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Abstract

This paper investigates the potential usage of large text-
to-image (LTI) models for the automated diagnosis of a few
skin conditions with rarity or a severe lack of annotated
datasets. As the input to the LTI model, we provide the tar-
geted instantiation of a generic but succinct prompt structure
designed upon careful observations of the conditional narra-
tives from the standard medical textbooks. In this regard, we
pave the path to utilizing accessible textbook descriptions for
automated diagnosis of conditions with data scarcity through
the lens of LTI models. Experiments show the efficacy of
the proposed framework, including much better localization
of the infected regions. Moreover, it has the immense pos-
sibility for generalization across the medical sub-domains
to mitigate the data scarcity issue, and debias automated
diagnostics from the all-pervasive racial biases.

1. Introduction

The limited availability of large annotated datasets is a seri-

ous impediment to progress in AI for medical imaging. In

recent years, large pre-trained text-to-image (LTI) generative

models, such as DALL-E2 [8], Imagen [10] have been used

to greatly expedite the development of AI applications by

eradicating the bottleneck of large-scale annotated datasets

[5]. These models are trained on a massive amount of data

using contextual unsupervised or self-supervised learning

techniques. Such contextual training helps the models to

learn the patterns and structures present in large amounts of

text and image data and capture the contextual relationships

between words and their meanings.
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Although these LTI models are exposed to diverse

datasets while training, the extent of the nature of data used

for training is unknown. Moreover, how much diversity

is captured in the pre-trained weights is also an open

question. Consequently, it is not clear whether these models

encountered or assimilated the information related to skin

conditions sufficiently enough to be useful for automated

diagnosis. Recent work shows the potential of realistic

image generation to fool the classifier trained on real images

[1]. However, in case of little or no real samples, the

possibility of developing medical AI applications only with

these LTI-generated samples is still uncharted territory.

Therefore, in this paper, we provide an initial case
study regarding the usage of LTI models for a few skin
conditions for which the annotated dataset required for
AI-assisted automation is scarce. In particular, we employ

DALL-E mini [2] to generate representative images for the

four skin conditions – Atopic dermatitis, Urticaria Hives,

Scabies, and Warts. The inputs to models like DALL-E and

its variants are the text prompts describing the properties

of the image to be generated. Providing effective inputs to

these models is an art on its own, also known as prompt

engineering [7]. Recently, prompt engineering is receiving

a lot of attention from the research community to devise

better prompts for more targeted image generation and

refinement [7, 15]. However, in this paper, for our very

initial case study, we stick to the simple (manual) formats

equipped with disease names, skin tones, and symptoms and

characteristics taken from the standard medical textbooks

to assess the feasibility of these large models for the

diagnosis of conditions. In this regard, we also investigate

the research question of utilizing textbook narrations,
which are easy to obtain, for automated diagnosis of
comparatively rare conditions through the lens of LTI
models.
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We show that the models trained with LTI images

improve the classification accuracy of skin conditions over

the model trained only on a scarce real dataset. Moreover,

further visualization of the activation maps on real data

indicates much better localization of the infected areas for

the model trained with LTI-generated images compared

to baseline (Figure 4). We believe such a substantial

improvement in localization would help accelerate medical

imaging research for which segmentation and localization

play a big role in general. To the best of our knowledge,

this is the first work regarding a strategic framework to

utilize LTI models equipped with textbook-based structured

prompts for improved medical image analysis where the

need for training data is an issue that is commonplace in this

domain.

Overall, our contributions are as follows:

• Our initial case study is the first known attempt to analyze

the impact of LTI models for (comparatively rare) skin

conditions through the lens of a strategic framework with

a tentative guideline for simple prompt engineering based

on medical textbooks.

• We show that the deep learning model trained on disease

classification only with LTI generated images exhibits

much better localization of the disease ROI in terms of

class activation maps, thus demonstrating the efficacy of

the proposed framework.

• Although the study in this paper is based on skin condi-

tions, our framework is domain-agnostic to be applied to

any sub-domain in medical image analysis dealing with

the scarcity of targeted training data.

• Our framework with tentative prompt engineering guide-

lines can be easily extended by the community to signifi-

cantly resolve the issue of racial bias (and potentially other

prevalent ones) in medical datasets.

2. Methods

Our framework is depicted in Figure 1. It comprises two

main components – (1) The choice of a set of structured text

prompts used as inputs for data generation and (2) training a

classification model using the synthetic images generated by

the prompts.

2.1. Image Generation

Our objective is to utilize the textbook descriptions of

the skin conditions to generate images for training the

AI models. To do so, we employ an LTI model that

generates images based on the text prompts provided as

inputs. However, the textbook descriptions are usually

quite long and attempt to describe the whole condition

in a generalized manner. Although such descriptions are

good for human-level communication, we find it somewhat

difficult to generate targeted images simply using these long

narratives.

Consequently, a succinct structure of the text prompts

comprising placeholders for only the target set of keywords

is required. The predefined prompt structure makes it

generalizable across medical conditions at least in a

particular sub-domain like skin. The placeholders in the

generic structure can be replaced with the words sufficient

and necessary to properly identify each condition.

To develop such a generic but laconic structure, we

start by analyzing the textbook definitions of skin conditions.

These definitions serve as the basis for the image generation

process and help us understand the key features and

characteristics of the conditions. We find that almost all

these definitions contain four global features:

• Physical location of the occurrence of disease in the body.

• Skin tone of the affected individual following the Fitz-

patrick scale [9].

• Visual cues, such as color, shape, appearance, etc.

• Sensation in/around the affected region. Note that some-

times the sensation is responsible for the partial change

in appearance depending upon the actions taken by the

patients to deal with that. Thus, despite being a completely

physical feeling, including this information helps in better

image generation.

Following this observation, our generic prompt structure

takes the form of

<VISUAL CUES> + <SENSATION> +
<PHYSICAL LOCATION> + <SKIN TONE>

An instantiation of our prompt based on the varying

<SKIN TONE> is shown in Figure 2.

Finally, to generate images with this structure, we in-

stantiate the placeholder tags with concrete descriptions

and feed the instantiations into an LTI model with different

random seeds. We employ DALL-E mini [2] as our LTI

candidate since it was fully open-sourced at the time of

writing this paper.
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Figure 1: The proposed framework for generating images tailored to particular skin conditions based on textbook descriptions.

First, the long textbook narrative is parsed into a few keywords following our generic but succinct prompt structure. Next, this

prompt instantiation is fed into the LTI model to generate targeted images for further training.

2.2. Classification Model

Using the images generated with the set of instantiated

prompts, we train a standard image classification model

(ResNet50 [4] pretrained on ImageNet) for disease classifi-

cation. This classifier is then evaluated on the real dataset

both quantitatively and qualitatively. Details are provided in

the Experiments section.
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Figure 2: Samples generated by varying the <SKIN TONE> parameter (left) of our prompt. The rest of the prompt instantiation

is on the top of each column.

3. Experiments

Dataset: We generate images for skin conditions with com-

paratively rare data availability but for which there are at

least some real samples available for evaluation. Such avail-

ability of a small amount of real data helps to evaluate the

impact of the generated images for diagnosis quantitatively.

Thus, four skin conditions are selected for our experiments –

(1) Atopic dermatitis, (2) Scabies, (3) Urticaria hives, and (4)

Warts. For each of these four categories, ∼ 1K images are

synthesized with varying physical locations and skin tones

for training. A comparison between the real and synthetic

images is shown in Figure 3. Additional synthetic examples

are shown in Figure 5.

The real dataset used to test our framework is the publicly

available Dermnet [3] containing 115, 55, 66, 131 samples

for Atopic dermatitis, Scabies, Urticaria hives, and Warts,
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Figure 3: Sample comparison between real [3] (A) and generated images (B) for each of the four skin conditions.

Table 1: Comparison between synthetic and real fine-tuning.

ImageNet + LTI ImageNet + Finetune ImageNet + LTI + Finetune

Accuracy (%) 42.0 56.0 ±0.6 63.0 ±2.8

The deviations (±) are reported over the average of 10 runs.

respectively. These samples are randomly split into 10% for

finetuning and 90% for evaluation. Note that the subset for

finetuning is used to show the potential improvement over

the synthetic training with a small amount of real data.

We could not find any real samples with non-white
skin tones for evaluation in this paper, whereas our synthetic

training set is balanced in this regard, thanks to our generic

prompt structure. Thus, our evaluation (not training) has an

unavoidable racial bias all-pervasive in the medical domain

that we wish to eradicate in future.

Training and Implementation: We train the ResNet50

[4] architecture for classification in PyTorch for 50 epochs

with a learning rate of 1e−4 using Adam optimizer [6] and

cross-entropy loss. The logos in Dermnet images were

removed with standard image preprocessing techniques

[14, 13]. This is to ensure consistency and eradicate

any potential confounding factors that could affect the

performance of the classifier.

Evaluation: All the evaluations in this paper are per-

formed on the real dataset. For quantitative evaluation, first,

we assess the model’s classification accuracy trained only

on our synthetic data to get a sense of the synthetic to real

generalization ability. Next, we re-evaluate the synthetically

trained model after finetuning it on a few real samples

– ∼ 10 from each category. This is to see the potential

improvement that a tiny real dataset brings to the table

alongside the synthetic dataset. Moreover, we also visualize

the class activation maps [11] to analyze the saliency of the

learned model and qualitatively evaluate the model’s ability

to localization of conditions.

Results: The LTI-generated images (Figure 3 and 5) cap-

ture the visual characteristics distinctive to individual skin

conditions more or less well. Training the disease classifica-

tion model only with these generated images achieves 42%

accuracy on the 4 class classifications (Table 1). From the

normalized confusion matrix of this synthetic-only results

shown in Table 2, it is clear that the comparatively lower

accuracy is mostly attributed to the Warts class being mis-

classified into Atopic dermatitis. This is because of

the significant visual similarity of these two classes in the

real dataset [3] used for evaluation. Despite the modest clas-

sification accuracy, the quality of disease localization shows

significant improvement compared to baseline finetuning

(see Figure 4).

Moreover, we finetune the logit layer of the base model

(ImageNet pre-trained) and synthetic one on a small random

subset of the real samples ( 10 per class). The results over

ten random runs are reported in Table 1. The synthetically

trained model improves the baseline model accuracy by 7.0%

(63.0 vs. 56.0) on average.

Also, sample comparisons of the class activation maps

[11] are shown in Figure 4 among the synthetic model, the

baseline, and the synthetic with real finetuning. In this figure,

the quality of saliency detection after the synthetic training

looks much better than the one without this step. Thus, the

efficacy of the synthetic examples is evident from the nu-
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Figure 4: Comparison of the class activation maps for different protocols – (A) Images; (B) ImageNet + Finetuning (real); (C)

ImageNet + LTI (synthetic); (D) ImageNet + LTI (synthetic) + Finetuning (real). The activation with the synthetic training (C

and D) is qualitatively more accurate than the one without it (B).

merical and qualitative comparisons. We hypothesize that

the accuracy of the synthetic-only model can be improved

further by combining our structured prompt generation with

non-redundant sampling strategies. Please consult the sup-

plementary material for additional visualizations.

4. Conclusion and Future Work

In this paper, as an initial case study, we demonstrate the

potential of the LTI models to be promising for skin disease

detection, for which there is a serious lack of training data.

At this point, we only employ the images generated with
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Figure 5: Examples of the generated samples with our proposed structured prompts.

structured text prompts equipped with textbook descriptions

for training and disease names or tags just for labelling. In

this regard, our first attempt is somewhat unimodal, using

only the generated images. However, the text prompts en-

riched with the laconic description following the textbooks

provide an additional avenue to explore multimodal learning

for improved performance and explainability. As part of

future work, we will extend the methods to more diseases

alongside the multimodal learning mentioned above. More-

over, the parsing of the textbook narrative into the prompt is
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Table 2: Normalized confusion matrix for the synthetic-only model.

Prediction
Ground truth

Atopic dermatitis Urticaria hives Scabies Warts

Atopic dermatitis 0.64 0.05 0.27 0.04

Urticaria hives 0.37 0.47 0.14 0.02

Scabies 0.36 0.04 0.48 0.12

Warts 0.53 0.01 0.32 0.14

performed manually in this paper. Automation of this pro-

cess guided by the generic prompt structure will streamline

application development. In addition, the recent advances

in finetuning the diffusion models [1] for better visual data

generation can also be explored as a future direction.

Most importantly, skin conditions appear differently

based on skin tones and race. This issue is arguably among

the most difficult ones to resolve with real datasets in the

foreseeable future. The explicit and lucid nature of the text

prompts (e.g. one particular tag for skin tone) used for data

generation in this paper seems to be a promising way to

mitigate such all-pervasive racial biases in the AI-assisted

medical imaging domain. Moreover, such racial debiasing

would also help us to create hyperlocal automated assistance

programs for underserved communities in remote areas in

alignment with our core organizational principles.

From an algorithmic perspective, our plan involves align-

ing the statistical moments [12] in a continual learning setup.

The running estimate of the moments from real data streams

will be synchronized with synthetic data. However, it would

be unfair to evaluate the effectiveness of these methods based

on the current data, given the skewed representation within

the real images.

Finally, regarding generalization, although we are focus-

ing on skin diseases for organizational purposes, we believe

this study with a tentative guideline for prompt engineering

will encourage the research community to utilize similar

frameworks for other medical conditions in general as well.
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