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Abstract

We propose an exhaustive methodology that leverages all
levels of feature abstraction, targeting an enhancement in
the generalizability of image classification to unobserved
hospitals. Our approach incorporates augmentation-
based self-supervision with common distribution shifts in
histopathology scenarios serving as the pretext task. This
enables us to derive invariant features from training images
without relying on training labels, thereby covering differ-
ent abstraction levels. Moving onto the subsequent abstrac-
tion level, we employ a domain alignment module to facil-
itate further extraction of invariant features across varying
training hospitals. To represent the highly specific features
of participating hospitals, an encoder is trained to classify
hospital labels, independent of their diagnostic labels. The
features from each of these encoders are subsequently dis-
entangled to minimize redundancy and segregate the fea-
tures. This representation, which spans a broad spectrum of
semantic information, enables the development of a model
demonstrating increased robustness to unseen images from
disparate distributions. Experimental results from the PACS
dataset (a domain generalization benchmark), a synthetic
dataset created by applying histopathology-specific jitters
to the MHIST dataset (defining different domains with var-
ied distribution shifts), and a Renal Cell Carcinoma dataset
derived from four image repositories from TCGA, collec-
tively indicate that our proposed model is adept at man-
aging varying levels of image granularity. Thus, it shows
improved generalizability when faced with new, out-of-
distribution hospital images. The code is available at:
https://github.com/miladsikaroudi/ALFA.

1. Motivation

In Domain Generalization (DG), domain alignment tech-
niques are popular [32, 17, 7], as they aim to minimize dif-
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Figure 1. The Venn diagram delineates the feature space of the
source hospitals (H1 and H2). The yellow area demarcates the
label space employed in the classification task. The shared space
between feature and label spaces underscores the features that are
conducive to executing tasks within the label space.

ferences among source domains to learn domain-invariant
features that can withstand unforeseen shifts in the target
domain [30].

Ignoring domain-specific information in favor of
domain-invariant features may not always lead to the best
generalization performance, as noted by Mancini et al. [19]
and Shankar et al. [27]. Bui et al. [3] proposed the meta-
Domain Specific Domain Invariant (mDSDI) method and
provided a mathematical proof for that.

In the field of histopathology, various domains are often
represented by different hospitals [24, 28]. In such settings,
biases or distribution shifts can emerge due to the process
of sample collection, slide preparation, or interpretation [9,
10]. These shifts can potentially create a mismatch between
training and testing data. Recognizing these potential biases
is paramount for ensuring precise and dependable outcomes
in computational pathology [18, 4].

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Different distribution shifts happening in digital pathol-
ogy setups.

Figure 1 illustrates that, apart from the invariant features,
there exists a set of unique features specific to each hospital.
These features are of significant importance as they can es-
tablish a mapping from the feature space to the label space
or be useful for performing the task Y .

Although acknowledging these biases may lessen distri-
bution shifts, their total elimination, especially in computa-
tional pathology, remains unattainable [2]. Several factors,
such as the absence of standardization across pathology
labs, the need for diverse inclusion, variable slide prepa-
ration guidelines, and inter-observer variability [2], result
in visual and histomorphological differences in histopathol-
ogy slides. Notably, different races or sexes might display
distinct histomorphologic patterns [22], thereby contribut-
ing to distribution shifts between training and testing data,
as demonstrated in Fig. 2.

As a result, valuable invariant features such as (1)
color/stain, (2) resolution, and (3) shape, among others [13],
can be identified in digital pathology setups as shown in
Fig. 1. The distribution shifts across various hospitals or
domains are typically unknown beforehand. However, self-
supervision that mimics these differences (through augmen-
tation) can help the model learn representations invariant to
these variations.

Self-supervision nudges the model to derive features use-
ful for predicting the data itself, independent of any preva-
lent hard labels [21, 6]. Consequently, this can lead to the
capture of more fundamental perceptual information like
edges, corners, and textures in digital images [5]. The amal-
gamation of these self-supervised representations with other
invariant and specific ones allows for a spectrum of repre-
sentations, covering all levels of feature abstraction.

This chapter proposes a new method that extracts dis-
entangled feature abstractions at all levels to enhance the
model’s ability to generalize to new data from different hos-

pitals/domains. Accordingly, the main contributions are:

• The proposed approach, called ALFA, is an extension
of the mDSDI [3] technique for DG. ALFA disen-
tangles the components of Self-Supervised Learning
(SSL), domain-invariant, and domain-specific repre-
sentations to reduce redundancy and improve gener-
alization to unseen target data. By exploiting all levels
of feature abstraction, ALFA strives to fully utilize the
available information in the dataset.

• The mDSDI [3] approach utilizes adversarial training
to extract domain-invariant features, but it can be un-
stable due to a non-differentiable step (gradient re-
versal). Therefore, a loss function called “soft class-
domain alignment” is proposed to minimize the aver-
age divergence between two domain probability distri-
butions and a target probability distribution represent-
ing a soft class label for each class. This loss function
provides better stability during optimization and more
distinct latent space for the representation.

• To evaluate the effectiveness of the proposed improve-
ment, we conduct experiments on two public datasets:
the PACS [16] benchmark for DG and a Renal Cell
Carcinoma (RCC) subtyping task extracted Whole
Slide Images (WSI) of The Cancer Genome Atlas
(TCGA) [14] data portal.

2. Methods
The key concepts underlying the invented approach have

been discussed up to this point. In this section, the specific
details of how ALFA is implemented will be delved into.
A visual representation and a high-level overview of ALFA
framework are provided in Fig. 3. It should be noted that the
symbols “⊕” and “◦” have been employed as concatenation
and union operators, respectively.

Several components are included in the invented inte-
grated network: (1) an SSL representation zIα = α(I; θα)),
with α being the SSL encoder that is parameterized by θα;
(2) a domain-invariant representation zIβ = β(I; θβ)), pa-
rameterized by θβ , which serves as the domain invariant
feature extractor; (3) domain-specific representation zIγ =
γ(I; θγ)), where γ stands for the domain-specific feature
extractor parameterized by θγ ; (4) a domain aligner, param-
eterized by θ∆β

, denoted as ∆β(z
I
β ; θ∆β

) : zIβ → 1 : Nc;
(5) a domain classifier, parameterized by θ∆γ , represented
as ∆γ(z

I
γ ; θ∆γ

) : zIγ → 1 : Nh, where Nc and Nh refer
to the number of classes, and the number of participating
hospitals/domains in the training, respectively; (6) a regular
classifier, parameterized by θc, i.e., ∆c(z

I
α ⊕ zIβ ⊕ zIγ ; θc) :

zIα ⊕ zIβ ⊕ zIγ → 1 : Nc. The hospital and images sample
spaces are represented by H and I respectively. Images,
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or I , are denoted by their target labels, or y, and hospital
labels, or h, as (I, y, h).

2.1. Phase I: Extracting different levels of feature
abstraction

Phase I consists of multiple steps: Histopathology-
tailored self-supervised learning, determining general fea-
tures across hospitals, finding hospital-specific features,
feature pair disentanglement, establishing the classification
loss, and finally inference and training.

2.1.1 Construction of Histopathology-tailored Self-
supervision Representations: Capturing the
“Synthetic-Invariant Features”

At the core of “Phase I” is the training of an SSL feature
extractor, represented by α(I; θα). This component is de-
signed to discern and learn generalizable features, which
will become instrumental for accomplishing downstream
tasks. The learning process employs a technique known as
a triplet loss, a methodology similar to the one detailed in
the study by Wang et al. [33].

The first step in this learning process involves the cre-
ation of pseudo-classes. These are generated by applying a
set of transformations, denoted as T , to a single image. This
leads to the production of an augmented image, symbolized
as It = t(I)|t ∼ T .

An image originating from a different pseudo-class, de-
noted as Id, is also utilized in the training process. Together,
these images serve as training inputs for the network, which
employs the following triplet loss formula:

LSSL = max(||zIα − zItα ||2 − ||zIα − zIdα ||2 +M, 0), (1)

In this equation, ||.||2 signifies the Euclidean distance
and M represents the margin, which is set heuristically at
1.5. This formula guides the network’s learning process
by maximizing the intra-class similarity and minimizing the
inter-class similarity. The distribution shift is not known a
priori but the most prevalent shift according to Fig. 2 are
color/stain or shape or resolution differences. Accordingly,
transformations set T includes HED jitter (a histopathol-
ogy tailored jitter that works on HED channel instead of
RGB channels) with a jitter parameter of θ = 0.05, as pre-
scribed by Tellez et al., 2018 [31]. Additionally, random
affine transformations are applied, including rotation (vary-
ing between -10 and 10 degrees), translation (ranging from
0 to 0.1), and shear (from -1 to 1) in both x and y direc-
tions. For the resolution differences, we used resizing im-
ages to a lower resolution, then resizing them back to their
original size, effectively achieving pixelation. These trans-
formations contribute to the generation of diverse pseudo-
classes, providing a wide range of inputs to strengthen the
learning process. In Eq. 1, the margin, represented by M ,

is set to 1.5. The mining strategy employed is semi-hard
mining, for which the margin is specified as 0.7.

2.1.2 Hospital-invariant representations: “general fea-
tures across hospitals”

Aligning class relationships across hospitals promotes more
transferable knowledge for model generalization compared
to individual hard label prediction [7]. This study aims to
impose an overall pattern of retrieved features that represent
the intrinsic similarity between the semantic structures of
different classes. Soft labels and class labels are used for
consistency across domains.
– Soft Confusion Matrix: Let z

(k)
c denote the mean of

class c in the domain k in the embedding space. We use soft-
max activation for representing the probability of belonging
to classes as s(k)c = softmax (∆β(z

(k)
c )/τ), where τ > 1 is

the temperature. The group of soft labels, [s(k)c ]Cc=1, serves
as a form of soft confusion matrix associated with a particu-
lar domain/hospital. By combining the class labels with this
soft confusion matrix, our goals, i.e., domain alignment and
retaining the class relationship, can be fulfilled.
– Soft Class Label Injection: In addition to this soft confu-
sion matrix, proposed in [7], we have injected the soft class
labels through a discrete probability density function that
represents each class as follows

pc := {i|i = δci + (1− δci )(
ζ

nc − 1
)}, (2)

where δci is the Kronecker delta which is defined as δci :={
1 if i = c
0 otherwise , and ζ ⪅ 1 is a constant value indicating a

high probability value (e.g., ζ = 0.9), and nc is the number
of classes.

Overall, the aim is to minimize the average divergence
[26] over all the C classes between three distributions: two
arbitrary hospitals/domains samples drawn from the two
training hospitals’ images, (Ih1 , ., h1) ∼ H1, (Ih2 , ., h2) ∼
H2, and the probability distribution of each class, defined
in Eq. 2.

The Soft Class-Domain Alignment loss which serves as
the domain-invariant loss in our design is defined as

Li((Ih1
, ., h1), (Ih2

, ., h2); θβ ◦ θ∆β
) :=

1

C

C∑
c=1

1

6

[
DKL(s

(h1)
c ∥s(h2)

c ) +DKL(s
(h2)
c ∥s(h1)

c )+

DKL(pc∥s(h2)
c ) +DKL(s

(h2)
c ∥pc)+

DKL(s
(h1)
c ∥pc) +DKL(pc∥s(h1)

c )
]
,

(3)

where DKL(p∥q) =
∑

r pr log
pr

qr
, and θβ ◦ θ∆β

is the
union of all the parameters for β feature extractor and ∆β

classifier.
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Figure 3. ALFA has two phases: In Phase I, three feature extractors extract different levels of feature abstraction, and disentangled features
are concatenated for classification. In Phase II, updated feature extractors’ representations are concatenated and fed into the updated
classifier to update parameters in a Meta-learning fashion while α′ and β′ feature extractors remain frozen.

The inclusion of our histopathology-tailored SSL fea-
tures as a level of feature abstraction could raise the ques-
tion of how distinct SSL features are from the hospital-
invariant features in our design. The subsequent theorem
and lemma aim to provide clarity on this matter:

Theorem 1. Given transformations T1 for α (synthetic dis-
tribution shifts assuming in the self-supervision pretext task)
and T2 for differences of hospitals (due to the real distri-
bution shift across domains/ hospitals), and an optimiza-
tion objective to minimize the covariance between zα and
zβ obtained respectively by T1 (explicit data augmenta-
tion) and T2 (implicit changes due to sources of distribution
shifts), are distinct and uncorrelated in the feature space
and both contribute unique information for mapping from
feature space to label space.

Lemma 1. The following assertions hold for the features
zα = α(T1(I)) and zβ = β(T2(I)) for a given image I:

1. zα and zβ are uncorrelated:

If the optimization objective successfully minimizes
the covariance, the covariance between zα and zβ ,
Cov(zα, zβ), will be close to zero. This indicates that
zα and zβ are uncorrelated, i.e., changes in zα do not
predict changes in zβ and vice versa.

2. zα and zβ contribute unique information to the map-
ping:

Let us consider a mapping function M that maps the
feature space to the label space. For zα and zβ , the
mapping function M can be written as M(zα, zβ). If
zα and zβ are uncorrelated, removing one from the
mapping will reduce the information provided by M .
That is, M(zα, ∅) ̸= M(zα, zβ) and M(∅, zβ) ̸=
M(zα, zβ).

Therefore, given transformations T1 for α and T2

for domain shifts, and an optimization objective
to minimize the covariance between the resulting
augmentation-based self-supervised features and in-
variant features are distinct and uncorrelated in the
feature space and both contribute unique information
for mapping from feature space to label space.

2.1.3 Hospital-specific representations: “least general
or specific features”

To extract the most specific features, similar to [3], γ(I; θγ)
is used for feature extraction followed by the ∆γ domain
classifier that is trained in a supervised manner using cross-
entropy loss to predict the domain/hospital label:

Ls := −E(I,.,h)∼Ih log∆γ(z
I
γ ; θ∆γ ). (4)

2.1.4 Disentanglement loss between pairs of extracted
features

To prevent redundancy and ensure diversity in our feature
extractors, we need to disentangle their resulting represen-
tations from each other. This can be achieved by zeroing the
covariance matrix between pairs of random vectors, such as
za and zb. A zero-covariance matrix indicates that the vari-
ables are independent and have no correlation or effect on
each other. To enforce this disentanglement, we define pair-
wise covariance loss functions between each pair of α, β,
and γ feature extractors’ representations as

Lαβ := −EI∼I
[
||Cov(zIα, zIβ)||2

]
, (5)

Lαγ := −EI∼I
[
||Cov(zIα, zIγ)||2

]
, (6)

Lβγ := −EI∼I
[
||Cov(zIβ , zIγ)||2

]
. (7)
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Figure 4. 2D feature embeddings for the feature extractors in mDSDI [3] versus in ALFA: (target hospital: ‘NCI’). ‘All’ is the concate-
nation of domain-specific and domain-invariant representations for the mDSDI [3] (up), and SSL, domain-invariant, and domain-specific
representations for ALFA (bottom). Opaque-shaded scatters are WSIs representations obtained by averaging on patches’ representations
(transparent-shaded).

2.1.5 Classification loss using aggregation of extracted
features

The goal of the classifier ∆c(z
I
α ⊕ zIβ ⊕ zIγ ; θc) : z

I
α ⊕ zIβ ⊕

zIγ → 1 : Nc is to classify the images according to their
hard class labels using a concatenation of all the extracted
features:

Lc := −E(I,y,.)∼I
[
y log∆c(z

I
α ⊕ zIβ ⊕ zIγ ; θc)

]
, (8)

where y is the target class label for image I .

2.1.6 Inference and training in Phase I –

Using all loss functions, the feature extractors and modules
are updated via

Ltotal := a1LSSL + a2Li + a3Ls+ (9)
a4Lαβ + a5Lαγ + a6Lβγ + a7Lc,

where ai coefficients are selected as balanced parame-
ters between loss functions and all were set to 1.0 in our
experiments as the loss values were in the same range.
Through backward the total loss, i.e., Ltotal, the updated en-
coders, i.e., α′(I; θα′), β′(I; θβ′), γ′(I; θγ′), and classifiers
∆′

β(I; θ∆′
β
), ∆′

γ(I; θ∆′
γ
) and ∆′

c(I; θ∆′
c
) are obtained.

2.2. Phase II: Meta-learning for generalization im-
provement

To adapt the domain-specific representation zγ to the tar-
get domain using information from source domains, we use
the same meta-learning framework as [3]. The α′ and β′

feature extractors remain frozen while the γ′ feature ex-
tractor and ∆′

c classifier are updated. We aim to update

ω = θγ′ ◦ θ∆′
c

through meta-learning by dividing each hos-
pital data Hk into disjoint meta-train Htr

k and meta-test Hte
k

sets and the objective is to

min
ω

Lmeta
c := f(ω −∇f(ω,Htr

k ),Hte
k ), (10)

where

f(ω = θγ′ ◦ θ∆′
c
,Hk) = (11)

− E(Ik,yk,k)∼Hk

[
yk log∆

′
c(z

Ik
α′ ⊕ zIkβ′ ⊕ γ′(Ik, θγ′); θ∆′

c
)]
,

where yk and k are the target class label and hospital label,
respectively, for image Ik.

3. Experiments and Results
The study evaluates the effectiveness of the proposed

method, ALFA, against mDSDI [3], HA [29], and ERM
through a leave-one-domain/hospital-out evaluation using
data from multiple hospitals/domains. The evaluation in-
cludes reporting “accuracy” for the target (hold-out) do-
main/hospital, as well as “AUROC” and “recall” metrics
for RCC subtyping, which is important for cancer diagnosis
tasks.

3.1. Datasets

In this study, we evaluated our approach using three
unique benchmarks: PACS, a Domain Generalization
benchmark; synthetic-MHIST, a synthetic histopathology
dataset mimicking staining variances, derived from the
MHIST dataset by adding HED jitter; and a task involving
Renal Cell Carcinoma (RCC) subtyping (Fig. 6).
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Figure 5. 2D feature embedding for the feature extractors in mDSDI [3] (upper row) versus in ALFA (ours) (bottom row), target do-
main:‘Photo’ on PACS.

– PACS: P(hoto), A(rt), C(artoon), S(ketch) is a bench-
mark for DG on natural images. It has been created by
intersecting the classes in Caltech256 (Photo), Sketchy
(Photo,Sketch) [23], TU-Berlin (Sketch) [8] and Google
Images (Art painting, Cartoon, Photo). This benchmark in-
cludes four domains (Photo, Sketch, Cartoon, Painting), and
7 common categories ‘dog’, ‘elephant’, ‘giraffe’. ‘guitar’,
‘horse’, ‘house’, and ‘person’ with a total 9991 images.

– Sythetic-MHIST: MHIST [34] is a histopathology
dataset containing two different class labels, i.e. Hyper-
plastic Polyp (HP), and Sessile Serrated Adenoma (SSA)
with a total of 3152 images. It involves the distinction be-
tween the clinically-important binary categories of HPs and
SSAs, which is a challenging problem with considerable
pathologists’ inter-variability. In this study, we syntheti-
cally created four different domains by applying HED jit-
ter borrowed from [31] with different degrees to this tiny
dataset. HED jitter is a histopathology-tailored color jitter
that applies random distortions in the HED color space.

– RCC subtyping dataset from TCGA: The RCC dataset
[29, 12], comprises patches of various Renal Cell Carci-
noma (RCC) cancer subtypes collected from five different
hospitals. Due to the absence of certain cancer subtypes,
two of the hospitals’ data have been merged. The dataset
comprises 4 image repositories: (1) H-MD, (2) MSKCC,
(3) IGC, and (4) NCI from TCGA. The dataset contains
≈ 70k patches of size 224× 224.

3.2. Experimental Setup

The backbone of all feature extractors was the ResNet18
[11], pre-trained on ImageNet [15], with all of its batch nor-
malization layers frozen as per the guidelines given in [25].
All features were embedded to a size of 512. The Adam
optimizer was employed with an initial learning rate of 5e-
5. A batch size of 32 was established and set the maximum
number of iterations to 3000.

Figure 6. Different datasets and their domains in this study.

3.3. Results

– Losses convergence: During the training, it was found
that γ feature extractor was dominating over other fea-
ture extractors and potentially causing a dampening effect
on their contributions to the model’s overall performance.
Hence, we added layer normalization [1] whenever the rep-
resentations are concatenated to address this issue. With
this modification, all losses converged almost simultane-
ously according to Fig. 7.
– Low-dimensional Embedding Visualization: In ac-
cordance with the best practices suggested in the origi-
nal UMAP paper [20], PCA [35] was applied to obtain
the first 50 principal components, followed by UMAP [20]
for further dimensionality reduction to 2. According to
Figs. 7 and 4, ALFA’s domain-invariant approach yields
a more powerful discriminatory representation for different
RCC subtypes or different categories on PACS, compared
to mDSDI [3], for domain-specific representations. In other
words, ALFA’s domain-invariant encoder learns some fea-
tures that are also learned by mDSDI’s domain-specific en-
coder. ALFA’s SSL representation provides useful repre-
sentation, which seems even better than mDSDI’s domain-
invariant features according to these figures.
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Figure 7. The behavior of ALFA’s loss functions during the training when the hold-out set was Art on PACS. (a) LSSL, (b) Li, (c) Ls, (d)
Lαγ , (e) Lαβ , (f) Lβγ , (g) Lc

3.3.1 PACS dataset classification task

The accuracy of mDSDI [3] and ALFA applied on PACS
have been reported in Table 1. It can be seen in Table 1,
except for the ‘Sketch’ with a high semantic shift in com-
parison to the rest of the target domains, ALFA outperforms
mDSDI [3] with an average accuracy of 83.75±6.72% com-
pared to mDSDI’s [3] average accuracy of 80.34 ± 5.60%.
According to this, ALFA cannot only be effective for gener-
alization to unseen hospitals but it can also be effective for
DG tasks for natural images.

Table 1. Results on PACS dataset
Accuracy (%)

Target Source ERM mDSDI [3] ALFA(ours)
Photo {A,C,S} 91.98 90.06 96.15

Art {P,C,S} 76.85 76.27 83.10
Cartoon {P,A,S} 74.87 76.20 78.71
Sketch {P,A,C} 76.76 78.85 78.41

Average 80.11± 6.76 80.34± 5.60 84.09± 7.06

3.3.2 Synthetic-MHIST classification task

Considering the results on the synthetic-MHIST dataset
in Table 2, we can see that ALFA (ours) outperforms
mDSDI [3] in all cases except for when the target domain
is θ = 0.05. On average, ALFA achieves higher accura-
cies, with an average accuracy of 84.17± 3.17% compared
to mDSDI’s average accuracy of 82.65 ± 5.02%. For the
case when θ = 0.5 is the target domain, which represents
the most challenging target domain with the highest degree
of corruption and accordingly highest distribution shift in
comparison to the rest of the source domains, the ALFA has
a significant improvement over mDSDI and ERM. This can
be attributed to the fact that incorporating self-supervision
representations, as ALFA does, can lead to improved perfor-
mance in generalization to unseen domains compared to us-
ing only specific and domain-invariant features, as mDSDI
does.

Table 2. Results on Synthetic-MHIST dataset
Target Source ERM mDSDI ours
θ = 0 θ = {0.01, 0.05, 0.5} 84.65 85.16 86.39

θ = 0.01 θ = {0, 0.05, 0.5} 84.75 86.18 86.28
θ = 0.05 θ = {0, 0.01, 0.5} 85.26 85.47 85.47
θ = 0.5 θ = {0, 0.01, 0.05} 75.64 73.80 78.6

Average 82.57± 3.93 82.65± 5.02 84.17± 3.17

3.3.3 RCC subtyping classification task

The accuracy of mDSDI [3], HA [29] approach, and ALFA
applied on RCC subtyping task has been reported in Table
3.

In the context of H-MD, ALFA (ours) exceeds the per-
formance of both ERM and mDSDI, achieving an accu-
racy of 65.52% as opposed to 72.49% and 51.72% respec-
tively. However, it falls short when compared to the HA
[29] method, which reaches 75.29% accuracy. This out-
come may indicate that, considering H-MD encompasses
two distinct data sources, methods that focus on extracting
invariant features are more effective. In this regard, HA
[29], which specifically targets hospital-invariant features,
outperforms both ALFA and mDSDI.

For the IGC dataset, both ALFA and mDSDI attain
the same accuracy of 86.21%, outperforming ERM and
HA [29], which scored 75.86% and 70.42%, respectively.
Given that both ALFA and mDSDI leverage a combination
of invariant and hospital-specific features, it’s reasonable
to speculate that the inclusion of specific features has en-
hanced their overall performance in this context. In essence,
the unique features sourced from the different hospitals ap-
pear to have provided valuable information that contributed
to improved performance on the IGC dataset.

At the NCI, ALFA again leads with an accuracy
of 86.36%, outperforming ERM (81.82%), mDSDI [3]
(72.73%), and HA [29] (83.38%).

In the case of MSKCC, ALFA’s performance is notably
lower with an accuracy of 84.69%, when compared to both
ERM (86.73%) and HA [29] (88.19%). However, ALFA
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Table 3. Results on RCC subtyping task
Accuracy (%) AUROC (%) Recall (%)

Target Source ERM mDSDI [3] HA [29] ALFA ERM mDSDI [3] HA [29] ALFA ERM mDSDI [3] HA [29] ALFA

IGC {NCI,
MSKCC,
H-MD}

75.86 86.20 70.42 86.21 93.23 95.78 88.36 95.33 57.14 82.88 62.38 85.39

NCI {IGC,
MSKCC,
H-MD}

81.82 72.73 83.38 86.36 96.49 94.46 97.32 97.83 83.08 71.46 85.48 86.41

MSKCC {IGC, NCI,
H-MD}

86.73 85.71 88.19 84.69 95.91 95.89 96.47 95.99 82.99 87.05 85.32 87.99

H-MD {IGC, NCI,
MSKCC}

72.49 51.72 75.29 65.52 85.38 88.37 90.16 90.48 72.96 51.85 78.42 66.67

Average
79.22
±5.36

74.09
±13.72

79.32
±6.49

80.69
±8.61

92.75
±4.34

93.62
±3.02

93.08
±3.34

94.90
±2.66

74.07
±10.38

73.31
±13.36

77.90
±8.44

81.62
±8.50

does surpass mDSDI, which has an accuracy of 85.71%.
This result might suggest that invariant features are more
conducive to effective generalization in this context than
specific features. Therefore, both mDSDI and ALFA, which
rely on a combination of site-specific and site-invariant fea-
tures, may not perform as well as HA [29] or even ERM.

According to this table, ALFA outperforms mDSDI [3],
HA [29], and ERM with average accuracy, AUROC, and re-
call of 80.69± 8.61%, 94.90± 2.66%, and 81.62± 8.50%,
respectively. ALFA performed similarly to mDSDI and
ERM in terms of AUROC and accuracy, but slightly better
overall. However, ALFA significantly outperformed other
methods in terms of recall metric, especially for the “NCI”,
and “IGC” target hospitals.

3.3.4 Ablation study

In the conducted ablation study, each element of ALFA
demonstrated its efficacy in improving overall generaliza-
tion, as illustrated in Table 4. We assessed feature ex-
tractors, labeled as α, β, and γ, in various active or inac-
tive states. Performance was evaluated across four subsets
from PACS and RCC, with an average accuracy score cal-
culated. When only α was active, the average accuracy was
lowest, at 48.63 ± 14.98 for PACS and 46.50 ± 12.20 for
RCC. There was a substantial increase in average accuracy
to around 78.88±6.99 for PACS and similar for RCC, when
either β or γ was activated while the others were inactive.
The highest average accuracies, 84.09± 7.06 for PACS and
80.70 ± 8.99 for RCC, were achieved when multiple fea-
ture extractors were activated concurrently, highlighting the
effectiveness of the complete ALFA method.

4. Conclusions

In this study, we introduced an inventive methodology
named ALFA (All Levels of Features Abstraction), which
exploits multiple feature extractors to disassociate features
at disparate levels of abstraction. The efficiency of ALFA
is substantiated across a range of benchmarks, such as
the commonly utilized DG benchmark PACS, a synthetic-
MHIST dataset, and Renal Cell Carcinoma subtype identi-
fication utilizing the TCGA database. ALFA successfully

Table 4. Ablation on PACS and RCC: Active feature extractor(s)
is/are blue, Deactivated one(s): gray

PACS Photo Art Cartoon Sketch Average
α, β, γ 69.70 53.17 44.28 27.38 48.63± 14.98
α, β, γ 91.13 73.33 75.68 75.38 78.88± 6.99
α, β, γ 94.43 77.34 72.05 71.46 78.82± 9.11
α, β, γ 90.11 75.48 76.23 75.99 79.45± 6.03
α, β, γ 94.73 78.61 73.93 72.02 79.82± 8.75
α, β, γ 95.38 82.03 78.37 78.67 83.61± 6.80
ALFA 96.15 83.10 78.71 78.41 84.09± 7.06

RCC IGC NCI MSKCC H-MD Average
α, β, γ 62.34 48.23 40.12 35.30 46.50± 12.20
α, β, γ 77.43 62.34 64.28 64.08 67.03± 6.28
α, β, γ 80.34 65.78 61.38 61.10 67.15± 8.11
α, β, γ 76.56 63.84 64.21 64.11 67.18± 5.99
α, β, γ 80.23 66.41 62.43 60.98 67.51± 7.85
α, β, γ 80.77 72.43 73.11 64.42 72.68± 5.67
ALFA 86.21 86.36 84.69 65.52 80.70± 8.99

surpassed the existing state-of-the-art mDSDI approach in
performance on PACS, underscoring its superior capabili-
ties. Moreover, in comparison to mDSDI and ERM, ALFA
showcased exceptional capability to generalize to previ-
ously unseen hospitals. In our approach, we employed a
straightforward augmentation-based self-supervision tech-
nique that was tailored for histopathology, enabling the ac-
quisition of invariant features. Concurrently, we introduced
a novel domain alignment loss function, termed ”soft class-
domain alignment” loss. This technique skillfully extracts
domain-invariant features, aligning data from two disparate
sources with soft class labels serving as the reference dis-
tribution, thereby enhancing our design significantly. As
advancements continue in the realm of self-supervision, the
incorporation of more effective SSL features could poten-
tially augment our design even further.
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van de Loo, Rob Vogels, Peter Bult, Carla Wauters, Willem
Vreuls, Suzanne Mol, Nico Karssemeijer, et al. Whole-slide
mitosis detection in h&e breast histology using phh3 as a
reference to train distilled stain-invariant convolutional net-
works. IEEE transactions on medical imaging, 37(9):2126–
2136, 2018.

[32] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and
Trevor Darrell. Deep domain confusion: Maximizing for
domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[33] Xiaolong Wang and Abhinav Gupta. Unsupervised learn-

ing of visual representations using videos. In Proceedings of
the IEEE international conference on computer vision, pages
2794–2802, 2015.

[34] Jerry Wei, Arief Suriawinata, Bing Ren, Xiaoying Liu,
Mikhail Lisovsky, Louis Vaickus, Charles Brown, Michael
Baker, Mustafa Nasir-Moin, Naofumi Tomita, et al. Learn
like a pathologist: curriculum learning by annotator agree-
ment for histopathology image classification. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 2473–2483, 2021.

[35] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent labora-
tory systems, 2(1-3):37–52, 1987.

2673


