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Abstract

Accurate identification of the etiology of acute ischemic
stroke is crucial to prevent secondary strokes. With the
growing utilization of endovascular thrombectomy as a
treatment for acute ischemic stroke, there has been an in-
creased interest in analyzing the removed clot tissue, open-
ing possibilities for developing histology-based automated
diagnostic methods for clot etiology prediction. In this pa-
per, we propose an automated pipeline for Pathology-Based
Ischemic Stroke Etiology Classification via Clot Composi-
tion Guided Multiple Instance Learning, that leverages the
heterogeneity of the main clot components, specifically red
blood cells (RBCs) and fibrin, to predict clot etiology solely
using digital pathology data. We combine a publicly avail-
able dataset from 11 different medical Centers with a pri-
vate dataset from the University of California, Los Ange-
les (UCLA). We train the model using center-wise leave-
one-out cross-validation to create a model that can gen-
eralize to all 12 Centers. Additionally, we compare three
different self-supervised methods for embedding the histol-
ogy data from whole slide images (WSIs) for a downstream
task and found that combining two feature sets results in the
best performance for our dataset. Our solution resulted in
0.762±0.141 AUC and 0.869±0.139 PRAUC for differen-
tiation between large-artery atherosclerosis and cardioem-
bolic clot etiology. These results hint at the potential to
construct a generalizable model for clot etiology prediction.
Such a model could assist in treatment planning, thereby
helping reduce the likelihood of recurrent strokes.

*Mara Pleasure and Ekaterina Redekop contributed equally.

1. Introduction
In 2019, Stroke was the second leading cause of death

worldwide, and based on a study by Pu et al., global stroke

prevalence is projected to increase by the year 2030 [18,

35]. 87% of strokes are ischemic strokes, caused by a

thrombus obstructing blood flow to the brain [38, 10, 27].

Treatment for ischemic stroke aims to restore cerebral blood

flow and primarily centers on thrombolysis and endovascu-

lar thrombectomy (EVT) [38, 10]. EVT has a high success

rate and is optimal for recanalization in patients with large

vessel occlusion [10]. The TOAST (Trial of Org 10172 in

Acute Stroke Treatment) score currently assigns ischemic

stroke etiology using clinical variables and imaging results

from CT/MRI, cardiac imaging, and laboratory results fol-

lowing EVT treatment [1]. Understanding clot etiology is

critical for treatment planning and prevention of recurrent

stroke. For instance, cardioembolic (CE) stroke patients are

at higher risk of recurrent stroke compared to patients with

large-artery atherosclerosis (LAA) or other etiologies [1].

Secondary prevention for stroke patients varies depend-

ing on etiology, highlighting the importance of accurate

etiological identification [5]. Typically, patients with a

CE stroke will be prescribed anticoagulants, especially

if they have concurrent atrial fibrillation, while patients

with LAA etiology will be prescribed antiplatelet thera-

pies [5, 25, 16, 37]. The TOAST classification scheme

provides a framework for determining stroke etiology but

still has drawbacks [39]. Prevalent criticisms are the num-

ber of patients classified as undetermined etiology under

the TOAST schema or that it is outdated with current CT

standards [39]. Following EVT, histopathological analy-

sis of thrombi can be performed to determine clot compo-

sition; however, there is currently no standard method for

the analysis of clots. To enhance the understanding of how
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clot composition impacts patient outcomes, correlating eti-

ology determined by TOAST scores to clot composition

would be beneficial, allowing for automated histopatho-

logical analysis pipelines to be built. Prior research indi-

cates that thrombi extracted with EVT have a mixture of

red blood cells (RBCs), platelets, fibrin, and white blood

cells (WBCs) [38]. LAA thrombi have been characterized

as having a higher proportion of RBCs than fibrin [7, 22].

In contrast, CE thrombi tend to be enriched in fibrin [7, 22].

However, clot components such as platelets have not shown

to be significantly different between LAA and CE clots

[22]. For this reason, we choose to focus on using fibrin and

RBC content in each clot. An automated approach capable

of defining clot composition could act as a corroborative

tool for the TOAST score or assist in discerning previously

indeterminate etiologies.

Despite the divergent compositions between different

etiological categories identified by existing research, there

is currently a dearth of automated methods for the analysis

of clots removed with EVT. We propose the development of

an automated digital pathology and unbiased pipeline that

could be used to determine stroke etiology and provide in-

sight into what regions of the thrombi within whole slide

images (WSIs) are indicative of clot etiology.

1.1. Prior Work

Removed tissue or clot can be fixed and stained, com-

monly with hematoxylin & eosin (H&E), Martius Scar-

let Blue (MSB), or von Willebrand Factor immunostain-

ing (VWF), for subsequent histopathological analysis. Tra-

ditionally, this analysis occurs by a pathologist via mi-

croscope using glass slides; however, WSI scanners have

allowed digitized tissue sections at gigapixel resolution.

Leveraging WSIs, computer-assisted diagnostic (CAD)

platforms can be developed for various tasks, including

ischemic clot etiology prediction. WSIs are large high-

resolution images with rich detail for mining textural fea-

tures. However, due to their size, WSIs cannot be directly

inputted into a machine-learning model, necessitating fea-

ture extraction or patching techniques.

Brinjikji et al. used a computer software system named

Orbit to quantify the RBC and fibrin content in 1350 clot

WSIs stained with H&E and MSB [8]. Using an ensem-

ble of classifiers, including logistic regression, gradient-

boosted trees, neural networks, and random forests to clas-

sify stroke etiology based on these quantified measure-

ments, they attain an area under the receiver operating char-

acteristic (AUROC) of 0.55 [8]. Patel et al. achieved higher

performance for predicting clot etiology by extracting 227

engineered histomic and WBC nuclear features from 53

H&E-stained clot WSIs, reaching an AUROC of 0.87; how-

ever, this dataset is small and from only one Center [33].

Since clots extracted via EVT are still not routinely ana-

lyzed by histopathologists, we believe there could be a ben-

efit in using deep features instead of hand-crafted features

for predicting etiology from clot WSIs. Deep features re-

quire less prior knowledge and manual preprocessing, and

since it is currently unknown precisely what signal is useful

in the WSI for predicting etiology, it can be helpful to train

a deep learning model to discern the salient areas.

Due to the large size of WSIs, methods such as down-

sampling and patching are employed to facilitate the train-

ing of deep-learning models. Down-sampling, however,

can reduce the information in the image significantly, mak-

ing it a suboptimal method for this data format. On the

other hand, patching preserves the richness of information

in the WSI image while making it a manageable size for a

deep learning model. When patching, the assignment of la-

bels needs to be thoughtfully considered based on the task’s

goals. Annotations for regions of interest in WSIs are ex-

pensive and time-consuming to collect, meaning these im-

ages usually have only slide or patient-level labels. Upon

tiling, tiles can be assigned the slide-level label, even if that

tile might not have any information indicative of that label.

An alternate method for handling tile labels from WSIs is

Multiple Instance Learning (MIL), which uses the global

label as a weak local label by assigning the patches to a

bag with a bag-level label [9]. This can be helpful when

pixel-level annotations are unavailable because it can be un-

clear what patches indicate the slide-level label, resulting

in noisy labels if each patch is assigned the slide-level la-

bel [31]. In the MIL framework, images are first patched

into smaller tiles and collected into a ‘bag’ where each ‘bag’

is assigned the slide level label. This ‘bag’ is fed through

a deep-learning model, and each tile is assigned a score.

Attention-MIL, a method developed by Ilse et al., imple-

ments a neural network method to pool the tile-level scores

into a bag-level score resulting in a prediction for the whole

slide [23]. This method can be interpreted as an attention

mechanism that provides attention scores for each patch

corresponding to the relative value that the patch had in the

bag-level score. The size of the bags can pose memory-

related challenges. To circumvent these issues, strategies

aimed at reducing dimensionality, such as sampling or em-

bedding, can be used to fit the entire bag within memory.

We believe deep features could be helpful in stroke etiology

prediction from WSIs since they require little prior knowl-

edge about what types of structural features may provide

meaningful insights.

Training a deep feature embedding module with a MIL

module end-to-end is possible. However, sufficient data

is needed to ensure this feature embedding module can

capture informative features from each tile. Alternatively,

frozen pre-trained models can extract deep features to feed

through the MIL module. Usually, these pre-trained mod-

els can be supervised ResNet models trained on out-of-
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domain data such as ImageNet [20, 31]. However, rely-

ing on pre-trained models using supervised tasks can re-

sult in an embedding space that is less generalizable to di-

verse downstream tasks since the model is trained to ex-

tract features for a specific task [32]. Additionally, obtain-

ing pixel-level labels for large histopathology datasets can

be expensive due to the expertise required, unsupervised

pre-training methods can circumvent this issue. Inspired

by natural language processing methods, unsupervised pre-

training is an alternative method that can garner general fea-

tures using methods such as contrastive learning on large

unlabeled datasets [14]. The primary objective of unsuper-

vised contrastive learning models is to learn an embedding

to encode the shared information between the higher dimen-

sional signal in the data while reducing the dimensionality

and discarding less informative signals [32]. Contrastive

learning combined with MIL was successfully applied by

Li et al., who pre-trained SimCLR, (a simple framework for

contrastive learning of visual representations) on the Came-

lyon16 dataset to create an unsupervised model to embed

patches for a dual-stream MIL model for the prediction of

cancer on a WSI [28].

In this paper, we propose a novel contrastive learning

pre-training pipeline with RBC and fibrin guidance for WSI

classification of stroke etiology. Using clots extracted with

EVT and stained with MSB, we compare and combine

three different contrastive learning methods – SimCLR,

Momentum Contrast (MoCo), and knowledge distillation

with no labels (DINO) to extract embeddings for each bag

of patches which are then concatenated. Additionally, we

incorporate a guidance module using RBC and fibrin masks.

Our goal is to aid the model in prioritizing particularly in-

formative patches for the specific etiology. These are then

processed through an Attention-MIL model. The main con-

tributions of this paper are:

• Development of a novel CAD pipeline that leverages

RBC and fibrin guidance to predict clot etiology using

WSIs.

• A comprehensive comparison of contrastive learning

methods for extraction of informative features from

clot WSIs

• A training implementation to create a model that can

generalize to data from 12 different medical Centers.

2. Materials and Methods
Mayo Clinic organized the Stroke Thromboembolism

Registry of Imaging and Pathology (STRIP) AI challenge

to find an algorithmic solution to classify ischemic stroke

etiology using thrombi WSIs [3]. WSIs were collected via

a large multicenter project led by Mayo Clinic Neurovascu-

lar Lab. Each WSI was assigned one of the two major is-

chemic stroke etiology subtypes: CE and LAA. The assign-

ment was performed at each center individually using the

TOAST criterion, which does not use pathology data [8].

Various approaches were developed to solve the task and

presented during the challenge, but many of them struggled

from time and memory constraints due to a challenge for-

mat. In this work, we develop a novel framework, which

we compare to the solution with the best result in the chal-

lenge (see Section 2.4) on the private dataset from the Kag-

gle leaderboard.

2.1. Dataset

In this work, we use the public STRIP AI Challenge

dataset in combination with a private dataset from UCLA

to automatically predict clot etiology [8]. We use digi-

tized pathology slides of the thrombotic material extracted

mechanically during acute neurovascular procedures. We

also use self-supervised learning to create a rich embed-

ding of our WSIs. The contrastive learning methods used

in this paper for self-supervised training operate on patches

and require a large number to learn deep histological fea-

tures before they can be effectively applied to classification

tasks. To make sure there is no information leakage from

the self-supervised model, it must be pre-trained either on

the training subset or a separate histological dataset. 12-

fold cross-validation experiment setting used in this study

(see Section 2.3) makes it challenging to pre-train 12 sep-

arate models for 12 different training subsets. Therefore,

we used a separate dataset of histological scans of lymph

nodes (Camelyon16) to pre-train the three contrastive learn-

ing models.

2.1.1 Mayo Clinic - STRIP AI challenge Dataset

The STRIP dataset comprises 754 whole slide images

(WSIs) from 632 patients. Clot material was initially col-

lected from 11 different medical Centers and then shipped

to a central core laboratory for standard tissue processing,

including MSB staining and scanning [8]. The dataset is

publicly available from the challenge website [8, 3]. The

clot etiologies were categorized as either CE or LAA us-

ing TOAST criteria and self-reported from each Center [8].

The center-wise distribution of the number of samples from

each category is presented in Table 1.

2.1.2 UCLA Dataset

The dataset consists of 19 MSB-stained WSIs collected

from 19 patients and scanned at 40x magnification at

UCLA. The distribution of etiologies in this private dataset

are 16 CE and 3 LAA cases. The UCLA dataset was used

as a 12th Center in combination with the challenge dataset.
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Center 1 2 3 4 5 6 7 8 9 10 11 UCLA

CE 44 26 22 88 29 24 70 14 14 37 179 16

LAA 10 3 27 26 9 14 29 2 2 7 78 3
Table 1. Per-Center distribution of CE and LAA clots.

�

�

�

�

Figure 1. Example of the blood clot WSI from the STRIP AI chal-

lenge dataset. a) original WSI thumbnail from Center 11; b) over-

lay thumbnail with RBC mask (red) and fibrin mask (blue). c)

Original WSI thumbnail from Center 4; d) overlay of RBC mask

(red), and fibrin mask (blue).

2.1.3 Camelyeon16 Dataset

The data from the Camelyon16 challenge contains 400

whole-slide images (WSIs) of sentinel lymph nodes. The

data is stained with H&E and scanned at 40x magnification

in two different medical Centers and is publicly available

via the challenge website [6].

2.1.4 Preprocessing

First, WSIs were preprocessed to remove the background

using thresholding of the thumbnail extracted at the lowest

magnification stored in the .tiff pyramid to produce tissue

masks. Tissue masks were then refined by applying vari-

ous morphological operations to fill small gaps and remove

noise. As a single magnification level was available for all

slides from the STRIP AI challenge dataset, this unknown

magnification was used to extract patches of 256x256 from

the grid with 0 overlap. Patches were discarded from the

analysis if they contained less than 50% of the tissue.

To obtain patch-based RBC and fibrin content values

for training our proposed framework, each patch was trans-

formed into HSV color space, and a threshold was applied

using the hue channels. Morphological closing was used

to fill small gaps and remove noise. To ensure consistent

thresholding results in the presence of staining variations

across different Centers, the Reinhard stain normalization

technique was applied to every patch before finding the op-

timal threshold [36]. An example of the segmentation result

is shown in Figure 1.

2.2. Methods

2.2.1 Our Pipeline

As discussed in Section 1.1, training neural networks di-

rectly using WSIs is not feasible due to their size, and there-

fore slides are usually divided into smaller patches. Many

baseline solutions are patch-based neural networks that em-

ploy patch-based label assignments and use mean average

pooling across patch predictions during evaluation. How-

ever, the effectiveness of these approaches can be limited

since only specific regions of the input image are typically

informative for the slide-level label. Therefore, we for-

mulated the clot etiology classification problem using the

attention-based MIL framework [23]. The whole image is a

set (or ‘bag’) of instances with a single classification label

corresponding to the entire bag. The relative contribution

of instances for the final prediction is then learned through

a trainable attention module.

Because many instances are extracted from a single im-

age, using raw image patches to perform classification is

computationally intensive. Instead, we used pre-trained

models as encoders to extract a low-dimensional set of

features for every bag of patches in the dataset (see Sec-

tion 2.2.2). A fully connected neural network is then used

to tune these features to stroke-histology-specific represen-

tations, which serve as input to the attention module. As the

composition of the clot could provide valuable insight into

the underlying etiology, we develop a novel approach that

introduces prior knowledge about the clot composition to

the attention module. The overview of the proposed frame-

work is shown in Figure 2. The feature representations ob-

tained from transfer learning underwent two distinct, fully

connected neural networks. One network was responsi-

ble for fine-tuning the features toward RBC representations,

while the other focused on fibrin representations. After the

fully connected layers, separate attention modules were ap-

plied. The output attention vector was subsequently com-

bined with another vector, where each value represented the

percentage of the patch occupied by either RBC or fibrin.

2.2.2 Contrastive Learning

Self-supervised learning was used to extract low-

dimensional discriminative features from raw image

patches by learning from a large scale of unlabeled data.

Contrastive-based self-supervised learning approaches

are commonly used without the limitation of model ar-

chitecture [2]. In this work, three different frameworks
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Figure 2. Overview of our proposed framework. The model consists of two separate stages: initial pre-training of the contrastive learning

framework on a separate digital pathology dataset, and then training of the attention-based multiple instance framework with biological

guidance.

were compared to study the application of contrastive

learning to the novel field of stroke pathology and find

the approach that leads to the best performance in stroke

etiology classification tasks. The SimCLR approach uses

various image transformations like random cropping,

random flipping, color jittering, and others to form positive

and negative pairs. Negative pairs were formed by applying

transformations to different patches within one batch [13].

The quality of the resulting representations highly depends

on the number of negative pairs used during training,

which requires larger batch sizes and, therefore, larger

computational resources. MoCo was developed to provide

an alternative approach for generating negative samples.

It introduces a momentum design to maintain a queue of

negative samples, so they are not limited to views from

the same batch enabling a smaller training batch size [21].

Vision transformers [17] were adapted to contrastive

pre-training after they showed improved performance in

supervised vision tasks compared to CNNs. DINO is a

framework built based on the idea that aligning positive

pairs alone is sufficient to perform well in self-supervised

visual learning [12].

2.3. Implementation Details

Site-to-site variability in the interpretation and imple-

mentation of the TOAST criteria may result in noise in the

training labels [8]. To account for the noise, we utilized a

center-wise cross-validation strategy to find the best model

setting that will be well-generalizable across different med-

ical Centers. In this setting, 11 Centers were used for train-

ing, while the 12th Center was held for validation.

The Camelyon16 dataset was the basis for contrastive

pre-training. This dataset has gained significant popular-

ity across various applications and has demonstrated strong

performance in numerous downstream tasks [24, 26, 15].

SimCLR requires large computational resources to achieve

the best performance in learning representations. In this

study, we leveraged the pre-trained weights of the Sim-

CLR model trained on the publicly available Camelyon16

dataset [28]. We pre-trained the MoCo and DINO mod-

els on Camelyon16 for two weeks on 4 Quadro RTS 800s

GPUs and 4 Tesla V100-SXM2 GPUs, respectively.

To account for label imbalance (see Table 1), we used

focal loss to address the class imbalance and mitigate the

potential of the model being biased toward the dominant

class [29]. The parameters of the loss function were fixed

for all experiments alpha set to 0.8 and gamma set to 2.0.

Three different contrastive learning techniques were pre-

trained in a self-supervised manner using the Camelyon16

dataset. The pre-trained models were then used to generate

deep representations for patches extracted from clot WSIs.

Due to the differences in the architectural design of under-

lying DNNs, the sizes of the representations varied depend-

ing on the utilized method. SimCLR, MoCo, and DINO

resulted in 512, 1000, and 384 feature vectors, respectively.

In this work, we compare the performance of the classifica-
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tion model trained based on either individual feature vectors

or various combinations of them using concatenation. The

initial learning rate was set at 1e-3 and was decreased us-

ing the cosine annealing scheduling strategy. We used the

Adam optimizer and a batch size of one.

2.4. Comparison Methods

Since this dataset originates from Kaggle, we wanted to

compare our method to the winning solution on the leader-

board. The winning solution is an ensemble model based

on CoaT [40] and Swin-Large [30] models that assign the

slide level label to each patch. The preprocessing steps in-

cluded subsampling each slide’s total number of patches to

the top 16 darkest patches. To compare the top leaderboard

model to ours, we trained the CoaT and SWIN-Large mod-

els with the same experimental setup as ours regarding the

12 folds hold-out center cross-validation. The training code

and model weights for this model were not provided in the

Kaggle submission, so we utilized the resources publicly

released by the authors of the original Swin implementa-

tion [30]. Additionally, a pre-training step with MoCo

contrastive learning was also specified in the winning so-

lution’s submission; we pre-trained on Camelyon16 to pro-

vide a balanced comparison.

2.5. Evaluation metrics

As the hold-out set in every fold is imbalanced towards

the ‘CE’ etiology class (see Table 1) except for Center 3,

we utilized metrics that are not biased towards the major-

ity class, specifically AUROC and AP computed from ROC

and precision and recall (PR) curves, sensitivity, and speci-

ficity.

3. Results
3.1. Comparison of Contrastive Learning Methods

Table 2 shows AUROC, Sensitivity, Specificity, and

PRAUC across all 12 folds with standard deviation. The

model that combined MoCo + DINO features had the high-

est AUROC of 0.762 and the highest specificity of 0.757.

The combination of MoCo + SimCLR features had the

highest PRAUC of 0.871. There was no clear standout

across the models, however, when looking at all four met-

rics, MoCo + DINO scored the highest in AUROC and

specificity, so it was chosen for the remaining experiments.

Surprisingly, the combination of all three feature sets re-

sulted in the lowest performance in terms of AUROC and

specificity but had a high sensitivity.

Table 3 breaks down the performance of our model

trained on MoCo + DINO features per Center. The model

performed the best on the UCLA dataset with an AUROC

of 1.0, with the next best performance on Center 9 with an

AUROC of 0.928. Overall, the model performed very well

on 7 out of the 12 Centers with an AUROC in the 0.7 or

higher range, and PRAUC in the 0.8 or higher range. The

Center with the lowest performance, Center 3, is the only

Center with more LAA to CE cases. It is possible that the

model did not generalize to a different label distribution and

had a poorer AUROC performance due to this difference.

This wide range in performance explains the large standard

deviation values for each testing metric.

3.2. Ablation study and Results of Comparison
Methods

Given the prior findings of LAA clots having higher

RBC content and CE clots having higher fibrin content

(see Section 1.1), we sought to measure model perfor-

mance without fibrin and RBC attention guidance. We ran

the same feature combination experiments with feature sets

from SimCLR, MoCo, and DINO; however, we used a sim-

pler single attention module that has no prior guidance for

RBC or fibrin. The best performance in our ablation study

was an AUROC 0.739 (0.139) and a PRAUC of 0.86 (0.138)

for the MoCo + DINO feature set model. The addition of

a targeted attention module seems to help our full model

attend to relevant regions in the WSI that could be infor-

mative of the label instead of relying on the model training

attentions with no guidance from fibrin or RBC. The top

leaderboard model on Kaggle did not perform as well as

our models on this training setup, achieving an AUROC of

0.605 (0.139) and a PRAUC of (0.618, 0.0613). It is possi-

ble the model had issues with generalizing to unseen data;

however, a complete comparison cannot be done since we

do not have access to the exact training code.

4. Discussion
In this paper, we developed a novel framework that was

trained on clots removed by endovascular thrombectomy

(EVT) from 12 different medical Centers. One of the chal-

lenges of this task is that ground truth etiology labels were

determined at each site by the TOAST score method, which

does not utilize stroke histology [8]. As no documented

clinical standard for pathological features predicts clot eti-

ology, the interpretability of the model performance is an

essential part of our analysis. Figure 3 shows the per-patch

attention weights for the BRAISE model and the ablation

model trained on MoCo + DINO features. The redder the

patch, the more the model used that patch to inform its pre-

diction. There is a noticeable difference in how the atten-

tion is localized between the two models. Earlier studies

have demonstrated that LAA clots exhibit higher levels of

textural heterogeneity, characterized by a predominance of

RBC [33]. A statistically significant difference in RBC den-

sity between LAA and CE clots was also shown in the study

performed by Brinjikji et al. [8]. As shown in Figure 3, our

model has high attention on RBC regions in both the CE
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Pre-training Method AUROC (std) Sensitivity (std) Specificity (std) PRAUC(std)

MoCo 0.715 (0.130) 0.853 (0.171) 0.556 (0.237) 0.867 (0.117)

SimCLR 0.694 (0.149) 0.799 (0.165) 0.626 (0.220) 0.851 (0.113)

DINO 0.679 (0.095) 0.768 (0.212) 0.621 (0.185) 0.840 (0.149)

MoCo + SimCLR 0.716 (0.103) 0.748 (0.239 0.701 (0.111) 0.871 (0.121)
DINO + SimCLR 0.706 (0.112) 0.750 (0.220) 0.659 (0.109) 0.870 (0.092

MoCo + DINO 0.762 (0.141) 0.745 (0.220) 0.757 (0.119) 0.869 (0.139)

MoCo + DINO + SimCLR 0.646 (0.105) 0.892 (0.138) 0.412 (0.225) 0.845 (0.118)
Table 2. Comparison of three contrastive learning methods across our four-test metrics, AUROC, Sensitivity, Specificity, and PRAUC.

Center 1 2 3 4 5 6 7 8 9 10 11 UCLA

AUROC 0.805 0.884 0.554 0.587 0.724 0.723 0.691 0.923 0.928 0.737 0.590 1.0

Sensitivity 0.8 1.0 0.653 0.423 0.555 0.428 0.724 1.0 1.0 0.857 0.506 1.0

Specificity 0.75 0.807 0.545 0.761 0.827 0.916 0.671 0.846 0.785 0.567 0.6666 0.937

PRAUC 0.950 0.986 0.492 0.821 0.854 0.808 0.854 0.989 0.989 0.934 0.754 1.0
Table 3. Comparison of performance of MoCo + DINO model across the four test metrics AUROC, Sensitivity, Specificity, and PRAUC

for each Center.

and LAA clots. The model may focus on the amount and

pattern of the RBCs in the clots to differentiate between CE

and LAA clots. Both CE and LAA clots should have RBCs,

but the amount and arrangement with fibrin could be infor-

mative to the model. The ablation model has a more scat-

tered signal; for example, in the CE thrombus, the attention

map shows a mixture of red patches in the top right tissue.

In contrast, our model localizes on a few clot pieces with

higher RBCs. Surprisingly, our model localizes to RBCs

not only on LAA thrombi but also on CE clots.

Since the data spanned 12 different Centers, we observed

a stark difference between many slides regarding color sat-

uration due to staining protocol and scanning. We applied

TorchStain [4] to perform stain normalization as a prepro-

cessing step but failed to observe any performance improve-

ment so we omitted it in our final model pipeline.

One of the goals of this work was to develop a solu-

tion that would be generalizable across different Centers.

A Center-based cross-validation training strategy was uti-

lized to account for differences in the data provided by dif-

ferent Centers. However, different medical Centers could

have widely varying proportions of CE to LAA clots, as ob-

served in Center 3. Overall, there was a strong imbalance in

the data of CE to LAA. One method we used to address this

was weighted sampling. Based on the final pipeline results,

we believe that training a model with one Center hold-out

cross-validation and ensembling can allow for a model that

generalizes to unseen centers, an approach we plan to fur-

ther validate on new unseen Centers.

Analyzing per-Center metric values, we noticed a high

variance of AUROC. We assume that some Centers may

perform worse due to inter-site variability in the interpreta-

tion and implementation of the TOAST. Noisy labels in the

dataset could potentially explain the performance drop for

Centers 3 and 4. We believe training our pipeline on a large

dataset from one Center may help support this statement.

One of the limitations of the public dataset is that no

magnification or resolution information is provided for the

STRIP AI challenge dataset. Magnification information is

particularly important when a separate dataset is used to

pre-train a self-supervised learning framework. Learned

deep representations can potentially contain resolution-

dependent tissue properties. Consequently, the features ex-

tracted from the main dataset using pre-trained encoders

may be inaccurate, leading to overall lower performance.

The Camelyon16 dataset extracted at 20x magnification was

used to pre-train all semi-supervised learning frameworks.

The UCLA dataset was originally scanned at 40x magni-

fication; however, the manual assessment revealed that us-

ing a 5x resolution is necessary to align with the quality of

the STRIP AI challenge dataset. Another limitation of this

dataset is a selection bias to clots that are more amenable

to removal with EVT, and our dataset could potentially be

more imbalanced towards CE due to this selection bias. One

method to address this would be to pull more data from

different Centers and to investigate if the larger number

of CE clots in the dataset is due to population patterns or

just a data selection bias in this dataset. Another limita-

tion of the dataset is that it only focuses on clots labeled

as CE and LAA, however, there are other possible clot eti-

ologies such as cryptogenic. Future implementations of our

pipeline could be trained on datasets with additional clot

etiologies to improve the relevancy of our pipeline to other

populations.

The limitations of our method primarily stem from the

assumptions inherent to our MIL model. When patching

WSIs into 256 x 256 images, we risk overlooking the larger

spatial information of the WSI and could potentially be los-

ing important architectural features of the clot [31]. In the

future, we could incorporate a positional encoding module
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Figure 3. WSIs overlaid with attention maps generated from the attention module of our pipeline for WSIs from Center 11 and Center 7.

Attention weights learned by RBC and fibrin branches were averaged to get the final attention value for each patch. The second row shows

the results of our final model; the third row shows the results of the ablation model trained without biological guidance. The first two

columns correspond to WSIs having LAA stroke etiology from Centers 11 and 7, while the last two columns correspond to WSIs having

CE etiology both from Centers 11.

into our pipeline to record patch relationships. Memory-

saving methods for WSIs such as streaming convolutional

methods that use gradient checkpointing [34] should be

considered in the future step to enable a larger look at the

clot WSI without the need for downsampling or patching.

Another limitation of MIL models, in general, is the as-

sumption that patches are independent and identically dis-

tributed [19, 11]. In reality, patches from the same WSI

often share certain characteristics, such as contrast and

staining, suggesting a degree of correlation and similar-

ity [19, 11].

5. Conclusions
This work is the first to develop a fibrin/RBC guided

histology-based blood clot etiology prediction method. By

combining contrastive learning and fibrin/RBC guidance we

have developed a model that can generalize to unseen data

and localize attentions to regions that are predictive in the

clot WSIs. Through comprehensive validation, the devel-

oped solution has the potential to revolutionize personalized

stroke care and enhance secondary prevention strategies.
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[11] Marc-André Carbonneau, Veronika Cheplygina, Eric

Granger, and Ghyslain Gagnon. Multiple instance learning:

A survey of problem characteristics and applications.

Pattern Recognition, 77:329–353, 2018.

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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