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Abstract

The clinical explainability of convolutional neural net-
works (CNN) heavily relies on the joint interpretation of
a model’s predicted diagnostic label and associated con-
fidence. A highly certain or uncertain model can signifi-
cantly impact clinical decision-making. Thus, ensuring that
confidence estimates reflect the true correctness likelihood
for a prediction is essential. CNNs are often poorly cal-
ibrated and prone to overconfidence leading to improper
measures of uncertainty. This creates the need for confi-
dence calibration. However, accuracy and performance-
based evaluations of CNNs are commonly used as the sole
benchmark for medical tasks. Taking into consideration
the risks associated with miscalibration is of high impor-
tance. In recent years, modern augmentation techniques,
which cut, mix, and combine images, have been introduced.
Such augmentations have benefited CNNs through regular-
ization, robustness to adversarial samples, and calibration.
Standard augmentations based on image scaling, rotating,
and zooming, are widely leveraged in the medical domain to
combat the scarcity of data. In this paper, we evaluate the
effects of three modern augmentation techniques, CutMix,
MixUp, and CutOut on the calibration and performance of
CNNs for medical tasks. CutMix improved calibration the
most while CutOut often lowered the level of calibration.

1. Introduction
The applications of computer vision to medical image

analysis have been widely studied [52, 38, 36, 19]. In med-

ical image analysis, models are trained to assist clinicians

in the triaging of image diagnosis through the interpretation

of medical images (e.g. CT, MRI, CXR, skin, etc.). The

goal of these models is to increase diagnostic accuracy and

efficiency by reducing manual time-consuming tasks [9]. In

recent years, such models have become increasingly accu-
rate [47, 43, 28, 48, 58] leading to the wider adoption of

computer vision-based tools in clinical settings. Currently,

the accuracy of medical image analysis models are evalu-

ated primarily based on performance-based statistical met-

Figure 1. Modern image augmentations applied to various
medical modalities to create unseen samples. In this study, we

evaluate the effects of modern augmentations on the confidence

calibration and performance of CNNs for medical image analy-

sis. Augmentations studied are: CutMix [60], MixUp [62], and

CutOut [17]. CNNs are trained and benchmarked on augmented

datasets of the Skin, CT, CXR, and MRI medical modalities.

rics [3]. Upon obtaining high accuracy, these models are

typically deployed in the clinical setting for validation or

comparison against trained clinicians [46, 7, 4, 44].

In addition to maintaining a high accuracy, it is impor-

tant to ensure the reliability of these models to support safe

clinical decision-making. In most medical image analysis

tasks, a predicted diagnostic label and associated confidence

probability are presented jointly to the clinician. A clinician

must interpret this information taking into consideration not
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only the provided diagnosis but the certainty or uncertainty

of the model to gain trust [13]. While accuracy solely en-

compasses the ability to correctly predict a certain class,

a model must provide a reliable confidence estimation to

the clinician. When using these models for diagnostic aid,

confidence estimates can provide major insight to clinicians

and significantly influence diagnosis. For example, a model

which outputs a confidence of 98% should provide the clin-

ician with a higher certainty for that diagnostic label. On

the other hand, a low confidence of 60% should help the

clinician consider the uncertainty and potentially revise the

diagnosis. Ensuring that confidence estimates are reflective

of the true correctness likelihood of diagnostic labels is es-

sential, creating the need for confidence calibration [22].

It has been shown that state-of-the-art convolutional neu-

ral networks (CNN) are often poorly calibrated and tend

to be overconfident or overly certain in predictions [22].

This poses a significant problem and potentially a high risk

in the medical domain. Calibrated confidence estimates

are not captured in performance-based metrics commonly

used to evaluate medical image analysis models [3]. A low

level of calibration can easily go unnoticed leading to im-

proper measures of uncertainty and potentially false inter-

pretations when deployed in the clinical setting. In the gen-

eral computer vision community, various techniques have

been proposed to improve the calibration, reliability, and

transparency of neural networks [16, 39, 20, 35]. Modi-

fying certain features (e.g. network width, height, depth)

of a CNN can also significantly effect confidence calibra-

tion [22]. However, such calibration techniques are not

commonly leveraged for medical image analysis as many

applications perform transfer learning of pretrained CNNs

[33, 49, 45]. These applications may yield high perfor-

mance but could potentially lack high levels of calibration.

In recent years, various modern image augmentation
techniques have been introduced. Three notable techniques

which are studied in this paper are MixUp [62], CutMix

[60], and CutOut [17]. As implied in the names, these

augmentations perform unique operations such as cutouts,

blends, and mixes on images to generate unseen samples.

Each of these techniques have not only benefited CNNs in

terms of performance but also have significant benefits for

confidence calibration. Various studies have shown the ad-

vantages of these augmentations for calibration of CNNs us-

ing standard calibration-based metrics on general computer

vision benchmarks [56, 63, 8, 12, 14]. Additionally, simi-

lar to standard image augmentations (e.g. crop, rotate, flip)

these techniques improve the regularization and robustness

of CNNs to out-of-distribution (OOD) samples.

Standard image augmentations [34, 54, 27] such as ran-

dom scaling, rotation, and zooming of image samples are

widely leveraged for medical image analysis [11]. The rea-

son augmentations are used in the medical domain is to:

increase the size and the diversity of datasets to improve ro-

bustness and reduce overfitting (i.e improve regularization).

From a clinical perspective, augmentations are also benefi-

cial in combatting the scarcity of large clinically-acquired

and annotation intensive datasets.

Due to the various benefits of modern augmentations,

most importantly on the calibration of CNNs, the adoption

of these techniques can be very beneficial for medical im-

age analysis to improve the reliability and uncertainty mea-

surements of models. Additionally, as augmentations are

already used for medical image analysis and present various

other advantages, modern augmentation techniques present

a low barrier of entry. In comparison to other calibration

techniques, modern augmentations do not effect the struc-

ture of CNN architectures and can effect calibration solely

based on modifications made to datasets. Additionally, aug-

mentations have a very low computational cost. By using

modern image augmentations, major modifications do not

have to be made to medical image analysis pipelines. In this

study, we evaluate the performance of modern image aug-

mentations for medical confidence calibration using various

open-source medical image datasets.

Our main contributions are summarized below:

1. We evaluate the effects of modern augmentations on

the performance of CNNs for medical image analysis

2. We understand the effects of modern augmentations on

medical confidence calibration

3. We conduct experiments across various medical
modalities to more deeply understand the effects of

modern augmentations across an array of diseases and

image types

2. Related Work
As follows is a review of prior work regarding standard

calibration methods in the general computer vision domain,

the use of modern image augmentations to improve CNN

calibration, and the current applications of confidence cali-

bration methods to medical image analysis tasks.

Confidence Calibration: In a study by Gou et al. [22],

various observations are made on the calibration of CNNs

and factors which influence this. Based on in-depth empir-

ical experimentation, the following objective observations

have been made relating to CNNs: 1. Increasing the net-

work depth and width of CNNs typically increases accu-

racy [61] however this has negative effects on calibration.

2. Batch normalization, used for neural network optimiza-

tion, often leads to miscalibration. 3. Weight decay, a reg-

ularization mechanism [57] commonly replaced for batch

normalization, has positive effects on calibration. Popular
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methodologies which provide benefits in confidence cali-

bration and quantifying predictive uncertainty include tem-

perature scaling [22], bayesian neural networks [16, 39],

dropout as bayesian approximation [20, 53], and ensem-

bles of networks [35]. Calibration methods are evaluated

based on calibration metrics [41, 22] and reliability plotting
[15, 42, 22]. These two techniques provide both a quantita-

tive and qualitative assessment of confidence calibration.

Modern Augmentations for Calibration: The effects of

modern augmentations on the regularization of CNNs is

evident from the original studies of MixUp [62], CutMix

[60], and CutOut [17]. MixUp [62], an augmentation built

around convex combinations of image and label pairs, was

the first modern augmentation to be thoroughly studied for

confidence calibration. MixUp, when benchmarked using

calibration metrics, presented CNNs with significant cal-

ibration benefits according to various studies [56, 63, 8].

These studies showed the benefits of MixUp, which was

first proposed for regularization, to confidence calibration

of CNNs. Subsequent studies covered the calibration of

CNNs for the CutMix and CutOut modern augmentations

[12, 14]. These studies also concluded that these mod-

ern augmentation-based regularization techniques present

CNNs with significant calibration benefits.

Medical Image Analysis Calibration: We have not iden-

tified prior studies which validate the efficacy of the MixUp,

CutMix, and CutOut modern augmentations for the con-
fidence calibration of CNNs for medical image analysis

tasks. A study by Galdran et al. [21] performed experimen-

tal validation of MixUp for medical image classification.

This study solely used performance-based metrics for eval-

uation and not calibration-based metrics. MixUp has ad-

ditionally been used for medical image segmentation how-

ever, it has not been benchmarked using calibration metrics

[18]. Confidence calibration using methods other than aug-

mentation have been studied in the medical domain [37]. In

our study, we focus on understanding the effects of mod-

ern augmentations on the calibration of CNNs for medical

image analysis to improve to reliability of models. Apart

from augmentation-based calibration, other methods have

been studied for medical image analysis calibration namely

in medical image segmentation [40, 55, 50, 30].

3. Methods
In this study, we perform experiments based on training

CNNs across the MixUp, CutMix, and CutOut modern aug-

mentations for various medical image modalities. With this,

we evaluate the calibration of each CNN variant against the

baseline using conventional calibration metrics and reliabil-

ity plotting. The goal is to understand the effects of modern

image augmentations on the confidence calibration of these

CNNs. We additionally evaluate the accuracy of models us-

ing standard performance-based metrics. The formulation

of the modern augmentations are briefly reviewed and de-

scribed in 3.1. The metrics used to evaluate the calibration

of the models are documented in Sec 3.2. The various med-

ical image modalities used are reviewed in Sec 3.3. Sec 3.4

and 3.5 review model architectures and our implementation.

3.1. Modern Data Augmentations

MixUp Zhang et al. [62] proposed MixUp as a modern

augmentation technique for training neural networks on a

blend between a pair of images and labels based on convex

combinations. MixUp has proven various benefits in terms

of increasing robustness of neural networks when learning

from corrupt labels and adversarial examples. MixUp is

based on the Vicinal Risk Minimization (VRM) [10] prin-

ciple, where the vicinity of the training data distribution can

be used to draw virtual samples and shows improvements

over Empirical Risk Minimization (ERM). The original for-

mulation of MixUp from the original paper [62] is:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj ,
(1)

where xi,,yi are raw randomly sampled input vectors and

xj ,yj are the corresponding one-hot label encodings. λ are

values in the range [0, 1] which are randomly sampled from

the Beta distribution for each augmented example. Samples

of the MixUp augmentation technique applied to various

medical images are shown in Figure 1.

CutMix Yun et al. [60] introduced CutMix, an augmenta-

tion built upon the original formulation of MixUp and idea

of combining samples. CutMix removes a patch from an

image and swaps it for a region of another image generating

a locally natural unseen sample. Similar to MixUp, CutMix

not only combines two samples but also their corresponding

labels. The formulation for CutMix is as follows:

x̃ = Mxi + (1−M)xj

ỹ = μyi + (1− μ)yj ,
(2)

where M indicates the binary mask used to perform the

cutout and fill-in operation from two randomly drawn im-

ages. μ are values (in [0,1]) randomly drawn from the Beta

distribution. Samples of the CutMix technique applied to

various medical images are shown in Figure 1.

CutOut This technique was proposed by DeVries et al.
[17] and is a simple augmentation technique for improving

the regularization of CNNs. CutOut was formulated based

on the idea of extending dropout [26] to a spatial prior in
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the input space. CutOut performs occlusions of an input

image similar to the idea proposed in [5]. Rather than par-

tially occluding portions of an image [5], CutOut performs

fixed-size zero-masking to fully obstruct a random location

of an image. CutOut differentiates from dropout as it is an

augmentation technique and visual features are dropped at

the input stage of the CNN whereas in dropout, this occurs

in intermediate layers. The goal of CutOut is to not only

improve regularization of CNNs but improve robustness to

occluded samples in real-world applications. Samples of

CutOut applied to medical images are shown in Figure 1.

3.2. Calibration and Performance Metrics

As follows are descriptions of the two techniques used

to evaluate the effects of the modern augmentations on the

calibration of CNNs. The first technique is a quantitative

metric based on error and the second technique allows for

visualizing calibration through reliability plotting.

Expected Calibration Error (ECE) [41] is a very widely

leveraged metric for quantifying the calibration of neural

networks. This approach provides a scalar summary statis-

tic of calibration by grouping a models predictions into

equally-spaced bins (B). The weighted average of the dif-

ference between accuracy and confidence across the bins is

outputted. The formulation of ECE from [22] is as follows:

ECE =
B∑

b=1

nb

N
| acc(b)− conf(b)|, (3)

where n represents the number of samples. Gaps in calibra-

tion or miscalibration is represented by the difference be-

tween acc and conf . In terms of the subsequently described

reliability plotting, this represents the visual gaps between

the identify function and plotted model calibration line.

Reliability Plotting allows for visualizing the calibration

of neural networks in a qualitative manner [15, 42]. The

plot shows expected accuracy as a function of the confi-

dence. In the case of a perfectly calibrated model, the plot-

ted line will be identical to the identity function. Deviations

from the diagonal identity function line represents miscali-

brations which have occurred. The reliability diagram im-

plementation and formulation is based on this paper [22].

Accuracy and AUROC are the two statistical metrics

used to assess the general performance of the CNNs. Accu-

racy measures the fraction of predictions from the validation

dataset which the model predicted correctly after training is

completed. The area under the receiver operating charac-

teristic (AUROC) is a robust measure of the ability for the

binary classifier to discriminate between class labels [23].

3.3. Medical Image Datasets

As follows are brief descriptions of the open-source

medical image datasets used in our experiments. For train-

ing of the CNNs, 80% of the dataset is partitioned and 20%

is used to perform the validation respectively.

Skin Cancer Dataset The Skin Cancer Dataset was

sourced from the International Skin Imaging Collaboration

(ISIC) organization [1]. The dataset is open-source and

consists of 3,297 processed dermatological skin images of

mole lesions partitioned into malignant (diseased) and be-

nign (normal) classes. Factors which differentiate images

are mainly based on the pigmented skin lesions [29].

CXR Pneumonia Dataset The chest radiograph (CXR)

dataset was gathered from the open-source ”Chest X-Ray

Images for Classification” repository from UCSD [31]. The

dataset consists of 5,863 x-ray images (both anterior and

posterior) from the normal and pneumonia classes. Images

between class labels are differentiated based on hazy shad-

owing and opacity’s found in x-rays with pneumonia.

MRI Tumor Dataset The magnetic resonance imaging

(MRI) dataset of the human brain was sourced from an

open-source repository on Kaggle [51]. The dataset con-

tains 3,264 images split into tumorous and no tumor classes.

The main differentiating factor between classes are the cir-

cular tumorous lesions which are typically in a difference

shade compared to other regions [6].

CT COVID-19 Dataset The CT (computed tomogra-

phy) dataset of COVID-19 is from the open-source UCSD

COVID-CT repository [59]. The dataset consists of 812

CT scans split into the COVID-19 positive and negative

classes. COVID-19 is identified in a CT based on ground-

glass opacity, vascular enlargements, and white or hazy

shadowing of the lung [25].

3.4. Model Architectures and Augmentations

To perform the experiments, the widely leveraged CNN

architecture, ResNet is utilized [24]. ResNet is applied to

various medical image analysis tasks for transfer learning

thus providing a robust ground-truth for experimentation

[33]. Taking into account varying CNN sizes, both ResNet-

50 and ResNet-101 are benchmarked across the modern

augmentation techniques. Implementations of ResNet fol-

low the standard Keras Tensorflow [2] applications plu-

gin 1. The implementation of CutMix [60], CutOut [17],

and MixUp [62] augmentations follow open-source devel-

opments based on the original formulations 2.

1https://keras.io/api/applications
2https://github.com/ayulockin/

DataAugmentationTF
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3.5. Training Details

All models across each dataset are trained for 100 epochs

with cross entropy loss. Each dataset used contains two dis-

tinctive class labels. Thus, models are trained with two out-

put logits for each input. Experiments are carried out us-

ing the stochastic gradient descent (SGD) optimizer [32],

a batch size of 64, and learning rate 0.001. Input images

are scaled to 224x224 pixels. For CutOut, a mask size of

50x50 pixels is used. Other augmentations follow the same

parameters from open-source implementations.

4. Results
As follows is a summary of our systematic experimen-

tation of modern augmentations on medical image analysis

using performance-based and calibration-based evaluations

across each medical image modality. Performance metrics

are reported in Table 1 and calibration error is reported in

Table 2 with reliability plots displayed in Figure 2.

4.1. Skin Cancer Dataset

4.1.1 Performance

The performance metrics (accuracy and AUROC) for both

ResNet-50 [24] and ResNet-101 [24] for each augmenta-

tion technique on the skin cancer modality [1] are shown in

1a. For the ResNet-50 baseline on the skin cancer dataset,

an accuracy of 79.2% and AUROC of 88.9% was achieved

(Row 1). All augmentations presented minor increases in

accuracy and AUROC, the most significant being MixUp

[62] at an accuracy of 80.3% (+1.1% over ResNet-50). In

terms of AUROC, CutMix [60] achieved an AUROC of

89.8% (+0.9% over ResNet-50). In summary, for ResNet-

50, no highly significant benefits in terms of performance-

based metrics were observed using modern augmentations.

For ResNet-101 on the skin cancer modality, the base-

line achieved an accuracy of 79.8% and AUROC of 88.5%.

For this model, the CutMix [60] and CutOut [17] aug-

mentations performed slightly worse than the baseline in

terms of accuracy. CutOut [17] also performed worse

than the baseline for AUROC. MixUp [62] performed the

best for both performance-based metrics at an accuracy of

82.5% (+2.7% over ResNet-101) and AUROC of 89.7%

(+1.2% over ResNet-101). In summary, for ResNet-101,

MixUp [62] presented fairly significant benefits in terms of

performance-based metrics.

4.1.2 Confidence Calibration

The ECE calibration [22] results for the modern augmen-

tations on the skin cancer modality are shown in Table 2

(Row 1 and Row 2). The lower the ECE, the higher level

of calibration for the model. For ResNet-50, the baseline

ECE was 0.1812. All modern augmentation techniques

lowered the ECE, the highest decrease was observed in Cut-

Mix [60] at 0.1286 (-0.0526). For ResNet-101, the baseline

ECE was 0.1676. MixUp [62] and CutMix [60] both low-

ered the ECE however, CutOut [17] increased the ECE to

0.1967 (+0.0291). The most significant decrease in ECE

for ResNet-101 was observed in CutMix [60] at 0.0973 (-

0.0703). For both models, across the augmentations, Cut-

Mix [60] presented the most significant decreases in ECE

providing higher calibration. The reliability plots [22] for

the skin cancer modality are shown in Figure 2a.

4.2. CXR Pneumonia Dataset

4.2.1 Performance

The performance-based metrics for the CXR modality [31]

are reported in Table 1b. The ResNet-50 baseline per-

formed with an accuracy of 92.7% and AUROC of 94.4%.

Both MixUp [62] and CutMix [60] presented significant in-

creases in both accuracy and AUROC however, CutOut [17]

decreased both accuracy and AUROC. The most significant

increase in the performance-based metrics was observed in

MixUp [62] with an accuracy of 94.4% (+1.7%) and AU-

ROC of 98% (+3.6%). In summary, MixUp [62] presented

the highest benefits in terms of performance.

For ResNet-101, the baseline accuracy was 87.2% and

AUROC was 90.2%. All augmentations presented increases

in both performance-based metrics. The highest increase in

accuracy was observed in MixUp [62] at 93.9% (+6.7%).

The highest increase in AUROC was observed in CutMix

[60] at 97.7% (+7.5%). In summary, both MixUp [62] and

CutMix [60] presented increases in performance.

4.2.2 Confidence Calibration

The ECE calibration results for the modern augmentations

on the CXR pneumonia modality are shown in Table 2 (Row

2 and Row 3). The ResNet-50 baseline had an ECE of

0.0675. Both MixUp [62] and CutMix [60] decreased the

ECE. However, CutOut [17] increased the ECE slightly.

The lowest ECE was observed for CutMix at 0.0351 (-

0.0324). ResNet-101 had a baseline ECE of 0.1150. All

augmentations reduced the ECE, MixUp [62] had the most

significant decrease at 0.0340 (-0.081). In summary, both

MixUp [62] and CutMix [60] presented the most benefits

for calibration. The reliability plots displaying the level of

calibration for the CXR pneumonia modality are shown in

Figure 2b for both the pneumonia and normal class labels.

4.3. MRI Tumor Dataset

4.3.1 Performance

The performance-based metrics for the MRI modality are

reported in Table 1c. For ResNet-50, the baseline performed

with an accuracy of 64.7% and AUROC of 68.4%. In this
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(a) Skin Cancer

(b) CXR Pneumonia

(c) MRI Tumor

(d) CT COVID-19

Figure 2. Calibration Reliability Plots. Shown for both models across each augmentation technique for all medical modalities. Left:

ResNet-50 plot, Right: ResNet-101 plot.
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Model Augmentation Accuracy AUROC

ResNet-50 [24] None 0.792 0.889

ResNet-50 [24] MixUp [62] 0.803 0.890

ResNet-50 [24] CutMix [60] 0.797 0.898
ResNet-50 [24] CutOut [17] 0.801 0.894

ResNet-101 [24] None 0.798 0.885

ResNet-101 [24] MixUp [62] 0.825 0.897
ResNet-101 [24] CutMix [60] 0.796 0.889

ResNet-101 [24] CutOut [17] 0.760 0.879

(a) Skin Cancer

Model Augmentation Accuracy AUROC

ResNet-50 [24] None 0.927 0.944

ResNet-50 [24] MixUp [62] 0.944 0.980
ResNet-50 [24] CutMix [60] 0.941 0.977

ResNet-50 [24] CutOut [17] 0.917 0.941

ResNet-101 [24] None 0.872 0.902

ResNet-101 [24] MixUp [62] 0.939 0.976

ResNet-101 [24] CutMix [60] 0.933 0.977
ResNet-101 [24] CutOut [17] 0.886 0.915

(b) CXR Pneumonia

Model Augmentation Accuracy AUROC

ResNet-50 [24] None 0.647 0.684

ResNet-50 [24] MixUp [62] 0.607 0.671

ResNet-50 [24] CutMix [60] 0.725 0.825
ResNet-50 [24] CutOut [17] 0.705 0.748

ResNet-101 [24] None 0.705 0.791
ResNet-101 [24] MixUp [62] 0.627 0.738

ResNet-101 [24] CutMix [60] 0.607 0.644

ResNet-101 [24] CutOut [17] 0.568 0.633

(c) MRI Tumor

Model Augmentation Accuracy AUROC

ResNet-50 [24] None 0.700 0.724

ResNet-50 [24] MixUp [62] 0.680 0.757
ResNet-50 [24] CutMix [60] 0.653 0.754

ResNet-50 [24] CutOut [17] 0.633 0.656

ResNet-101 [24] None 0.653 0.706

ResNet-101 [24] MixUp [62] 0.706 0.765
ResNet-101 [24] CutMix [60] 0.613 0.708

ResNet-101 [24] CutOut [17] 0.673 0.746

(d) CT COVID-19
Table 1. Performance-based metrics of various state-of-the-art CNN models across each medical modality.

Dataset Model Baseline MixUp [62] CutMix [60] CutOut [17]

Derm ResNet-50 [24] 0.1812 0.1424 (-0.0388) 0.1286 (-0.0526) 0.1726 (-0.0086)

Derm ResNet-101 [24] 0.1676 0.1020 (-0.0656) 0.0973 (-0.0703) 0.1967 (+0.0291)

CXR ResNet-50 [24] 0.0675 0.0409 (-0.0266) 0.0351 (-0.0324) 0.0750 (+0.0075)

CXR ResNet-101 [24] 0.1150 0.0340 (-0.081) 0.0448 (-0.0702) 0.1024 (-0.0126)

MRI ResNet-50 [24] 0.3419 0.3675 (+0.0256) 0.1259 (-0.2416) 0.2874 (-0.0801)

MRI ResNet-101 [24] 0.2665 0.3675 (+0.101) 0.3487 (+0.0822) 0.3770 (+0.1105)

CT ResNet-50 [24] 0.2866 0.2361 (-0.0505) 0.1909 (-0.0957) 0.3367 (+0.0501)

CT ResNet-101 [24] 0.3237 0.1975 (-0.1262) 0.2382 (-0.0855) 0.2464 (-0.0773)
Table 2. Expected Calibration Error (ECE) (M = 15 bins) across various medical imaging modalities and CNN architectures.

scenario, MixUp [62] reduced the performance for both ac-

curacy and AUROC while CutMix [60] and CutOut [17]

increased the performance. The highest performing aug-

mentation was observed in CutMix [60] at an accuracy of

72.5% (+7.8%) and AUROC of 82.5% (+14.1%).

For ResNet-101, the baseline performed with an accu-

racy of 70.5% and AUROC of 79.1%. All calibration met-

rics performed with lower performance-based metrics leav-

ing the baseline as the highest performing model. The high-

est decrease in performance was observed in CutOut [17]

at an accuracy of 58.6% (-11.9%) and AUROC of 63.3%

(-15.8%).

4.3.2 Confidence Calibration

The ECE calibration results for the modern augmentations

on the MRI tumor modality are shown in Table 2 (Row

5 and Row 6). For ResNet-50, the baseline ECE was

0.3419. In this scenario, CutMix [60] and CutOut [17] low-

ered the ECE and MixUp [62] increased the ECE to 0.3675

(+0.0256). The highest decrease in ECE was observed for

CutMix [60] at an ECE of 0.1259 (-0.2416). ResNet-101

has a baseline of 0.2665. Interestingly, all augmentations

increased the ECE the most significant increase was ob-

served in CutOut [17] at 0.3770 (+0.1105). The baseline

for ResNet-101 has the lowest ECE. The reliability plots

for the MRI tumor modality are shown in Figure 2c.

4.4. CT COVID-19 Dataset

4.4.1 Performance

The performance-based metrics for the CT modality [59]

are reported in Table 1d. For ResNet-50, the baseline

performed with an accuracy of 70.0% and AUROC of

72.4%. In terms of accuracy, all augmentations presented

lower accuracy compared to the baseline the most signif-
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icant observed in CutOut [17] with an accuracy of 63.3%

(-6.7%). For AUROC, both MixUp [62] and CutMix [60]

increased performance and CutOut [17] reduced the AU-

ROC to 65.6% (-6.8%). The highest increase in AUROC

was observed in MixUp [62] at 75.7% (+3.3%).

For ResNet-101, the baseline performed with an accu-

racy of 65.3% and AUROC of 70.6%. In terms of accuracy,

MixUp [62] and CutOut [17] presented increases while Cut-

Mix decreased the accuracy to 61.3% (-4%). The highest

increase in accuracy was observed in MixUp [62] at an ac-

curacy of 70.6% (+5.3%). For AUROC, all augmentations

presented increases in performance the most significant ob-

served in MixUp [62] at an AUROC of 76.5% (+5.9%).

4.4.2 Confidence Calibration

The ECE calibration results for the modern augmentations

on the CT COVID-19 modality are shown in Table 2 (Row 7

and Row 8). For ResNet-50, the baseline ECE was 0.2866.

In this scenario, MixUp and CutMix reduced the ECE while

CutOut increased the ECE (+0.0501). The most significant

ECE decrease was observed in CutMix at an ECE of 0.1909

(-0.0957). ResNet-101 had an ECE baseline of 0.3237. All

augmentations reduced the ECE the most significant de-

crease was observed in MixUp at 0.1975 (-0.1262). Reli-

ability plots for the CT modality are shown in Figure 2

4.5. Interpretation

In summary, it is evident that in certain scenarios of med-

ical image analysis, modern image augmentations can in-

crease performance and significantly improve confidence

calibration of CNNs. It is also important to understand

that certain modern augmentations can decrease the perfor-

mance and lead to miscalibration of CNNs. Table 3 shows a

numerical summary of the amount of times a specific mod-

ern augmentation increased or decreased the level of cali-

bration across all experiments.

Augmentation ↑Calib ↓Calib

MixUp [62] 6 2

CutMix [60] 7 1

CutOut [17] 4 4
Table 3. Numerical summary of calibration results from experi-

mentation for augmentations across all modalities.

From these results, it is evident that CutMix increased

the level of calibration (decreased expected calibration er-

ror) most frequently (7 out of 8 times). MixUp also pre-

sented significant impact on calibration having increased

the level of calibration for 6 out of 8 experiments. However,

CutOut increased calibration only 4 out of 8 times. Such

performance shows that not all modern augmentations can

positively effect calibration. CutOut could potentially be

detrimental to the calibration of CNNs for medical image

analysis tasks. We hypothesize that the reason for CutOut

reducing performance is because it can potentially remove

clinically relevant regions from the images. On the other

hand, MixUp and CutMix modify visual information but do

not remove regions completely.

5. Conclusion
In this paper, we have compared the effects of several

modern data augmentations on the confidence calibration

of CNNs for various medical image analysis tasks using

open-source datasets. CNNs are often prone to overcon-

fidence and unreliable uncertainty estimates leading to a

low amount of awareness. Improper quantification of un-

certainty can be a high risk in the clinical setting and could

potentially lead to medical errors. Through our in-depth

experiments on the calibration of CNNs for medical image

analysis using both ECE and reliability plotting, it is evi-

dent that certain modern augmentations (e.g. MixUp and

CutMix) present significant benefits in terms of calibration,

while others (CutOut) could worsen performance. Addi-

tionally, through the use of conventional performance-based

metrics, it is evident that modern augmentations can also

significantly increase the accuracy of CNNs. In conclusion,

the usage of modern augmentations in medical image anal-

ysis CNNs can be beneficial in improving the reliability of

models to improve clinical decision-making, however they

should be benchmarked before implementation.
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