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Abstract

Parallel imaging, a fast MRI technique, involves dynamic
adjustments based on the configuration i.e. number, po-
sitioning, and sensitivity of the coils with respect to the
anatomy under study. Conventional deep learning-based
image reconstruction models have to be trained or fine-
tuned for each configuration, posing a barrier to clinical
translation, given the lack of computational resources and
machine learning expertise for clinicians to train models at
deployment. Joint training on diverse datasets learns a sin-
gle weight set that might underfit to deviated configurations.
We propose, HyperCoil-Recon, a hypernetwork-based coil
configuration task-switching network for multi-coil MRI
reconstruction that encodes varying configurations of the
numbers of coils in a multi-tasking perspective, posing each
configuration as a task. The hypernetworks infer and embed
task-specific weights into the reconstruction network, 1) ef-
fectively utilizing the contextual knowledge of common and
varying image features among the various fields-of-view of
the coils, and 2) enabling generality to unseen configura-
tions at test time. Experiments reveal that our approach 1)
adapts on the fly to various unseen configurations up to 32
coils when trained on lower numbers (i.e. 7 to 11) of ran-
domly varying coils, and to 120 deviated unseen configura-
tions when trained on 18 configurations in a single model,
2) matches the performance of coil configuration-specific
models, and 3) outperforms configuration-invariant models
with improvement margins of ∼ 1 dB / 0.03 and 0.3 dB / 0.02
in PSNR / SSIM for knee and brain data. Our code is avail-
able at https://github.com/sriprabhar/HyperCoil-Recon

1. Introduction

Parallel Imaging (PI) is a widely used technique in re-

ducing the acquisition time of Magnetic Resonance Imag-

ing (MRI) [1]. Modern MRI scanners adopt PI as the de-

fault option to image the patient’s anatomy by acquiring

frequency-domain (or k-space) measurements using an in-

strument called a receiver coil. They employ multiple re-

ceiver coils that simultaneously obtain under-sampled k-

space data of different views of the anatomy being imaged

to speed up the acquisition [2]. The main characteristics of

PI are: 1) The captured views change for each scan and are

dependent on the configuration (number and positioning) of

the coils with respect to the anatomy being imaged [36]. 2)

Different coils are typically sensitive to different but over-

lapping regions based on their interaction with the anatomy

[36]. These factors indicate that PI is not only diversified by

the multimodal nature of the MRI data [44, 32], (e.g. var-

ious contrasts) but also characterized by dynamic contex-

tual adjustments in the coil configurations at scan time. Re-

cently, deep learning methods have shown promising results

over conventional methods like SENSE [28] and GRAPPA

[14] to reconstruct images from under-sampled multi-coil k-

space owing to their capabilities to learn complex represen-

tations from the data [25]. However, despite their success,

standard deep neural networks (DNNs) remain restrictive

under two training conditions.

1. Context-invariant or joint training: Conventional

DNN models, when presented with images from diverse

acquisition contexts while training, employ a naive data-

loading logic that combines and shuffles the images from

the contexts. This joint training process learns a fixed set

of weights that contain features common across all the con-

texts considered during training [21, 23] (Figure 1). How-

ever, due to the diversity and complementarity of the multi-

coil MRI, different coil configurations representing differ-

ent numbers of coils, exhibit heterogeneous visual charac-

teristics. As a result, the shared features learned using a sin-

gle set of weights could underfit contexts that are deviated

from the training data during inference [33]. For instance,

the MIDL Calgary Campinas Multi-coil MRI reconstruc-

tion challenge [3] takes a clinical scenario of adding more

coils in a scanner and raises concern about the generalizabil-

ity of the DNN reconstruction models to the 32-coil dataset,

when trained on the 12-coil dataset for a given anatomy. It

is noted that 28% of the images with unseen coil configura-
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Figure 1: The hypernetwork-based coil-configuration task switching model for adaptive MRI reconstruction. Task-specific

models need training for every coil configuration, while joint training has single shared weights, HyperCoil-Recon infers

task-adaptive weights for the reconstruction network, enabling generalization to several unseen contexts without retraining.

tions at test time, assessed by expert observers were deemed

to have poorer image quality when compared with the per-

formance of the trained reference model [3].

2. Context-specific training: The architectures used to

solve the MRI reconstruction tasks are often similar. Yet,

the models have to be trained separately for a dataset with

different acquisition settings (different coil configuration,

anatomies, and contrasts) [8, 31] (Figure 1). Methods like

test-time training adapt the model to the target distribution

by back-propagation using an unsupervised loss on com-

plete test data distribution [39]. These approaches might

be infeasible for clinical translation, given the lack of large

computational resources or machine-learning expertise for

clinicians to train models at deployment time [8]. As PI

involves overlapping fields-of-view of different coils for a

given scan [9], different coil-switching configurations ob-

tained from the presence or absence of various coils carry

both common and varying image domain features among

them. Utilizing this knowledge motivates the need for a

meta-model that dynamically changes across varying coil

configurations, enabling generality to new configurations in

a zero-shot setting, without model updates at deployment.

Inspired by hypernetworks [15, 40], a recently emerged

deep learning technique in providing adaptability, informa-

tion sharing, and data-efficiency in DNNs for multi-tasking

[6], we propose a clinically motivated setting for multi-

coil MRI reconstruction, called the coil-configuration task

switching neural network. We pose each coil configuration

as a task that encodes varying coil-switching combinations

i.e. the presence and absence of one or more coils in the

multi-coil MRI data. Our approach employs small task-

conditioned hypernetworks as meta-learners [17] that in-

fer task-specific weights and embed these latent representa-

tions of various coil configurations into an encoder-decoder-

based network for MR image reconstruction (Figure 1). The

encoder is task-invariant and learns shared features across

coil configurations while the decoder is task-adaptive. The

hypernetworks 1) infuse the coil configuration-specific em-

beddings in all layers of the decoder to integrate both

task-specific and task-invariant features, 2) offer inter-

esting insight into the relationship between various coil-

configuration tasks, and 3) enable the model to adapt, on the

fly, to various unseen coil configurations across contrasts,

anatomies, and datasets in a single forward pass during in-

ference. Our contributions are,

1. We propose HyperCoil-Recon, an adaptive coil con-

figuration task-switching network for test-time on-the-fly

adaptation to varying coils in multi-coil MR image recon-

struction. The proposed method adopts a multi-tasking ap-

proach by posing each coil configuration as a task and learn-

ing from both task embeddings and under-sampled images.

2. As the first endeavor to facilitate task generalization

in multi-coil MRI reconstruction, we focus on analyzing the

capabilities of such a unified model when combining multi-

ple contrasts and anatomies and presenting insights into the

relationship between various coil configurations.

3. Our method uses hypernetworks as meta-learners to

enrich the training process and embeds coil-configuration-

specific information into the reconstruction network.

4. Our experiments reveal that our approach (i) adapts

on the fly to various unseen configurations up to 32

coils when trained on lower numbers (i.e. 7 to 11) of

randomly varying coils, generalizes to 120 deviated un-

seen configurations when trained on 18 configurations, in

a single unified model, (ii) matches the performance of

coil configuration-specific models, and (iii) outperforms

configuration-invariant models with improvement margins

of ∼ 1 dB / 0.03 and 0.3 dB / 0.02 in PSNR / SSIM for knee

and brain anatomies, respectively.

2. Related Work

Hypernetworks: Hypernetworks are neural networks that

generate weights for another neural network, known as the
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target or primary task-oriented network. Hypernetworks

have shown promising results in a variety of deep learn-

ing problems, including transfer learning [4], continual [40]

and meta-learning [41], causal inference [5], and neural ar-

chitecture search [4]. In image restoration tasks, hypernet-

works are used in decoupled learning [12] to solve multi-

ple parameterized imaging operators and controllable image

restoration using a single network [7, 43]. The decoupled

learning methods lack the inductive bias of convolution lay-

ers of the primary network to solve the imaging tasks, as the

hypernetworks are the main source of weights for the pri-

mary network. In our approach, both the primary network

and the hypernetworks are jointly learned, enabling both

coil context-invariant image features and context-specific

semantic features. The controllable image processing net-

works adopt hypernetworks as a tuning module to adjust

the input parameters of the imaging operator (e.g. scale

factor in image super-resolution). Different from this ap-

proach which uses a single parameter, in our work, the hy-

pernetworks are conditioned with comprehensive task em-

beddings of the coil switching to infer task-specific weights.

The hypernetworks have non-linear leaky ReLU layers,

which prevent zero activations for negative layer weights,

enabling expressivity to numerous contexts.

Adaptive MRI reconstruction networks: Several task-

specific convolutional neural networks (CNNs) have been

developed for MRI reconstruction, namely unrolled net-

works [38, 30, 35], attention mechanism [19], transformer-

based networks [18], and variational networks [45]. Adap-

tive single-coil reconstruction networks include, (i) MAC-

ReconNet [31], and Hyper-Recon [42], based on decouple

learning, wherein the hypernetworks are driven based on

scanner information and regularization hyper-parameters,

respectively, and (ii) the universal under-sampled MRI re-

construction [23] and side-information guided networks

[24], based on adaptive instance normalization (AdaIN)

[37]. MAC-ReconNet uses layer-wise linear hypernetworks

with limited-sized input layers for a deeper base network. In

ours, we adopt wider non-linear hypernetworks to learn task

relationships and they are not heavy due to the presence of

a hidden bottleneck embedding layer. The number of hy-

pernetworks depends only on the sub-sampling levels and

not on the number of layers in the primary network. Unlike

AdaIN, the hypernetworks in our method are more expres-

sive [22] due to dense multiplicative interactions [20] via

convolution of the dynamic weights with the CNN features.

3. Method
Problem Formulation: According to compressed sens-

ing for MRI, the problem of recovering the desired

complex-valued MR image, x ∈ C
N, from the under-

sampled (US) k-space measurements, y ∈ C
M’ is ill-posed

as M ′ << N [27] and the optimization formulation is,

min
x

nc∑

j=1

||MFSjx− yj ||22 +R(x) (1)

Here, R(x) is the sparse regularization term, M , the 2-

D under-sampling mask, F , the Fourier transform matrix,

and Sj , j = 1, 2, .., nc, the sensitivity maps of the nc re-

ceiver coils. The proposed deep learning-based MRI re-

construction involves training a deep learning (DL) model

on the average loss of all observed data samples from Nγ

datasets. Each dataset, corresponding to the coil configura-

tion task γi, consists of US or zero-filled (ZF) image input,

and the fully-sampled (FS) image target pairs denoted as

Di = (xUS,i, xFS,i), where i = 1, 2, .., Nγ is the task in-

dex. This supervised task-aware joint training of the neural

network, f(xUS,i,
−→γ i; θ, φH) consisting of the image re-

construction CNN, fCNN (xUS ; θ) with parameters θ and

the hypernetwork, fH(−→γ i;φH) with parameters φ, across

multi-coil configuration tasks, γi is given by,

θ∗, φ∗H = argmin
θ,φH

E

(xUS,i,xFS,i)∈
⋃

i
Di

[||xFS,i−

f(xUS,i,
−→γ i; θ, φH)||22]

(2)

Here, θ∗ and φ∗H are the optimized weights of the net-

works. The configuration vector input −→γ i to the hypernet-

work is a binary vector that enumerates the presence (bi-

nary 1) and absence (binary 0) of a coil (i.e. the correspond-

ing sensitivity map and the k-space). In order to optimize

Eq. 1 efficiently, the variable splitting method in VS-Net

[10] introduces auxiliary splitting variables u ∈ CN and

{xj ∈ CN}nc
j=1 and derives the final solution as follows:

uk+1 = denoiser(mk)

xk+1
j = F−1((λMTM + αI)−1(αFSjm

k + λMT yj))

mk+1 = (βI + α

nc∑

j=1

SH
j Sj)

−1(βuk+1 + α

nc∑

j=1

SH
j xk+1

j )

(3)

The top equation converts the original problem (Eq. 1)

to a denoising problem as in Eq. 2. The middle equation

provides the data consistency to k-space for each coil. The

bottom equation computes a weighted average of the re-

sults obtained from the first two equations. The proposed

model (Fig. 2) for multi-coil MRI reconstruction follows

the iterative setup formulated in Eq. 3 with Nb cascades

of the three blocks: HyperCoil-Recon as denoiser block,

data consistency block (DCB) and weighted average block

(WAB). The DL model takes in the sensitivity-weighted US

image (m0 =
∑nc

j=1 S
H
j F−1MT yj) and it’s correspond-

ing binary configuration vector as inputs. DCB uses the bi-

nary sampling mask (M ), the under-sampled k-space data

({MT yj}nc
j=1) with the corresponding sensitivity maps for
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Figure 2: Deep Cascaded HyperCoil-Recon Architecture with the denoising (the hypernetworks and the reconstruction net-

work), data consistency, and weighted-average blocks. FC - Fully connected layer, LReLU - Leaky ReLU non-linearity.

which the coil configuration switching vector has binary 1

value to provide k-space data consistency. WAB uses coil

sensitivity maps to perform weighted averaging of the DCB

outputs and combine it with the DL model output.

Architecture Details: The primary reconstruction CNN is

the U-Net [34]. There are Nsub hypernetworks that take the

coil configuration task vector as input and infer task-specific

weights WH,i corresponding to the Nsub sub-sampling lev-

els of the decoder in the primary CNN. The encoder features

E1, E2, ..., ENsub
of the CNN are convolved (shown as ⊗)

with the Nsub task-specific weight vectors to obtain task-

specific features, that are concatenated with the decoder fea-

tures D1, D2, ..., DNsub
at each level and the reconstructed

image xCNN,i for the task, γi, is obtained (Fig. 2).

WH,i = (WH,1,i, ...,WH,Nsub,i) = fH(−→γ i;φH)

FDec,j,i = (Ej ⊗WH,j,i) || Dj , ∀ j = 1, ..., Nsub

xCNN,i = Dec(FDec,1,i, ..., FDec,Nsub,i)

(4)

4. Experiments
4.1. Datasets and Implementation Details

Datasets: 1) The Knee multi-coil dataset [16] consists of

coronal proton-density without (PD) and with fat suppres-

sion (PDFS) images, acquired from 20 patients. Each pa-

tient data has 20 slices of size 640 × 368 with 15 chan-

nels (coils) and sensitivity maps. We split the data into 10

slices with 200 slices each, for training and validation with

Cartesian under-sampling. 2) Calgary Campinas Chal-
lenge multi-coil dataset [3]: This large-scale publicly ac-

cessible dataset provides k-space data from 167 3D, T1-

weighted, gradient-recalled echo, 1 mm3 isotropic sagittal

brain scans collected on a clinical 3-T MRI scanner (Dis-

covery MR750; GE Healthcare). There are two datasets,

one with 12-channel (117 scans) and the other with 32-

channel (50 scans) receiver coils, each with 170 to 180 con-

tiguous slices of size 256 × 218. The dataset consists of

Poisson under-sampling masks for 5x and 10x acceleration.

Implementation Details: We represent each coil config-

uration task vector as a binary vector that encodes the coil

switching. For example, in a 15-coil dataset, a 9-coil task

switching vector, 111001010101110 denotes that the sen-

sitivities and k-space data of coils 4, 5, 7, 9, 11, and 15

are absent while the rest are present. For a given num-

ber of coils (task), 7, 9, 11, and 12, we augment the task

with several randomly varying combinations (sub-tasks) of

binary-valued vectors, embed them in a 32-bit vector (maxi-

mum embedding vector size) initialized with 1’s and feed to

the hypernetworks to support multiple configurations in one

training. We have implemented the models using Pytorch

v1.12, trained for 100 epochs with 5 cascades on a 24 GB

Nvidia RTX-3090 and L1 as the loss function between the

predicted and the ground truth (GT) fully sampled images.

Our evaluation metrics are PSNR and SSIM measures.

4.2. Results and discussion

Our experiments include, 1) Generalization to unseen

coil configurations when trained on few configurations, 2)

Task relationship, 3) Performance Comparison with other

multi-coil MRI reconstruction architectures on large-scale

clinical datasets, 4) Comparison with other adaptive MRI

reconstruction methods for multi-modal acquisition con-

texts, and 5) An ablative study.

4.2.1 Generalization to Unseen Coil Configurations

We train the models on a few (18) tasks and assess the

generality of the models to several (120) deviated unseen

tasks that share the same label space. From the 15-coil

knee dataset, we create the 18 training tasks or configura-

tions using combinations of 7, 10, and 12 coils, PD and

PDFS contrasts, and 4x, 5x, and 8x acceleration factors.

We compare our model with the jointly trained model us-

ing only the images (coil-configuration task-invariant model

or CCTIM) and models trained for a specific number of

coils (coil-configuration task-specific model or CCTSM).
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Table 1: Quantitative comparison of the generality of the proposed model for unseen configurations with CCTIM and CCTSM

when combining 7, 10, & 12 coils, 4, 5, & 8x acceleration, and contrasts - PD & PDFS. ZF - Zero-filled (i.e. US) image. For

e.g., the task PD7 - proton density MRI with 7x acceleration. Green and blue - the first and second-best metrics, respectively.

ZF CCTIM
HyperCoil-

Recon
CCTSM ZF CCTIM

HyperCoil-
Recon

CCTSM

Coils
Scanner
context

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

Coils
Scanner
context

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PD7 18.47/ .717 28.64/ .780 29.38/ .821 27.93/ .768 PD7 25.44/ .822 30.80/ .799 31.53/ .862 30.88/ .845
PD9 18.46/ .714 28.28/ .770 29.03/ .814 27.58/ .756 PD9 25.32/ .816 30.35/ .791 31.00/ .853 30.44/ .837

PDFS7 21.91/ .602 29.85/ .733 30.30/ .746 29.76/ .732 PDFS7 28.30 / .760 31.90/ .766 32.39/ .789 32.07/ .782
7

PDFS9 21.89/ .598 29.56/ .726 30.00/ .740 29.49/ .725

13

PDFS9 28.20/ .753 31.52/ .757 32.04/ .781 31.73/ .774

PD7 20.17/ .761 29.61/ .798 30.20/ .835 30.19/ .828 PD7 27.01/ .823 30.87/ .798 31.52/ .861 31.79/ .847
PD9 20.14/ .757 29.21/ .789 29.78/ .828 29.79/ .818 PD9 26.82/ .823 30.41/ .789 30.99/ .852 31.25/ .838

PDFS7 23.57/ .665 30.90/ .752 31.23/ .766 31.27/ .768 PDFS7 29.75/ .775 31.93/ .766 32.46/ .790 32.58/ .784
9

PDFS9 23.54/ .660 30.59/ .746 30.86/ .759 31.00/ .760

14

PDFS9 29.60/ .768 31.55/ .757 32.01/ .784 32.17/ .776

PD7 22.44/ .797 30.41/ .800 30.83/ .843 30.37/ .818 PD7 28.88/ .836 30.87/ .797 31.35/ .861 32.29/ .885
PD9 22.38/ .792 29.98/ .792 30.32/ .833 29.95/ .810 PD9 28.61/ .829 30.42/ .788 30.81/ .852 31.68/ .876

PDFS7 25.75/ .719 31.59/ .762 31.90/ .778 31.56/ .761 PDFS7 31.20/ .786 31.90/ 0.764 32.43/ .793 32.91/ .803
11

PDFS9 25.69/ .713 31.25/ .755 31.50/ .771 31.25/ .753

15

PDFS9 31.00/ .779 31.50/ 0.756 32.04/ .785 32.46/ .794

Figure 3: Left & Middle: Plots showing more unseen coil configurations when combining 7, 10, and 12 as the number of

coils, acceleration factors 4x, 5x, and 8x, and contrasts - PD and PDFS. Right: Matrix plot showing the inter-task relationship.

Tasks with neighboring coil configurations exhibit more similarity, while far-apart configurations exhibit lesser similarity.

Figure 4: From the left: Qualitative comparison of the images of the ZF, CCTIM, HyperCoil-Recon, and CCTSM for an

unseen case with 15 coils and 4x acceleration when trained on 7, 10, and 12 coils, 4x, 5x, and 8x acceleration and contrasts -

PD (bottom) and PDFS (top). The quality of the proposed model is better than CCTIM and matches that of CCTSM.

Table 1 shows the performance of the models for 24 unseen

coil configurations with unseen acceleration factors (7x and

9x). From the table, our observations are as follows. (i)

HyperCoil-Recon consistently performs better than the CC-

TIM for all the coil configurations. (ii) HyperCoil-Recon

outperforms CCTSM for almost all the configurations in
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Table 2: Quantitative comparison of HyperCoil-Recon with other multi-coil MRI reconstruction methods large-scale clinical

data. The column pairs are the evaluation results of the 7-9-11 model on the 12-coil unseen task (same dataset), the 7-9-11

model on the 32-coil unseen task (unseen dataset), and the 15-28-31 model on the 32-coil task (reference for column 2).

Method

12-coil testing on 7-9-11 model
(seen dataset & unseen coils)

32-coil testing on 7-9-11 model
(unseen dataset and unseen coils)

32-coil on 15-28-31 model
(seen dataset & unseen coils)

5x 10x 5x 10x 5x 10x
PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM PSNR/ SSIM

ZF 25.20 / 0.726 23.70 / 0.632 26.40 / 0.780 25.50 / 0.745 26.40 / 0.780 25.50 / 0.745

VS-Net [10] 27.61 / 0.862 26.08 / 0.802 19.03 / 0.707 18.61 / 0.671 31.04 / 0.921 29.39 / 0.869

VarNet [16] 26.06 / 0.839 24.57 / 0.789 19.19 / 0.673 17.85 / 0.615 28.99 / 0.885 27.49 / 0.828

RecurrentVarNet [45] 29.17 / 0.908 27.46 / 0.855 18.81 / 0.707 18.50 / 0.675 31.83 / 0.925 30.82 / 0.893

KIKI-Net [11] 31.13 / 0.911 29.24 / 0.865 23.25 / 0.853 22.50 / 0.815 32.44 / 0.943 30.53 / 0.896

DC-Unet [38] 31.42 / 0.914 29.14 / 0.865 23.13 / 0.859 22.90 / 0.824 33.92 / 0.948 31.72 / 0.908

SWin [18] 29.26 / 0.895 27.33 / 0.834 19.68 / 0.756 19.43 / 0.721 32.48 / 0.939 30.39 / 0.889

EnchantedNet [3] 31.29 / 0.912 29.00 / 0.861 26.63 / 0.887 26.47 / 0.846 33.29 / 0.937 30.75 / 0.889

HyperCoil-Recon 33.54 / 0.928 30.39 / 0.878 31.15 / 0.924 29.55 / 0.882 36.13 / 0.955 32.52 / 0.910

SSIM and performs competitively in PSNR. (iii) In some

cases, lower (e.g. 13-coil) coil tasks of HyperCoil-Recon

are better than higher (e.g. 14-coil) coil tasks of CCTSM.

Joint training in CCTIM lacks context awareness as the

model learns a single set of shared weights from the image

samples only. Although CCTSMs operate as expert models

for higher coil configurations, the knowledge gained using

only the primary network is still inadequate at lower coil

configurations wherein the receiving coils might not capture

the anatomy of interest adequately. Furthermore, at higher

acceleration factors, the CCTIM becomes comparable to ZF

performance. HyperCoil-Recon benefits from 1) the low-

level image features of the primary CNN, and 2) additional

knowledge of context embeddings via the task-switching

hypernetworks, which help to build the relationship be-

tween various contexts and enables the model to interpolate

and extrapolate to unseen contexts between known contexts.

Figure 3 shows more unseen coil configurations wherein

our model generalizes better than CCTIM and CCTSM. The

visual results for HyperCoil-Recon (Figure 4) show better

recovery of details over CCTIM and CCTSM.

4.2.2 Understanding Task Relationships

We interpret the role of the hypernetworks when jointly

training with the primary reconstruction network with a

multi-tasking objective to study if the embeddings learned

by the hypernetworks carry information useful for task rela-

tionships. To analyze this perspective, we compute the sim-

ilarity measure, SIM between two task embedding layer

output vectors τi and τj (second embedding hidden layer

after LReLU in the hypernetwork shown in Fig. 2) based

on cosine similarity as SIM(τi, τj) = 1− τT
i τj

||τi|| ||τj || .
Figure 3 (right) shows the matrix plot of the similarity

between tasks. The darker the blue color region, the bet-

ter the similarity between the tasks (i.e. SIM less than 0.4)

corresponding to each row-column pair. Each task denotes

the number of coils used for reconstruction. We make two

interesting observations. 1. The tasks that are closer in

the number of coils exhibit higher similarity (e.g., Task 12

(seen) and 15 (unseen)) and those farther exhibit lesser sim-

ilarity (Task 7 with Tasks 11 to 15). 2. Task similarity is

denser in the region with a higher number of coils. We be-

lieve that when coils share common features, the tasks have

common patterns in the conditioning, and the task embed-

dings might be localized closer to each other in the latent

embedding space. This indicates that the hypernetworks

share the knowledge across the tasks, facilitating adaptive

coil configuration in a single unified model.

4.2.3 Feature Reusability

We evaluate the models on the Calgary-Campinas large-

scale clinical datasets of the brain anatomy. The goal of

this study is to provide an objective benchmark of various

multi-coil MRI reconstruction methods with respect to the

generalizability of the models across the 32-coil and the 12-

coil datasets. For each reconstruction method shown in Ta-

ble 2, we train two models - 1) Training with combinations

of 7, 9, and 11 coils using the 12-coil Calgary dataset. 2)

Training with combinations of 15, 28, and 31 coils using

the 32-coil Calgary dataset. We refer to these models as the

7-9-11 and 15-28-31 models, respectively. Table 2 shows

three evaluation cases, 1) the 7-9-11 model on 12-coil un-

seen configuration within the same dataset, 2) the 7-9-11

model on the 32-coil unseen task on the 32-coil unseen

dataset, and 3) the 15-28-31 model on 32-coil configura-

tion within the same dataset. We take the 15-28-31 model

of each method as the reference model to assess the perfor-

mance of the corresponding 7-9-11 model in Case 2. From

the table, our observations are as follows. 1) The proposed

approach performs better than other reconstruction methods

for all three cases. 2) The HyperCoil-Recon 7-9-11 model is

comparable with the corresponding 15-28-31 model on the

32-coil task, while other models perform poorly. These ob-

servations reveal that the task-conditioned hypernetworks

in the proposed model exhibit meta-learning [13] capabil-

ities wherein the hypernetworks contain reusable features
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Figure 5: Qualitative comparison of the HyperCoil-Recon with other multi-coil MRI reconstruction architectures for the

unseen 12-coil task using the 7-9-11 model of the same dataset. Top: ZF image, VS-Net [10], VarNet [16], Recurrent VarNet

[45], KIKI-Net [11]. Bottom: SWin [18], DC-UNet [38], EnchantedNet [3], HyperCoil-Recon, and GT image.

Figure 6: Qualitative comparison of the HyperCoil-Recon with other methods for the unseen 32-coil Calgary dataset with

unseen 32-coil configuration on the 7-9-11 model. Top: ZF image, VS-Net, VarNet, Recurrent VarNet, KIKI-Net. Bottom:

SWin, DC-UNet, EnchantedNet, HyperCoil-Recon, HyperCoil-Recon (15-28-31 reference model), and GT image.

[29, 32] for new tasks deviated from the training tasks. Fig-

ure 5 shows that the reconstructed images of our model ex-

hibit better visual quality compared to other methods for a

case with the highlighted region pointing to faint structures

containing subtle image gradients. Figure 6 also shows that

our method gives better quality for 32 coils over other meth-

ods and is on par with the 32-coil reference model result.

4.2.4 Expressivity in Multi-modal Scenario

We combine multimodal contexts in a single model with

multiple anatomies, PD knee and T1 brain, and multiple

coil configurations (7, 10, and 12 coils), with 5x under-

sampling. We compare our model with other adaptive MRI

reconstruction [35] architectures - MAC-ReconNet [31] and

AdaIN [23]. Table 3 and Figure 7 show the results for the

brain and knee for multiple coil configurations. We note that

HyperCoil-Recon performs better than MAC-ReconNet and

AdaIN for almost all the coil configurations both in PSNR

and SSIM. MAC-ReconNet lacks task-invariant low-level

image features as the dynamic weight prediction hypernet-

works infer all the weights of the primary reconstruction

network. On the other hand, AdaIN normalizes the fea-

tures to compensate for the distribution shift using scale

and shift operations. The hypernetworks in our model ex-

hibit dense multiplicative interactions [20] via convolution

operations between predicted task-specific weights and the

CNN features. These interactions provide comprehensive
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Table 3: Quantitative comparison of the HyperCoil-Recon with other adaptive MRI reconstruction methods - MAC-ReconNet

[31] and AdaIN [23] under multi-modal scenario when combining (during training) different anatomies (12-coil T1 brain and

15-coil PD knee), with different contrast and different coil configurations (7, 10 and 12 coils respectively).

Coils
Brain 12 coils

Coils
Knee 15 coils

MAC-ReconNet [31] AdaIN [23] HyperCoil-Recon MAC-ReconNet [31] AdaIN [23] HyperCoil-Recon
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

7 24.95 / 0.815 23.49 / 0.793 26.67 / 0.844 10 30.53 / 0.857 29.44 / 0.835 31.98 / 0.859

8 25.28 / 0.826 23.88 / 0.805 27.04 / 0.853 11 31.17 / 0.860 30.19 / 0.845 32.36 / 0.864

9 25.70 / 0.838 24.23 / 0.817 27.45 / 0.862 12 31.58 / 0.862 30.92 / 0.853 32.68 / 0.868

10 26.37 / 0.852 24.64 / 0.827 27.80 / 0.869 13 31.89 / 0.860 31.39 / 0.855 32.87 / 0.868

11 27.08 / 0.863 25.35 / 0.842 28.38 / 0.877 14 32.18 / 0.857 31.70 / 0.853 33.08 / 0.869

12 28.01 / 0.875 26.65 / 0.861 29.07 / 0.885 15 32.25 / 0.851 31.75 / 0.845 33.00 / 0.869

Figure 7: Qualitative comparison of the HyperCoil-Recon with other adaptive MRI reconstruction architectures - MAC-

ReconNet and AdaIN for a multimodal scenario that combines 7, 10, and 12 coils of T1 brain and PD knee datasets. From

left: AdaIN, MAC-ReconNet, HyperCoil-Recon, and the GT images for the brain and knee anatomies.

Table 4: Ablative study for an increasing number of DWP

hypernetworks in the bottleneck and top layers of the de-

coder across acceleration factors for coronal PDFS knee

Model
5x 8x

PSNR/ SSIM PSNR/ SSIM

No DWP 32.39/ 0.823 30.56/ 0.798

DWP (only in bottleneck layer) 33.00/ 0.890 30.93/ 0.861

DWP (both in top & bottleneck layers) 33.65/ 0.893 31.34/ 0.862

task-specific embeddings over the scale and bias operations

of AdaIN and help to achieve mode-specific inductive bias

[32, 26] when integrating diverse streams of contextual in-

formation in a single model.

4.2.5 Ablative Study

We perform an ablative study to understand the role of the

hypernetworks on the top levels of the decoder and the bot-

tleneck layer. We consider three cases across varying accel-

erations - 1) No dynamic weight prediction (DWP), 2) DWP

only in the bottleneck layer, and 3) DWP in all layers i.e.

bottleneck and top layers of the decoder. Table 4) shows the

performance improvement with an increase in the number

of hypernetworks as the contextual knowledge is improved.

The qualitative results are shown in Figure 8.

5. Summary and Conclusion
We introduce a unified coil-configuration task-switching

CNN in a multi-tasking perspective to infuse the knowledge

Figure 8: An ablative study of cases with no DWP, DWP on

the bottleneck layer and all the decoder layers. The residual

images with respect to GT images are shown.

of dynamic coil configurations in multi-coil MRI recon-

struction. Unlike conventional DL models, which scale with

the number of coil configurations, the proposed network is

simple and parameter-efficient by design. With each con-

figuration posed as a task, our model uses hypernetworks to

infer task-specific weights that are embedded in the primary

reconstruction network, enabling on-the-fly adaptation to

multiple coil configurations. Our experiments demonstrate

the efficacy of our approach in terms of high expressivity by

interpolating to several unseen configurations, better perfor-

mance over other reconstruction methods, context-specific

and context-invariant training methods, and insights into re-

lationships between configurations. Our future direction is

to extend the work for self-supervised learning for more PI

settings in a single model.

2399



References
[1] H. M. Ahmed, R. E. Gabr, Y. M. Kadah, and A. M. Youssef.

A new method for data acquisition and image reconstruction

in parallel magnetic resonance imaging. In 2008 Cairo In-
ternational Biomedical Engineering Conference, pages 1–4,

2008.

[2] Tim Bakker, Matthew Muckley, Adriana Romero-Soriano,

Michal Drozdzal, and Luis Pineda. On learning adaptive

acquisition policies for undersampled multi-coil mri recon-

struction. In Ender Konukoglu, Bjoern Menze, Archana

Venkataraman, Christian Baumgartner, Qi Dou, and Shadi

Albarqouni, editors, Proceedings of The 5th International
Conference on Medical Imaging with Deep Learning, vol-

ume 172 of Proceedings of Machine Learning Research,

pages 63–85. PMLR, 06–08 Jul 2022.

[3] Youssef Beauferris, Jonas Teuwen, Dimitrios Karkalousos,

Nikita Moriakov, Matthan Caan, George Yiasemis, Lı́via

Rodrigues, Alexandre Lopes, Helio Pedrini, Letı́cia Rittner,

Maik Dannecker, Viktor Studenyak, Fabian Gröger, De-
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