 19] that the spatial

information in the image space directly correlates to the in-

formation held in the latent space. As illustrated in Figure

2, we can downsample each segmentation map to the la-

tent space dimension, giving us a binary mask over the tok-

enized space for the specific training image. This can then

be passed to the Transformer to ignore said token during the

next round of training in addition to the loss calculations.

Given the tokenized sequence s and list of anomalous to-
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kens to be masked smasked the Transformer can now autore-

gressively learn the likelihood for a given code at a given

position i with respect to all previous tokens minus those

that have been masked, i.e. p(si) = p(si|(s<i\smasked<i
)).

Our training objective for the transformer from 1 trained on

the latent representations Z with masks M now becomes:

L(θ∗) =
N∑
i=1

log p (Zi \Mi, θ
∗) (6)

During training, token masking works by assigning a

negative infinity value to masked tokens due to the softmax

step of the attention mechanism. Given our input sequence

s of length l, the dot product of the Key and Query value

gives us a square matrix of shape l × l. For each row or

column corresponding to the position of a masked token,

that entire row and column will take a value of negative in-

finity, which after the softmax function will give a value of

0. This removes the influence of these tokens in the atten-

tion mechanism. Similarly, the cross-entropy loss function

for the Transformer is also adapted to ignore the influence

of the masked tokens. Through these actions, we remove

the influence of these suspected anomalous tokens in pre-

dicting others, in addition to removing their influence on

the learnt probability distributions. Once the Transformer is

trained with masking, the process is repeated with the newly

trained. We repeat this process until we see convergence in

the number of tokens masked in the training data.

This approach relies on an adequate anomaly detection

performance in the first iteration. Given highly anoma-

lous training data however, a higher resampling threshold

may be required to achieve said performance given the

prevalence of anomalies in the training data increasing their

likelihood during inference. This requirement, however,

would be reduced over iterations as our method would mask

anomalies during training. Therefore, we propose a second

method in which the same resampling threshold determined

on the first iteration is reduced by a given percentage over

each iteration. For this work, we arbitrarily chose a reduc-

tion of 12.5% for each iteration from an initial threshold of

0.005. This threshold was chosen using parameters seen in

prior research [20, 19] and has not been subject to further

tuning, albeit we could see further improvements should a

more detailed study on this chosen threshold be conducted.

3.3. Data

AutoPET - 3D Whole-Body PET Dataset: Our pri-

mary medical imaging dataset to showcase the ability of

our model in a scenario where non-anomalous training data

is often difficult to obtain makes use of autoPET - a 3D

whole-body Positron Emission Tomography (PET) dataset

[13, 8]. This dataset consists of 1014 PET scans with 430

healthy scans, with the remaining containing some form of

lung cancer, lymphoma, or melanoma. We create a valida-

tion and testing dataset of 20 and 50 subjects, respectively.

The remaining data is then used to create the training data

where training datasets of 425 subjects with anomalous to

healthy subject ratios ranging from 0% to 100% (a common

scenario in oncology imaging).

MVTec Dataset: For our second experimental dataset

to showcase the use of this work in a wider computer vi-

sion setting, we used the MVTec dataset, a dataset widely

adopted to evaluate anomaly detection methods in indus-

trial imaging settings [3]. As we aim to showcase the effi-

cacy of unsupervised learning approaches when confronted

with anomalous training data, we predominantly used the

test data set to generate our training, validation, and test

sets. The validation and testing datasets have 5 and 20 sam-

ples per category respectively. We then used the remaining

anomalous samples to create our training data. Combined

with the remaining normal samples, through a combination

of under and over-sampling a range of datasets from 0% to

80% anomalous were created. Given the limited anoma-

lous data in the toothbrush and transistor categories, these

were excluded from our study. All images were resized to

256×256 pixels, and the same augmentations as used in the

AutoPET dataset were used minus elastic deformations.

4. Results and Discussion
We conduct our experiments on the hold-out testing set

of 20 samples per category of the MVTec dataset and 50

samples for the PET data. For evaluation metrics, we report

the pixel/voxel-wise area under the per-region overlap curve

(AUPRO) and the pixel/voxel-wise area under the receiver

operating characteristic curve (AUROC) in addition to the

best achievable DICE score, obtained using a greedy search

for thresholding the residual/density score map. Anomaly

detection is run using the same method and transformer re-

sampling threshold as described in section 3.1.

4.1. Experiment 1: Anomaly Detection over Train-
ing Iterations

In the first experiment, we aim to showcase the improve-

ment in model performance over iterations of the proposed

training scheme. We also investigate the Transformer re-

sampling threshold used in the anomaly detection method.

As described in Section 3.2, we run two models, one with a

fixed and one with a decreasing resampling threshold. This

is run on the training dataset with 80% and 100% anoma-

lous data for MVTec and PET, respectively. The results over

the training iterations are in Figure 3. The stopping criterion

was based on the number of tokens categorised as anoma-

lous at each iteration. The stopping criteria was hit when

this number was within 1% of the previous iteration. Test-

ing at each iteration was not performed until this stopping

criterion was met and all training had finished.
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Figure 3. Anomaly Detection Performance of our proposed method over training cycles for the MVTec data (left) and PET data (right).

Results showcase performance using a constant Transformer latent token resampling threshold (red) and a decreasing threshold over

iterations (blue)

Figure 4. Anomaly Detection Performance of our proposed methods along with state-of-the-art models for comparison showing change in

AUROC and AUPRO with varying levels of anomalous training data.

These results show the impact of reducing the thresh-

old, although more evident in the MVTec data. This indi-

cates the trade-off between the detection rate and the false

positive rate. During initial iterations, a higher resampling

threshold is preferred to detect anomalies and remove their

influence in future iterations. As iterations are completed,

the influence of said anomalies is masked, and the require-

ment for a higher resampling threshold is reduced. By re-

ducing this threshold, the model can reduce false positives

and masking of non-anomalous tokens, allowing the Trans-

former to train better with more refined masking. Given this

improvement, this method is used in Experiment 2.

4.2. Experiment 2: Anomaly Detection with Vary-
ing Anomalous Training Data

The second experiment explores the effect of the pro-

portion of training data containing anomalies on model per-

formance. We use cases up to 80% anomalous in MVTec

to rigorously stress test our method. Additionally, we use

cases up to 100% anomalous for AutoPET given the high

possibility of these levels in a medical imaging environ-

ment. To showcase the efficacy of our approach, we se-

lect several state-of-the-art models to compare results with.

This includes a Dense AE and Dense VAE [2, 1] from

an unsupervised reconstruction-only approach in addition

to CutPaste [16] and NSA [24] from self-supervised

work. We also compare our work to that of STKD a self-

trained method that showed state-of-the-art performance

when trained on anomalous training data [17]. Addition-

ally, we compare our approach to that of the same model

without ILTM for training, as proposed in [19], to highlight

the added contribution of the token masking methodology.

Figure 4 shows a consistent story across the baseline

models. From the unsupervised reconstruction-based mod-

els, we see significant reductions in performance as anoma-

lous training increases. This is brought about by the model’s

ability to reconstruct anomalies seen during training, visu-

alised in both Figure 6 and Figure 5. For NSA and Cut-

Paste, the story is more telling. The initial performance

of NSA at 0% anomalous training performs better than our

method on both the PET and industrial data. However, as

the anomalous training percentage increases, their perfor-

mance significantly reduces, falling below our approach’s

performance at only 20% contamination. This is likely be-

cause the model learns to detect synthetic anomalies while

treating real ones as normal. As such, we see a reduction

in performance, such that our method outperforms NSA by

9.5 AUROC and 16 AUPRO on MVTec and 17 AUROC and

14.2 on PET data for the highest contamination levels. Sim-

ilarly with STKD, although an improvement on CutPaste,

performance still greatly deteriorates as much as 9 AUROC

from just 0-40% anomalous data in comparison to a reduc-

tion of 1.5 AUROC in our proposed method. For STKD this

becomes worse as the levels of anomalies increase. This

is likely due to the method removing anomalous samples

limiting the training data available - this is opposed to our

method, which does not remove anomalous samples but in-

stead removes the influence of anomalous areas in a sample

and still learns from the normal areas. Our approach using

iterative training with token masking showcases a superior

performance as the amount of anomalous training data in-

creases. With anomaly contamination as low as 20%, our

approach shows the best performance, with the gap only in-

creasing as the anomalous ratio increases. We can see from
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Figure 5. Rows from top to bottom display (1st) input image; (2nd) ground truth segmentation; (3rd) anomaly map as the residual for the

AE, (4th) VAE; (5th) abnormality map output for NSA, (6th) STKD; (7th) abnormality map as a KDE using our self-supervised training

approach. Results are provided for 5 random samples from the PET dataset

Table 1. Anomaly detection results of the proposed method in comparison to baseline comparisons. For each dataset, AUROC (top row),

AUPRO (middle row) and DICE (bottom row) are given along with the respective standard deviation. Best-performing methods are

highlighted in boldface.

AE [1] VAE [1] CutPaste [16] NSA [24] STKD [17] VQ-VAE + Transformer [19] ILTM

MVTec

59.3 65.4 72.2 79.6 76.1 82.7 89.1
30.9 37.3 54.8 66.8 67.1 74.3 82.8
24.3 26.4 32.7 38.5 39.0 58.7 65.2

AutoPET

66.5 76.1 63.9 75.6 78.7 85.7 92.6
63.7 70.5 32.8 74.8 76.4 82.1 89.0
41.1 43.5 38.4 44.8 46.2 59.6 68.3

Figure 4 that at the highest levels of contamination, there

is little reduction in performance with less than a 2.5 and

3.7 reductions in AUROC and AUPRO for both datasets.

Qualitatively Figure 5 shows limited issues with detection.

Furthermore, a breakdown of each model’s performance

with training data that is 80% anomalous for MVTec and

100% anomalous for PET can be seen in Table 1. A full

breakdown by category and further qualitative results for

the MVTec dataset can be seen in C.

5. Conclusion

In this study, we propose a training mechanism for

anomaly detection with training data heavily contami-

nated with anomalous samples. Using a Transformer-based

anomaly detection approach with KDE anomaly maps, we

utilise the token masking capabilities of Transformers to

mask out anomalous data during training iterations, gen-

erating a method whose performance is highly unaffected

by the presence of anomalous training data. The pro-

posed methods showcase significantly improved perfor-

mances over current state-of-the-art models in self-trained,

self-supervised and fully unsupervised approaches, some of

which even showcase greater performance when trained on

normal data alone. We hope that this work can be used to

alleviate data restrictions on training data. This can be im-

portant in fields like medical imaging where data can be

prone to have many anomalies, or even to alleviate the need

to check and screen training data to ensure only normal data

is used. In doing so, we can increase the potential size of

data at our disposal when used for training without added

data processing time. We hope this work will inspire further

investigation into anomaly detection without normal data,

further expanding on this rarely explored field.
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