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Abstract

The classification of multi-label thoracic images presents
a considerable challenge due to the severe intrinsic imbal-
ances inherent in the dataset. During the testing phase,
the model encounters both predominant (head) and less
frequent (tail) classes, demanding not only proficiency in
image feature extraction but also a comprehensive un-
derstanding of label relationships. Traditional medical
image classifiers have historically relied on exploiting a
small number of dominant head classes. Nevertheless,
this approach often yields suboptimal classification out-
comes. To resolve this issue, we propose an enhanced
version of the Multi-Label Graph Convolutional Network
(ML-GCN). Our approach integrates the incorporation of
experts, each focusing on distinct aspects of the input
dataset, class-balanced sampling, Log-Sum-Pooling (LSE
pooling), an attention layer, and regularization through
KL divergence. By synergistically applying these tech-
niques, our model significantly outperforms the baseline
vanilla ML-GCN, capitalizing on nuanced architectural ad-
justments. Through this comprehensive approach, we effec-
tively demonstrate the versatility of our model in address-
ing the specific task of multi-label long-tailed classification
within the realm of chest X-ray datasets. Furthermore, our
methodology exhibits promising potential for extension to a
diverse array of datasets characterized by long-tailed dis-
tributions, establishing a strong foundation for its appli-
cation within various domains. In order to ensure the re-
producibility of this study, we will make the source code
publicly available: github.com/lisaseo9704/2023 ICCVW
CVAMD NCIA500
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1. Introduction

Deep Learning (DL) has emerged as a transformative

force within diverse medical domains, due to its unparal-

leled capability for rapid and accurate disease diagnosis.

The emergence of COVID-19 has underscored the pivotal

importance of expeditious and reliable diagnostic proce-

dures, particularly in the domain of Chest X-ray images.

Contemporary DL models possess the ability to pinpoint

precise areas of pathological conditions and provide cogent

explanations for predictions when analyzing individual X-

ray images. As a result, these DL models are progressively

being leveraged to assist medical practitioners to arrive at

precise diagnostic determinations.

Figure 1: Distribution of the imbalanced chest X-ray dataset

However, the efficacy of previous methods diminishes

when confronted with imbalanced datasets harboring a sub-

stantial number of classes. Notably, a bias towards sim-

plicity may appear, wherein models tend to favor well-

represented head classes, potentially compromising the

overall fairness of the classification process. The compe-

tition’s provided chest X-ray dataset exemplifies this issue

acutely, featuring a remarkable imbalance with 26 distinct

classes, as depicted in Figure 1. To mitigate this inherent

bias, we approach the given task from a multifaceted per-

spective.
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: (a) The number of labels in a single image (b)

Head class (except ’no finding’) diseases were diagnosed

with other class ones. The arrangement follows a descend-

ing order, commencing with the head class and extending

towards the tail class. Subsequently, the data was normal-

ized on a column-wise basis.

In contrast to multi-class classification, multi-label clas-

sification introduces the possibility of co-occurring labels.

Analysis of the dataset reveals that out of 264, 849 images,

171, 983 (more than half) manifest two or more labels con-

currently, as vividly depicted in Figure 2(a). This high in-

cidence of co-occurrence underscores the complex label re-

lationships. Notably, many of the prominent head class dis-

eases exhibit diagnostic connections with other classes, as

shown in Figure 2(b). Intriguingly, ’No finding,’ a leading

head class, stands out as an exception, never co-occurring

with other diseases, and thus previously overlooked.

Addressing these aforementioned issues, we added four

experts of the same architecture to ML-GCN which enables

the input data to be interpreted from distinct viewpoints.

Since there is a possibility that all of the experts could

be biased toward head classes, we used RIDE loss [30]

and KL-divergence as a regularizer for experts to encour-

age the learning of inconsistent semantic features respec-

tively. Moreover, by implementing a sampling method in

our model, we were able to enhance the performance to

some extent in the tail classes.

Furthermore, the utilization of ML-GCN enabled us

to uncover label dependencies, a pivotal aspect given the

prevalent co-occurrence patterns in multi-label classifica-

tion tasks.

Our contributions can be summarized as follows:

• We empirically demonstrate the effectiveness of sam-

pler, pooling, attention layer and KL-divergence func-

tioning as a regularizer in the context of multi-label

long-tail classification using chest X-ray datasets. This

suggests the potential applicability of our methodology

to a wide range of datasets characterized by long-tailed

distributions.

• The capability of ML-GCN to discern label dependen-

cies and its harmonization with the newly introduced

experts have resulted in a substantial enhancement in

the overall performance of the model.

2. Related work
Long-Tailed Classification Within the realm of extensive

medical image datasets, imbalances and long-tailed distri-

butions are widespread, characterized by the abundance

of samples in head classes while tail classes contend with

scarcity and associated challenges. A variety of strategies

have emerged to navigate the complexities of long-tailed

classification.

One common technique involves dataset resam-

pling [4, 10, 23, 37]. This approach entails oversampling

tail classes while undersampling head classes. However,

this methodology often triggers overfitting in tail classes,

rendering insufficient training for the head classes. Recent

advancements have been aimed at mitigating concerns

related to overfitting. For instance, [21] sought balance

by introducing synthetic minority samples derived from

majority samples. However, we chose not to adopt this

approach due to the possible presence of noise in synthetic

X-ray images, which might hinder the effectiveness of

training.

Another avenue addresses label ratios and their reflec-

tion in the loss function [22, 8, 26, 3]. Focal loss [22]

fine-tunes cross-entropy by assigning lower weights to

easily learnable data and prioritizing challenging or mis-

classifiable instances. Given that tail classes manifest

less frequently in mini-batches, higher learning rates are

assigned, while head classes’ frequent appearance calls for

lower learning rates during each training step. However,

the intrinsic attributes of long-tailed distributions can lead

to challenges, with higher learning rates disproportionately

affecting tail classes and thus impeding proper model

training.

”Decoupled training,” an additional technique, aims to

disentangle representation learning from classifier learn-

ing [20, 19, 38, 6, 29, 33, 9]. Notably, [20] demonstrated

the efficacy of this approach by highlighting that classifiers

trained on long-tailed distributions tend to exhibit smaller

norms, particularly for tail classes. Appropriate counter-

measures are then applied to redress this imbalance.

Enhancements in long-tailed classification performance

have also been realized through model improvements.

Ensemble methodologies, such as [36] have recently

gained prominence. These often involve a shared feature-

extraction backbone accompanied by multiple experts for

label classification [2, 7, 30, 35]. SADE [35] has three

expert, each trained with different loss functions. The first

is inclined towards the original long-tailed distribution, the

second towards uniform class distribution, and the third
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towards inversely long-tailed class distribution. This design

fosters SADE’s robustness across diverse test class distribu-

tions. [11] harnessed two classifiers, a Classification Head

(CLS Head), and a Supervised Contrastive Learning Head

(SCL Head), to glean image representations of normal

(head class) and abnormal (tail class) instances through

contrastive learning. This approach yielded impressive

results in thorax datasets.

Multi-Label Classification Multi-Label Classification

entails predicting zero or multiple classes for a given input

instance (image). Within the multiple-instance learning

(MIL) framework, PCAM [32] computes the likelihood of

disease lesions within extracted features. While proficient

in thoracic disease classification, PCAM’s focus on head

classes impeded its suitability for scenarios featuring

numerous classes, often resulting in overfitting when the

class count exceeds 20. Moreover, numerous studies

have pursued patch-based methodologies to comprehend

thorax images. For instance, [1] partitioned images into

non-overlapping patches, selecting those that encapsulate

the most informative features. Although computationally

efficient, this approach overlooks label dependencies.

Additionally, [27] used Swin Transformer blocks for

multi-label classificaion on chest X-ray images surpass-

ing DNet [12] which employed location-aware Dense

Networks (DNetLoc) to integrate image data and spatial

information for tail classes, based on location-aware Dense

Networks (DNetLoc).

In contradistinction to binary multi-class classification,

binary multi-label classification grapples with mutually

non-exclusive labels, necessitating label correlations. In

medical domains, such correlations are frequent due to

inherent human nature. Consequently, prior research often

centers around pathological prior knowledge to formulate

models [14, 16].

3. Method
In this section, we elaborate on our strategies of the given

multi-label long-tailed classification task. We draw inspira-

tion from the adjacency matrix, which captures label de-

pendencies, and embrace a multi-modality approach. The

pipeline of our model is visualized in Figure 3

3.1. Base line

To address the multi-label classification task, we set

ML-GCN [5] as our baseline model. This model utilizes

ResNet-101 as its backbone and stacked GCN [34] as a

classifier. The inherent capacity of this classifier lies in its

adeptness at aggregating substantial label-related informa-

tion through a graph structure, where nodes symbolize la-

bels and edges signify label co-occurrences. Therefore, the

stacked GCN replaces MLP. To offer deeper insights into

Figure 3: A) The newly added experts extract features

from an image, followed by B) LSE pooling applies to

these features. Finally, we incorporate (C) a single layer of

the Transformer Encoder, implementing a Multi-Head At-

tention (MHA) mechanism. The purpose of the MHA is

twofold: to mitigate information loss and to explicitly rep-

resent the inherent features of the data.

the architectural design of our network, the backbone gener-

ates a 512-dimensional vector denoted as u ∈ R
26, whereas

the expert module generates the matrix A ∈ R
26×512. By

applying a sigmoid function to their matrix product, Au
we derive the anticipated probabilities associated with each

label. To put it more succinctly, the ith value within Au
represents the logit of the ith label’s probability.

This process highlights that the probability associated

with a given label solely relies upon the corresponding row

in matrix A. The ith row, labeled as Ai, interacts with vec-

tor u through an inner product, resulting in a precise value

within Au for that label’s index.

In essence, Ai serves as a representative feature for its

corresponding label. Consequently, we individually exam-

ined the 26 rows of matrix A, treating each one as a 512-

dimensional representation of a distinct label. Our objective

was to enhance this representation to render it more suit-

able for long-tailed multi-label classification. While draw-

ing inspiration from [20], we encountered the challenge

that CXR LT datasets demonstrate high levels of label co-

occurrence. Consequently, an alternative approach was nec-

essary to extract correlation information between labels, in-

stead of individually calibrating weights for each label. To

address this, we leveraged Multi-Head Attention (MHA)

as a means to effectively utilize the correlating information

among labels.

Concurrently, we applied a weight-sharing MHA to the

u, an output from the backbone. This step aimed to elevate

the vector u into a more potent and informative form. Fur-

ther elaboration on these processes can be found in section

“3.5. Multi-Head Attention”.

The original ML-GCN was initially trained on the
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Wikipedia dataset using 300-dim GloVe [24]. However, the

pre-trained dataset significantly diverged and was incongru-

ent with the chest X-ray dataset that we should use. There-

fore, we created new sentences to train GloVe. We com-

piled positive labels for each data instance and subsequently

assembled them into sentences. For instance, if both ”No

Finding” and ”Support Devices” possessed positive labels,

we combined them into a sentence in the format of ”No

Finding” + ”Support Devices”. This procedure yielded a

customized adjacency matrix for the given dataset.

As previously mentioned, we incorporated four experts,

each equipped with independent stacked GCNs. Each ex-

pert assumed a distinct role to enhance applicability to the

multi-label classification task.

3.2. Class-balanced sampling

In light of the properties exhibited by long-tailed distri-

bution datasets, data associated with tail classes often re-

mains underrepresented within mini-batches Consequently,

these instances might not be adequately trained, thereby

weakening the classifier’s robustness. To address this is-

sue, we used balanced data sampling, wherein the number

of labels from each class is considered, as opposed to ran-

dom sampling. This sampling strategy ensures uniformity

across classes. However, this method is not likely to be ap-

plicable to multi-label long-tailed datasets due to significant

relevance of label co-occurrence within such datasets.

Let pi denote the probability of drawing the ith class la-

bel. This value, pi is mathematically expressed as follows:

pi =
C∑

j=1

p(j) p(i|j) =
C∑

j=1

p(j)
ni,j

nj
(1)

where p(j) represents the probability of drawing the jth

class label, p(i|j) signifies the probability of drawing the

ith class label given the jth class, nj stands for the number

of positive labels in the jth class, and ni,j denotes the num-

ber of positive labels in the ith class co-occurring with the

jth class label.

In datasets with single-label annotations, ni,j is zero

when i �= j, simplifying probability calculations based

solely on label counts. However, in multi-label datasets,

ni,j takes non-zero values even when i �= j. This is es-

pecially significant since many labels frequently co-occur

with the primary class, leading to an increase in ni,j when i
corresponds to the primary class index. Consequently, even

the class-balanced sampling distribution skews towards the

main class.

As a result of co-occurrence, random sampling tends to

disproportionately include the head class in mini-batches,

exceeding the true label distribution. This exacerbates the

tail distribution’s imbalance, exceeding the challenges en-

countered in cases with single-label annotations, thus inten-

sifying the challenges of learning from tail classes.

We delved into two class-balanced sampling strategies.

Firstly, the ”cycle” method involves sequential label selec-

tion, ensuring a uniform distribution of p(j) = 1
C across

all labels. Random sampling, on the other hand, exhibits

a noticeable skew towards the head class. However, cy-

cle sampling equalizes the distribution to 1
C , ectifying the

sampled data distribution. Nevertheless, an imbalance per-

sists due to the uncontrolled nature of p(i|j) arising from

co-occurrence.

The second method, ’least-sampled’, prioritizes the

smallest among previously drawn samples for the subse-

quent selection. For instance, the initial sample is drawn

randomly, while subsequent samples are drawn from the

unselected pool of preceding ones. Given that this method

takes into account prior samples, a sufficiently large batch

size is crucial. Notably, this approach skews the distribu-

tion of p(j) towards the tail class. Consequently, while

single-label annotations yield a tail-class skewed distribu-

tion, CXR-LT experiences an exacerbated imbalance, lead-

ing to a head-class skewed distribution even with this ap-

proach.

We adopted cycle sampling for our approach. When re-

ferring to class-balanced sampling later, we specifically re-

fer to cycle sampling. Our rationale for this decision will be

elaborated upon in Section 5.

Moreover, it should be noted that class-balanced sam-

pling tends to under-sample head classes and over-sample

tail classes to achieve uniformity across all classes. This

approach, however, carries the potential risk of overfitting

on tail classes.

Table 1 presents the observed improvements in mean Av-

erage Precision (mAP) scores resulting from the utilization

of class-balanced sampling as compared to basic (random)

sampling. The mAP scores are categorized by the class

type: head, middle, and tail. Enhanced mAP scores are

evident across all categories, including the tail class, as in-

dicated in Table 1. The anticipated performance enhance-

ments are particularly notable for middle and tail classes.

Contrary to initial expectations, we also observed perfor-

mance improvements in the head class. As previously men-

tioned, the head class is characterized by a substantial vol-

ume of data, which might dominate other classes due to its

size and pronounced label co-occurrence. This situation

suggests that the model may not effectively learn the fea-

tures of other classes during random sampling, potentially

misattributing these features to the head class, thereby re-

sulting in reduced performance. However, it is notewor-

thy that the mAP score increase for tail classes was rel-

atively marginal. Furthermore, in our pursuit of optimiz-

ing performance, we found it necessary to implement an

early stopping mechanism during the training phase to mit-

igate the risk of overfitting, particularly within tail classes.

This measure became imperative as we observed counter-
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productive divergence between the progress of head classes

and other classes. The intricate balance between enhanc-

ing tail classes and potential trade-offs with head and other

classes posed a challenge, ultimately making the efficacy of

class-balanced sampling for overall performance enhance-

ment less pronounced.

In light of these considerations and to further enhance

the model’s performance, we explored alternative strategies,

which led us to experiment with the application of a regu-

larization technique.

Head Middle Tail

Basic 0.4640537777 0.114901875 0.0939671

Class-Balanced 0.506851888 0.170249875 0.1075862

Table 1: Dividing classes into three sets: Head: Top 9

classes, Tail: Bottom 9 classes, Middle: Classes not in Head
or Tail. And comparing the two sampling methods: Basic:

mAP score for Random Sampling, Cycle: mAP score for

Class-balanced Sampling for each classes

3.3. RIDE loss

Ensemble learning utilizing multi-expert models has

demonstrated remarkable performance gains on long-tailed

datasets [36]. However, a potential concern arises where

certain experts may observe the same segments of training

data. This similarity in their learnable weights could ren-

der the ensemble approach ineffective and devoid of merit.

Furthermore, the adoption of over-sampling strategies for

long-tailed distributed data introduces an elevated risk of

overfitting.

Despite the modest impact on performance and the in-

herent risk of overfitting, we decided to use class-balanced

sampling specifically for tail classes. To preempt the afore-

mentioned risks, we harnessed the RIDE loss [30] which

leverages KL-divergence for regularization across each ex-

pert.

Technically, KL-divergence is not a metric; rather, it

gauges the dissimilarity between two given distributions.

Typically, the two distributions closely align through min-

imizing KL-divergence. However, RIDE operates in the

contrary manner. It optimizes experts by striving to dis-

joint the support of the two distributions as extensively as

possible. Additionally, RIDE optimizes classification loss

to achieve congruent classification outcomes across diverse,

independent experts.

The initial formulation of the RIDE loss entails the sum-

mation of KL-divergence for all pairs of experts, as ex-

pressed below:

Ldiv(x) =
−1

n− 1

∑
i�=j

KL(p(i)|p(j)) (2)

where n signifies the number of experts, and p(i) represents

the distribution derived from the ith expert.

Due to its computationally intensive nature, the original

RIDE loss was approximated with Equation (3), offering

greater practicality. Considering n as the number of experts,

the total number of terms in Equation (2) is (n− 1)!.

Ldiv(x) =
−1

n− 1

∑
i

KL(p̄|p(i)) (3)

where p̄ represents the average of distributions across each

expert.

This substitution reduces the summation complexity

from (2) from (n − 1)! to n, thus enhancing computational

efficiency.

We used the binary cross-entropy (BCE) loss as our clas-

sification loss function. Ultimately, the comprehensive loss

formulation is as follows:

Ltotal(x, y) = Lclf (x, y) + λLdiv(x) (4)

The value of λ holds significance, as an excessively large

value can undermine classification performance. Opting for

a moderately small, positive value is prudent. (In our study,

we set λ to 0.2.)

By adhering to this approach, we aim to mitigate the po-

tential pitfalls associated with expert overlap and overfit-

ting, fostering a more robust and effective ensemble learn-

ing strategy.

3.4. Pooling

Pooling serves as a pivotal and effective technique for

extracting pertinent information from X-ray images, which

initially incorporated max pooling. However, we replaced

max pooling with Log-Sum-Pooling (LSE) [25] to precisely

identify disease-specific regions. The formulation for LSE

pooling is presented as follows:

xp =
1

γ
· log

[ 1
P

·
∑

(i,j)∈P

exp(γ · xi,j)
]

(5)

where xp denotes the resultant feature subsequent to LSE

pooling, (i, j) signifies the spatial coordinates of the ex-

tracted feature set P from the pre-trained Resnet [13]. The

hyper-parameter γ is introduced, where its value is prede-

termined as 0.5.

In contrast to the earlier work of [31], we introduced LSE

pooling directly following the feature extractor, eschewing

the inclusion of an intermediary transition layer. This pool-

ing methodology was uniformly applied across all experts

within our model.

3.5. Multi-Head Attention

Considering the attention-free nature of the vanilla ML-

GCN architecture, we postulated that incorporating Multi-

Head Attention (MHA) could enhance the original model’s
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Figure 4: A layer of Transformer Encoder applied to each

modality

ability to grasp intricate relationships between the input tho-

rax image and the GloVe vector. To address this hypothesis,

we introduced a singular layer of Transformer Encoder [28],

with its weight shared between the pooled image vector and

the GloVe vector. By doing so, MHA becomes capable

of capturing correlations between the image representation

and label dependencies, thereby facilitating a richer under-

standing of the data.

Attention(QQ,KQ, VQ) = softmax(
QQ ·KT

Q√
dK

VQ) (6)

For clarity of this notation, Q indicates both the pooled vec-

tor derived via LSE pooling, and the GloVE vector encap-

sulating label dependencies. Meanwhile, dK denotes the

dimension of the KQ vector.

MHA(QQ,KQ, VQ) = Concat(head1, . . . , headh)W

headi = Attention(QQ,KQ, VQ)

This process segregates the input vector into multiple

heads, permitting attention score calculation within each

head. By doing so, the model gains the capability to cap-

ture intricate relationships within the input vector, conse-

quently enhancing its capacity to represent the input vec-

tor more comprehensively.Referencing Table 2, our im-

plemented approach incorporating MHA showcased dis-

cernible improvements in the model performance. Further-

more, it is confirmed that MHA of each expert actually con-

tributed to enhancing their performance. Additionally, we

validated that the introduction of MHA for each expert in-

deed contributed to performance enhancement. It’s note-

worthy, however, that alternative methodologies involving

multiple encoders exhibited no significant impact on the

model’s performance, as evidenced by the observed results.

This strategic integration of MHA demonstrates its po-

tential to significantly bolster the capabilities of the ML-

GCN framework. By imbuing the model with the capacity

to discern complex relationships within the data, MHA of-

fers an avenue for substantial performance improvements,

as showcased by the empirical evidence.

4. Experiment
4.1. Dataset

To address the growing need for automated and accu-

rate disease diagnosis from radiological images, extensive

datasets like MIMIC-CXR [18] and ChestX-ray8 [31] have

been made available..

For this competition, we were furnished with the ex-

panded MIMIC-CXR-JPG [17].It offers a substantial col-

lection of thorax images in a JPG format, originating from

MIMIC-CXR. This dataset includes both structured labels

and textual reports. Notably, MIMIC-CXR-JPG presents a

distinct advantage in terms of convenience, as compared to

MIMIC-CXR, which supplies the dataset in a DICOM for-

mat. While MIMIC-CXR-JPG is comprised of 14 classes,

the dataset provided for this competition integrated an addi-

tional 12 classes. Consequently, our task entailed the classi-

fication of an extremely imbalanced dataset encompassing

a total of 26 classes, known as the CXR-LT [15].

4.2. Evaluation metrics

In the context of this competition, the assessment of

model performance employed three key metrics: mean Av-

erage Precision (mAP), mean Area under the Receiver Op-

erating Characteristic curve (mAUC), and mean F1 score

(mF1). Out of these metrics, mAP served as the primary

evaluation criterion, selected due to its suitability for ap-

praising performance within the long-tailed dataset context.

4.3. Implementation details

Each stacked GCN block comprised two layers of Graph

Convolutional Networks (GCNs), with dimensions of 1024

and 2048 for each respective layer. The word embedding

methodology followed the comprehensive approach delin-

eated in 3.1. This procedure entailed the transformation

of each label node within the graph into a 300-dimensional

vector. The backbone of our ML-GCN model was ResNet-

101, pre-trained on ImageNet. The final Convolutional

Neural Network (CNN) block of ResNet-101, in conjunc-

tion with the stacked GCN, constituted a single expert. As

elucidated, we incorporated a total of 4 experts, each at-

tuned to extract distinctive facets of information from the in-
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put images. Additionally, we integrated Log-Sum-Pooling

(LSE) and Multi-Head Attention (MHA) into our model.

The hyperparameter γ for LSE pooling was specifically set

to 0.5.

Prior to processing, the input images underwent bilin-

ear interpolation resizing to dimensions of 1024x1024. To

foster balanced class representation, we employed class-

balanced sampling. The Adam optimizer was chosen, char-

acterized by a learning rate of 1e − 4 and a beta values set

at [0.9, 0.99]. Finally, for the RIDE loss, λ was assigned a

value of 0.2.

In total, the architecture was meticulously designed to

compel the model to comprehend varied perspectives that

efficiently extract pertinent information from input images.

Additionally, this design aimed to prevent any undesirable

information loss throughout the processing pipeline.

4.4. Diversity of experts

Figure 5: The norm values of each label for the experts are

arranged in descending order, ranging from the head class

to the tail class.

KL-divergence was leveraged as a training mechanism

for our experts, enabling them to discern distinct features

within the tail class data. In order to empirically validate

our hypothesis that experts would specialize in different as-

pects, we conducted a thorough analysis of the weight val-

ues assigned to each label within the stacked Graph Con-

volutional Networks (GCNs). The weight profiles for all

experts were visualized in Figure 5, revealing a semblance

among the graphs. However, our assertion that the experts

underwent diverse training is substantiated by the variance

observed in their respective norms. In essence, this indi-

cates that these experts are attuned to identifying disparate

segments within the latent vectors. Remarkably, despite this

diversity, the classification outcomes remained consistent.

4.5. Results

Model
Development

Phase

ML-GCN 0.178

ML-GCN(2 experts) 0.229

ML-GCN(4 experts) + s 0.271

ML-GCN(4 experts) + s + RIDE 0.273

ML-GCN(4 experts) + s + RIDE + LSE + MHA 0.276

Table 2: The mean Average Precision(mAP) scores of

our approaches were computed during the developmen-

tal phase. The variable s denotes the utilization of class-

balanced sampling.

Model
Test

Phase

ML-GCN(4 experts) + s + RIDE + LSE + MHA 0.279

Table 3: During the testing phase, the mAP score was eval-

uated to gauge the efficacy of our model.

Table 2 underscores that the mAP score of the vanilla

ML-GCN was the lowest among the considered configura-

tions. To assess the efficacy of experts, we introduced two

additional experts to the vanilla ML-GCN. This augmenta-

tion led to a substantial improvement in the model’s per-

formance metrics. However, the model still demonstrated

instability when classifying tail classes. As a remedy, we

applied class-balanced sampling and integrated two more

experts. This comprehensive approach, targeting both head

and tail classes, led to a noteworthy surge in the mAP score,

as evident from Table Table2. Subsequently, our explo-

ration delved into the application of regularization tech-

niques, specifically employing the RIDE loss. This re-

finement yielded a modest yet discernible enhancement in

performance. Lastly, by implementing Log-Sum-Pooling

(LSE) and incorporating an additional Multi-Head Atten-

tion (MHA) layer, we observed a further incremental boost

in performance.

In comparison to the vanilla ML-GCN, our model ex-

hibited remarkable performance gains. Notably, in the test

phase (Table 3), we achieved a final mAP of 0.279, akin to

the mAP score achieved during the developmental phase.

This substantiates our claim that the model demonstrates

not only robustness but also a degree of generalizability, as

it exhibited consistent performance across distinct evalua-

tion phases.

5. Limitations
While our approaches exhibited a progressive increase

in mAP scores, there remain areas of further refinement.

The inclusion of multiple experts, class-balanced sampling,
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RIDE loss, LSE pooling, and MHA demonstrated their ap-

propriateness for the task at hand. However, certain limita-

tions are discernible, as outlined below:

• The generation of new sentences (as described in 3.1)

aimed at identifying label co-occurrences proved to

be suboptimal. The form or content of these sen-

tences might not have been conducive to the model’s

requirements, possibly leading to a scarcity of relevant

information. To address this, an alternative strategy

could involve leveraging the text files present within

the MIMIC-CXR-JPG dataset, thereby potentially mit-

igating this information deficit.

• An analysis of Table 2 suggests that the efficacy of the

RIDE loss was comparatively lower than that of other

methods. While it is challenging to categorically assert

that employing a regularizer was ill-suited, the results

shown in Figure 5. warrant its consideration. Thus, an

avenue for enhancement lies in exploring alternative

regularizers or augmenting the RIDE loss with addi-

tional loss terms.

• In evaluating the performance of the RIDE loss for reg-

ularization, an alternative sampling strategy (’Least-

Sampled’, as indicated in Table 4) was investigated

in place of class-balanced sampling (’Cycle’, as in-

dicated in Table 4). ’Cycle’ involves repetitive and

uniform label sampling, while ’Least-Sampled’ selects

the labels that have been sampled as few as possible.

Although ’Least-Sampled’ leads to a more balanced

sample distribution compared to class-balanced sam-

pling due to its uniformity, it also has a tendency to

over-sample tail classes, potentially exacerbating over-

fitting. The significant disparity between the most fre-

quent label and the least frequent label by a factor

of around 160 underscores the long-tailed nature of

the dataset. Consequently, even under ’Cycle’ sam-

pling, the support device to Pneumoperitoneum ratio

differs by approximately 10 times. Applying ’Least-

Sampled’ narrows this gap to around 4 times. Intu-

itively, under the presumption that our model had been

adequately regularized to resist overfitting, the perfor-

mance should have witnessed a substantial improve-

ment under ’Least-Sampled’. This is due to the model

learning the tail class labels more frequently. Nonethe-

less, as highlighted in Table 4, the mAP score under

’Cycle’ outperforms that under ’Least-Sampled’. This

outcome suggests that while regularization did con-

tribute to modest performance enhancement, it did not

entirely succeed in alleviating overfitting, in reference

to the results in Table 2

Taking into account of future endeavors, we intend to

address the aforementioned aspects.

Least-Sampled Cycle

0.236 0.271

Table 4: Comparison between the ’Least-Sampled’ and

’Cycle-Sampled’

Devices Pneumoperitoneum ratio

Cycle Sampling 200 21 9.52

Least Sampling 168 43 3.90

Table 5: The average number of labels assigned through

sampling by 512 instances

6. Conclusion
Conclusively, the classification of multi-labels within

thoracic images represents a formidable and intricate chal-

lenge, particularly under the circumstances of a highly im-

balanced dataset. The task necessitates a comprehensive

approach that encompasses both the recognition of label in-

terdependencies and the extraction of image features. In

the realm of label dependencies, we harnessed the founda-

tional ML-GCN model. To address the latter facet, we un-

dertook advancements and refinements to the ML-GCN ar-

chitecture, thereby elevating the overall performance met-

rics. Foremost among these enhancements was the strate-

gic incorporation of sampling techniques and the augmenta-

tion of expert perspectives, demonstrating their pivotal role

in enhancing model efficacy. Additionally, we ascertained

the utility of regularization techniques and pooling mecha-

nisms, which proved pivotal for further augmenting model

performance. Furthermore, our extensive experiments af-

firm the potential of class-balanced sampling, RIDE loss,

and KL-divergence as versatile tools, capable of bolster-

ing the performance of diverse baseline models when con-

fronted with the challenges of distinct datasets in similar

tasks.
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