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Abstract

The task of medical image segmentation presents unique
challenges, necessitating both localized and holistic seman-
tic understanding to accurately delineate areas of interest,
such as critical tissues or aberrant features. This com-
plexity is heightened in medical image segmentation due
to the high degree of inter-class similarities, intra-class
variations, and possible image obfuscation. The segmen-
tation task further diversifies when considering the study
of histopathology slides for autoimmune diseases like der-
matomyositis. The analysis of cell inflammation and in-
teraction in these cases has been less studied due to con-
straints in data acquisition pipelines. Despite the progres-
sive strides in medical science, we lack a comprehensive
collection of autoimmune diseases. As autoimmune dis-
eases globally escalate in prevalence and exhibit associa-
tions with COVID-19, their study becomes increasingly es-
sential. While there is existing research that integrates arti-
ficial intelligence in the analysis of various autoimmune dis-
eases, the exploration of dermatomyositis remains relatively
underrepresented. In this paper, we present a deep-learning
approach tailored for Medical image segmentation. Our
proposed method outperforms the current state-of-the-art
techniques by an average of 12.26% for U-Net and 12.04%
for U-Net++ across the ResNet family of encoders on the
dermatomyositis dataset. Furthermore, we probe the im-
portance of optimizing loss function weights and benchmark

our methodology on three challenging medical image seg-
mentation tasks.

1. Introduction

The development of potent CAD (Computer Aided Di-

agnosis) strategies has been aided by advances in computa-

tional power and image analysis algorithms over the past

decade. Medical imaging is fundamental to these CAD

methods. Obtaining accurate results from CAD techniques

relies on acquiring high-quality medical imaging and corre-

sponding annotation. These CAD approaches facilitate var-

ious tasks such as image classification, segmentation, spa-

tial mapping, and tracking. Out of these, medical image

segmentation is a particularly challenging task due to sev-

eral complexities. For example, in skin lesion image seg-

mentation, there exists significant intra-class variability and

inter-class similarity. This issue is exacerbated by the pres-

ence of obscuration and low contrast, which makes the task

of separating the affected area from the surrounding image

more challenging. On the other hand, sometimes the data

required to segment is very complex, with multiple fine-

grained and hard-to-segment objects, for example, in the

case of histopathology data of dermatomyositis (a kind of

autoimmune disease). We provide a few examples of the

large variability and low contrast in Figure 1, obscuration

in Figure 2, and multiple hard-to-segment small objects in

Figure 3.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Samples from the dermofit dataset for segmentation, we

observe a large lesion color variability from left to right. Interest-

ingly, the background color remains relatively consistent through-

out the samples. We also observe a change in contrast from left to

right. These confounding factors make the segmentation of skin

lesions difficult.

Figure 2. This figure contains samples from the ISIC 2017 dataset.

The ISIC-2017 dataset exhibits obscuration and significant intra-

class variability, resembling the Dermofit dataset (from Figure 1)

regarding inter-class similarity and low contrast (rightmost image).

In addition to these modality-specific complexities, med-

ical imaging datasets are considerably smaller than natural

datasets. The main reason for this is the significant expenses

and time involved in gathering, annotating medical datasets

and privacy concerns. Medical imaging datasets can only

be labeled by highly specialized clinicians instead of the

possibility of crowdsourced labeling in the case of natural

datasets. Privacy concerns pose significant challenges in the

open sourcing of medical datasets, particularly for rare or

emerging diseases. Medical datasets are typically restricted

to institutional use, even when made available [16].

Despite significant progress in medical science, some

diseases have not yet been fully comprehended [4]. Au-

toimmune diseases are a notable category in this context.

The lack of a comprehensive catalog of autoimmune dis-

eases, unlike other diseases, is attributed to the diverse na-

ture of their onset and progression [24]. There are still im-

portant research questions for autoimmune diseases regard-

ing environmental triggers, pathogenesis, cell inflamma-

tion, and interaction. Currently, there are over 80 classified

autoimmune diseases. Immune-modulatory drugs are com-

monly employed for the treatment of autoimmune diseases.

However, these drugs have a wide range of effects and lack

specificity for autoimmune diseases. Unfortunately, their

usage is often linked to other infections and malignant dis-

eases as undesirable side effects. Patients often have lim-

ited or no response to these treatments due to the variabil-

ity within these disorders. So, there is a pressing need for

more advanced, fast, and accurate ways to find novel re-

lationships and pathologies that can lead to more effective

treatments for autoimmune diseases. To accomplish this, it

is imperative to develop precise and adaptable techniques

Figure 3. Semantic segmentation task as defined in Section 3 with

input image on the left and the corresponding ground truth on the

right. On top, we have a sample image (on the left) and the cor-

responding ground truth (on the right) from the dermatomyositis

dataset. Similarly, a sample from the dermofit dataset is in the mid-

dle, and a sample from the ISIC-2017 dataset is at the bottom. Un-

like a single blob in the skin lesion dataset samples from dermofit

and ISIC 2017, we observe that the histopathology whole slide

image has many more fine-grained objects with hard-to-segment

boundaries. For all the images on the right, the yellow area rep-

resents the region of interest (foreground), and the rest is the area

other than the region of interest (background).

for analyzing autoimmune diseases related medical images.

Implementing AI-based Computer-Aided Diagnosis (CAD)

is a potential strategy for achieving this objective. In con-

trast to other diseases, however, lacking a definitive list and

a limited understanding of autoimmune disorders presents a

challenge. Consequently, there are few established data col-

lection mechanisms for autoimmune diseases. These fac-

tors contribute to the paucity of research on the intersec-

tion of autoimmune diseases and CAD approaches. Most

extant research in this field is either outdated or lacks open-

source methodologies. The study of autoimmune diseases is

paramount due to their increasing prevalence[5, 8, 11]. Au-

toimmune diseases impact a significant portion of the global

population, ranging from 5% to 8%. These conditions cause

considerable distress to patients and have been found to
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Figure 4. DEDL Architecture[22] with the APP (Autoencoder Post Processing) for dermatomyositis image segmentation as described in

Section 2.1. We use this architecture as our baseline and propose changes to it to improve by around 12.26% for U-Net and 12.04% for

U-Net++ - this is a considerable improvement over DEDL, as DEDL improved over the previous state-of-the-art approach Van Buren et al.
[26] by around 5% for segmentation.

have connections with COVID-19, the primary cause of the

recent worldwide pandemic [21, 23]. To bridge the divide,

Van Buren et al. [26] and Singh & Cirrone [22] have made

attempts. The main focus of these studies is dermatomyosi-

tis. This rare autoimmune disease has received limited at-

tention at the intersection of medical imaging and the ap-

plication of AI (Artificial Intelligence) for medical image

analysis. With this paper,

• We improve upon the existing state-of-the-art ap-

proach [22] for dermatomyositis segmentation by an

average of 12.26% for U-Net and 12.04% for Unet++

in Section 5.1. Additionally, we benchmark our ap-

proach on two other challenging skin-related datasets.

• We study the impact of adding a post-processing au-

toencoder in addition to U-Net and U-Net++ on three

medical imaging datasets in Section 5.1.1.

• We investigate the significance of cross-entropy loss

function weights on three challenging medical imaging

datasets in Section 5.1.2.

2. Background
Medical image segmentation separates the region of in-

terest, usually a lesion, cells, or other anatomical region of

interest, from the slide background. Traditional segmenta-

tion processes use pixel-level classification to group pixels

into different categories; in the case of semantic segmenta-

tion, these would be background and foreground. But with

the maturity of Convolutional Neural Networks(CNNs),

Ronneberger et al. [20] introduced U-Net - an autoencoder-

based architecture for biomedical segmentation. The U-Net

consists of an encoder and a decoder architecture, where

the encoder acts as a feature extractor, and the decoder

learns the mask by using the extracted features as input.

In addition, the decoder also incorporates the feature maps

from the encoder to improve scaling up the representation

to the image mask; these connections are called ”Skip-

connections.” Following U-Net, a wealth of architectures

have spawned: U-Net++[27], DeepLab [1], DeepLabV3+

[2], and Feature Pyramid networks (FPN) [12]. All of these

architectures build on the autoencoder architecture of U-

Net with skip connections. To increase the receptive field

of these architectures, various techniques have been intro-

duced, such as dilated networks [18] and nesting architec-

ture, as in the case of U-Net++[27]. Despite these advance-

ments and complex architectures, U-Net remains the choice

of architecture for medical image segmentation [17, 22, 26].

2.1. Application of Segmentation Techniques for
Autoimmune diseases.

Stafford et al. [24] conducted a comprehensive survey to

examine the application of AI in the context of autoimmune

diseases. They observed the median size of autoimmune

datasets is much smaller (99-540 samples per dataset) as

compared to datasets pertaining to other medical modali-

ties. The scarce available data poses a significant challenge

in acquiring informative priors for artificial intelligence-

based CAD approaches on these datasets resulting in sub-

par performance. Furthermore, most methodologies for an-

alyzing these datasets are antiquated and lack open-source

availability[22]. To overcome these shortcomings Van Bu-

ren et al. [26] proposed the use of U-Net for segmentation

of whole slide images of dermatomyositis histopathology

data and open-sourced their approach. Given the consider-

able size of the whole slide images (WSI) at 1408 × 1876,

a tiling approach was employed to partition the WSI into

smaller 256 × 256 images, with padding.

They also used a combination of Dice and Binary cross

entropy loss to attenuate the problem of pixel distribution

imbalance between the area surrounding the region of in-

terest (background pixels) and the region of interest (fore-

ground pixels). Due to this imbalance, the segmentation ar-

chitecture tends to focus more on the area surrounding the

region of interest than the region of interest for segmenta-
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Encoder Technique
U-Net

Baseline(w/o APP) w/ Relu APP w/ Gelu APP

ResNet-18
DEDL 0.4347 0.4608 0.4788

Ours 0.5618 0.5479 0.5582

ResNet-34
DEDL 0.4774 0.4467 0.4983

Ours 0.5306 0.5571 0.5606

ResNet-50
DEDL 0.3798 0.4187 0.3827

Ours 0.5556 0.5495 0.5597

ResNet-101
DEDL 0.3718 0.4074 0.4402

Ours 0.5502 0.5678 0.5497
Table 1. Performance comparison of DEDL [22] and our approach on the dermatomyositis dataset for U-Net. We repeat all experiments

five times with different seed values and report the IoU on the test in the 95% CI (confidence interval).

Encoder Technique
U-Net++

Baseline(w/o APP) w/ Relu APP w/ Gelu APP

ResNet-18
DEDL 0.5274 0.4177 0.4707

Ours 0.5622 0.5679 0.5683

ResNet-34
DEDL 0.3745 0.4535 0.4678

Ours 0.5536 0.5685 0.5633

ResNet-50
DEDL 0.4236 0.4685 0.4422

Ours 0.5742 0.5698 0.5514

ResNet-101
DEDL 0.4311 0.4265 0.4467

Ours 0.57 0.5727 0.5692
Table 2. Similar to Table 1, in this table, we compare the performance comparison of DEDL [22] and our approach on U-Net++. We report

IoU scores averaged over five seed values in the 95% confidence interval (CI) over the test set of the Dermatomyositis dataset in this table.

Dataset ResNet U-Net
Baseline(w/o APP) w/ Relu APP w/ Gelu APP

Dermofit

ResNet18 0.7388 0.7477 0.7467

ResNet34 0.7576 0.7633 0.7525

ResNet50 0.7364 0.7338 0.7401
ResNet101 0.7252 0.7213 0.7258

Dermatomyositis

ResNet18 0.5618 0.5479 0.5582

ResNet34 0.5306 0.5571 0.5606
ResNet50 0.5556 0.5495 0.5597

ResNet101 0.5502 0.5678 0.5497

ISIC2017

ResNet18 0.6458 0.6252 0.6357

ResNet34 0.6518 0.6227 0.6306

ResNet50 0.605 0.5984 0.6207
ResNet101 0.6267 0.6325 0.5884

Table 3. In this table we present the IoU (Intersection over Union) on the test set averaged over five seed values (in 95% CI) for U-Net

trained with our proposed technique as mentioned in Section 3.

tion if unattended. Singh & Cirrone [22] further improved

on this benchmark by using U-Net and introduced an “Au-

toencoder Post Processing” (APP) technique. The APP con-

sists of stacked linear layers for the encoder and decoder.

This makes the autoencoder much simpler than the convo-

lution and skip connection based U-Net and U-Net++ ar-

chitectures. After obtaining the mask from a U-Net or U-

Net++, it is passed through the APP. Since, the autoencoder

consists of only stacked linear layers it creates a noised ver-

sion of the segmentation output from U-Net and U-Net++.

A mean squared error is then calculated between the au-

toencoder’s output and ground truth. During training, the

model trained with the help of the MSE loss (calculated be-

tween the autoencoder output and the ground truth) and the

cross entropy loss (calculated between the U-Net/U-Net++

output and the ground truth). This helps the model learn a

more diverse set of features.

The autoencoder is only used during the training pro-

cess. Hence there is only a marginal increase in training

time while the inference time remains constant. They stud-
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Dataset ResNet UNet++
Baseline(w/o APP) w/ Relu APP w/ Gelu APP

Dermofit

ResNet18 0.744 0.7408 0.7366

ResNet34 0.754 0.7553 0.7599
ResNet50 0.737 0.7408 0.7379

ResNet101 0.7232 0.7264 0.7229

Dermatomyositis

ResNet18 0.5622 0.5679 0.5683
ResNet34 0.5536 0.5685 0.5633

ResNet50 0.5742 0.5698 0.5514

ResNet101 0.57 0.5727 0.5692

ISIC2017

ResNet18 0.6096 0.6232 0.6005

ResNet34 0.6583 0.6423 0.6548

ResNet50 0.6103 0.6355 0.619

ResNet101 0.6018 0.6164 0.6041
Table 4. Similar, to table 3 in this table we present IoU averaged over five seed values (in 95% CI) for U-Net++.

Supervision Level Dataset Baseline(w/o APP) w/ Relu APP w/ GeLu APP

U-Net
Dermofit 0.7395 0.7415 0.7413

Dermatomoyositis 0.5496 0.5556 0.5551

ISIC2017 0.6323 0.6197 0.6189

U-Net++
Dermofit 0.7396 0.7408 0.7393

Dermatomoyositis 0.565 0.5697 0.5630

ISIC2017 0.6200 0.62935 0.6196
Table 5. Mean IoU in the 95% confidence interval when averaged over the entire ResNet family for U-Net and U-Net++ on the dermofit,

dermatomyositis, and the ISIC 2017 dataset. We observe that adding ReLU autoencoder as a post-processing unit improves performance

for U-Net++ and, in almost all cases, for U-Net.

ied ReLU and GELU as activation functions for the linear

layers of APP and found that ReLU activations work bet-

ter than GELU. For their choice of architecture, they used

U-Net and U-Net++ (nested U-net) with Squeeze and Exci-

tation [10] in the decoder for channel-level attention. To

navigate the problem of pixel distribution imbalance be-

tween the area surrounding the region of interest (back-

ground pixels) and the region of interest (foreground pix-

els), they used pixel-distribution ratio weights in the cross-

entropy loss. Wherein the background pixels used the ratio

of background pixels to total pixels as weights, and sim-

ilarly, the foreground pixels used the ratio of foreground

pixels to total pixels as weights. With these changes, they

were able to improve on state of the art on the dermato-

myositis segmentation task [26] by around 5%. They also

suggested a change in evaluation metric from pixel accuracy

to IoU (Intersection over Union) as pixel accuracy does not

correctly represent the quality of the learned mask as op-

posed to the ground truth mask. Our study builds upon the

foundation established by Singh & Cirrone [22] as a base-

line. Our proposed methodology demonstrates significant

improvement in performance as compared to the state-of-

the-art approach [22]. We achieve an average improvement

of 12.26% for U-Net and 12.04% for U-Net++, as elabo-

rated in Section 5.1. Next, we benchmark our methodol-

ogy on two complex skin lesion datasets in Section 5.1.1.

Furthermore, we investigate the impact of autoencoder for

post-processing in Section 5.1.1 and the significance of loss

function weights in Section 5.1.2.

3. Methodology

We start with Singh & Cirrone’s [22] approach on the

dermatomyositis dataset. They use U-Net and U-Net++ as

the choice of segmentation architecture with Squeeze and

Excitation [10] in the decoder for channel-level attention.

Similar to previous studies, our work focuses on semantic

segmentation, where the goal is to categorize each pixel in

an image into a class. For semantic segmentation, these

classes would be - a region of interest (for example, cells in

the case of the dermatomyositis dataset) and an area other

than the region of interest or background (region other than

the cells). For the encoder, we study the performance of the

entire ResNet family of CNNs[9]. We use an encoder depth

of three, increasing the convolution filter size from 128,

256, to 512. We initialize the encoder with ImageNet pre-

trained weights. In the decoder part of U-Net and U-Net++,

we use a convolution channel scheme of 256, 128, and 64.

For each decoder block, we also use batch normalization as

well as squeeze-and-excitation channel excitation after the

convolutional layer. As discussed in [22, 26] and Section

2.1, the Dermatomyositis whole slide images contain a lot
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more pixels without cells (background) as opposed to with

cells (foreground). To attenuate this imbalance in the distri-

bution of pixels, we use Cross Distribution Weights (CDW)

in the cross-entropy loss. Van Buren et al. [26] used random

weights. In contrast, Singh & Cirrone [22] used a ratio of

the pixel with cells to total pixels and a ratio of non-cell

pixels to total pixels as weights for foreground and back-

ground, respectively, in the cross-entropy loss. We propose

to swap the weights and instead use the ratio of the number

of pixels not containing the cell to the total number of pix-

els as the weight for the foreground. Similarly, the weight of

the background is the ratio of the number of pixels contain-

ing cells (foreground/object of interest) to the total number

of pixels. This alternative weight assignment method aims

to enhance the foreground representation. This intuition is

very similar to focal loss [13], wherein the misclassifica-

tion of the minority class is penalized more than that of the

minority class. To ensure our results are statistically signif-

icant, we conduct all experiments over five different seed

values and report the mean values in the 95% confidence

interval (C.I) over the five runs. We present these results

in Tables 3 and 4. Based on our proposal, we observe an

average improvement of 12.26% for U-Net and 12.04% for

U-Net++. We further discuss these in Section 5.1. Addi-

tionally, we benchmark our approach and study the impact

of autoencoder post-processing on two additional challeng-

ing dermatology-related datasets - ISIC 2017 and the der-

mofit dataset in Section 5.1.1. Both datasets are challenging

due to large intra-class variations and inter-class similari-

ties as depicted in Figure 1 and obscuration in 2. Finally,

we study the impact of using mean-frequency weights and

compare the results with distribution-swapped weights for

U-Net and U-Net++ over the ResNet family of encoders and

three datasets in Section 5.1.2.

4. Experimental Details
4.1. Datasets

We use a 70-10-20 split for the dermatomyositis and der-

mofit datasets. For the ISIC-2017 dataset, we use the same

splits as used in the 2017 ISIC competition.

Dermatomyositis: We use the same dataset as used in

previous works on dermatomyositis segmentation [22, 26].

To give an idea about the modality of the dataset, we show

a random sample from the test set in Figure 3. The Der-

matomyositis dataset is collected from 198 muscle biopsies

collected from seven dermatomyositis patients. These files

are then stored in TIFF format. Each TIFF image contains

eight slides that indicate the presence or absence of pheno-

typic markers by setting binary thresholds for each channel

(1-DAPI, 2-CXCR3, 3-CD19, 4-CXCR5, 5-PD1, 6-CD4, 7-

CD27, 8-Autofluorescence). For segmentation, we used the

DAPI-stained image. Each whole slide image was tiled into

480x480. We further expand on this in Section 4.1.2. This

is a particularly challenging dataset due to the large number

of fine-grained objects (cells) to be segmented per image, as

discussed in Section 1.

Dermofit [7]: As shown in Figure 3, the Dermofit dataset

contains 1300 skin lesion RGB images. These data are

taken with a high-quality SLR camera in controlled (ring

flash) indoor illumination. The Dermofit dataset contains

ten categories; each includes a different number of in-

stances: Actinic Keratosis (AK): 45, Basal Cell Carcinoma

(BCC): 239, Melanocytic Nevus / Mole (ML): 331, Squa-

mous Cell Carcinoma (SCC) sample 88, Seborrhoeic Ker-

atosis (SK): 257, Intraepithelial carcinoma (IEC): 78, Pyo-

genic Granuloma (PYO): 24, Haemangioma (VASC): 96,

Dermatofibroma (DF): 65, Melanoma (MEL): 76. No two

images in this dataset are of the same size, as a preprocess-

ing step we interpolate all images to 480x480 and then re-

size to 224x224 to ensure uniformity.

ISIC Challenge 2017 Dataset, Lesion Segmentation Task
[3]: The International Skin Imaging Collaboration (ISIC)

is a large publicly accessible dataset. We show a sample

from the test set in Figure 3. In our case, we use the segmen-

tation dataset from 2017 and use the original splits wherein

2,000 images were used as training, 150 images as valida-

tion, and 600 images as the test set. The ISIC 2017 and the

Dermofit datasets described above are skin lesion datasets

with high intra-class variability and inter-class similarities

with obscuration areas of interest, as discussed in Section 1.

4.1.1 Common Implementation Details

We implemented all models in Pytorch [19] using a single

NVIDIA RTX-8000 GPU with 64 GB RAM and 3 CPU

cores. All models are trained with an Adam optimizer with

an initial learning rate (lr) of 3.6e-4 and a weight decay 1e-

5. We use a cosine annealing scheduler with a maximum

of 50 iterations and a minimum learning rate of 3.4e-4 to

adjust the learning rate based on each epoch. We train all

architectures for 50 epochs with batch size 16, followed by

testing on a held-out set. We use IoU (Intersection over

Union) as our evaluation metric on the test set. This aligns

with previous work by Singh & Cirrone [22]. We repeat all

experiments with five different seed values and report the

mean value in the 95% confidence interval in all tables.

4.1.2 Data-Preprocessing

Images of the dermatomyositis dataset have a uniform size

of 1408 × 1876; we tiled each image into 12 sub-images of

size 480 × 480 inline with previous work [22]. In contrast,
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Encoder Technique
U-Net U-Net++

Baseline* w/ ReLU APP w/ GELU APP Baseline* w/ ReLU APP w/ GELU APP

ResNet-18
CDW 0.5618 0.5479 0.5582 0.5622 0.5679 0.5683

Mean Frequency 0.5645 0.5592 0.5405 0.5852 0.5603 0.5814

ResNet-34
CDW 0.5306 0.5571 0.5606 0.5536 0.5685 0.5633

Mean Frequency 0.5555 0.5551 0.5616 0.5729 0.5763 0.57

ResNet-50
CDW 0.5556 0.5495 0.5597 0.5742 0.5698 0.5514

Mean Frequency 0.5512 0.5652 0.5585 0.57 0.5723 0.5929

ResNet-101
CDW 0.5502 0.5678 0.5497 0.57 0.5727 0.5692

Mean Frequency 0.5506 0.5537 0.5596 0.5892 0.5678 0.5773
Table 6. This table displays the average Intersection over Union (IoU) values obtained from five separate runs on the dermatomyositis test

set, with their corresponding 95% confidence intervals (CI). In this context, CDW refers to the utilization of cross-distribution weights

in the calculation of cross-entropy loss. Here, Baseline* represents the use of the segmentation architecture with autoencoder for post-

processing (APP).

Encoder Technique
U-Net U-Net++

Baseline* w/ ReLU APP w/ GELU APP Baseline* w/ ReLU APP w/ GELU APP

ResNet-18
CDW 0.7388 0.7477 0.7467 0.744 0.7408 0.7366

Mean Frequency 0.75 0.7498 0.7377 0.7469 0.7413 0.7449

ResNet-34
CDW 0.7576 0.7633 0.7525 0.754 0.7553 0.7599
Mean Frequency 0.7533 0.7633 0.7535 0.7602 0.7635 0.7547

ResNet-50
CDW 0.7364 0.7338 0.7401 0.737 0.7408 0.7379

Mean Frequency 0.7379 0.731 0.7385 0.7362 0.7358 0.7411

ResNet-101
CDW 0.7252 0.7213 0.7258 0.7232 0.7264 0.7229

Mean Frequency 0.7212 0.7242 0.7236 0.7156 0.7247 0.7234
Table 7. Similar to Table 6, in this table, we present the IoU averaged over five runs in 95% confidence interval on the dermofit test set for

U-Net and U-Net++. Like Table 6, CDW represents the scenario when cross-distribution weights are used for the cross-entropy loss and

Baseline* represents the use of the segmentation architecture with autoencoder for post-processing (APP).

the Dermofit and the ISIC2017 datasets contain images of

different sizes, i.e., no two images in the dataset are the

same size. Additionally, since the other two datasets (der-

mofit and ISIC-2017) contain skin lesions, they have sig-

nificantly denser and larger mask labels than the dermato-

myositis dataset. Thus, a different image preprocessing step

is applied to the latter two datasets: bilinear interpolation to

480 × 480 followed by a resize to 224 ×224. For augmen-

tation, we use the same set of augmentation as used in Singh

& Cirrone’s work [22], along with Red channel normaliza-

tion or ”Rnorm” [25] for all of our experiments.

5. Results and Discussion

5.1. Improvement over the current state-of-the-art
for Dermatomyositis WSI Segmentation [22]

Following the methodology (Section 3) and experimen-

tation setup (Section 4), we present the IoU averaged over

five runs in the 95% confidence interval on the test set for

the Dermatomyositis dataset in Table 1 for U-Net and in Ta-

ble 2 for U-Net++. We observe that our approach improves

over Singh & Cirrone’s approach (DEDL) [22] consistently

over the entire ResNet family for baseline as well as with

APP (both ReLU and GELU based) for both U-Net and U-

Net++. When averaged over the ResNet family of encoders

and the three paradigms (baseline approach without using

autoencoders, ReLU autoencoders, and GELU-based au-

toencoders), we observed that our approach improves over

the previous state-of-art [22] for Dermatomyositis segmen-

tation by 12.26% and 12.04% for U-Net and U-Net++ re-

spectively.

5.1.1 Impact of Incorporating Autoencoder Post-
Processing.

As described in Section 2.1, Singh and Cirrone [22] intro-

duced an ”Autoencoder Post Processing” unit or APP af-

ter the main segmentation architecture. The purpose of this

autoencoder was to provide a more noised version of the

prediction from the U-Net or U-Net++. The mean square

error loss between the noised output and the ground truth

mask, along with the weighted-cross entropy loss between

the output of the U-Net or U-Net++ and the ground truth,

is optimized during training. This is depicted in Figure

4. They studied the impact of using APP with ReLU and

GELU activations only on the Dermatomyositis dataset. In

this section, with our improved approach as presented in

Section 3, we study the impact of adding APP on two ad-
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Encoder Technique
U-Net U-Net++

Baseline* w/ ReLU APP w/ GELU APP Baseline* w/ ReLU APP w/ GELU APP

ResNet-18
CDW 0.6458 0.6252 0.6357 0.6096 0.6232 0.6005

Mean Frequency 0.6257 0.6394 0.6307 0.6177 0.6198 0.6074

ResNet-34
CDW 0.6518 0.6227 0.6306 0.6583 0.6423 0.6548
Mean Frequency 0.6314 0.6409 0.6322 0.6412 0.6454 0.6513

ResNet-50
CDW 0.605 0.5984 0.6207 0.6103 0.6355 0.619

Mean Frequency 0.6396 0.6223 0.6337 0.6354 0.628 0.646

ResNet-101
CDW 0.6267 0.6325 0.5884 0.6018 0.6164 0.6041
Mean Frequency 0.6137 0.6283 0.6175 0.6049 0.6112 0.6016

Table 8. In this table, we showcase the IoU results for U-Net and U-Net++ on the ISIC 2017 test set. The values represent the average IoU

over five runs in the 95% confidence interval. CDW, in this context, refers to the utilization of cross-distribution weights for cross-entropy

loss, as demonstrated in Tables 6 and 7. Baseline* represents the use of the segmentation architecture with autoencoder for post-processing.

Dataset CDW Median Frequency
Dermofit 0.7395 0.7406

DM* 0.5496 0.5564
ISIC2017 0.6197 0.6276

Table 9. In this table, we present the average IoU (in the 95% con-

fidence interval) over the ResNet family of encoders and the three

paradigms (Baseline, with ReLU and GELU APP) for U-Net over

the dermatomyositis, the dermofit, and ISIC 2017 test sets from

Tables 6, 7 and 8 respectively. Here, DM* represents the Dermato-

myositis dataset, and CDW represents Cross Distribution Weight.

Dataset CDW Median Frequency
Dermofit 0.7396 0.7397

DM* 0.565 0.5793
ISIC2017 0.62 0.6248

Table 10. Similar to Table 9, In this table, we provide the average

Intersection over Union (IoU) values (in 95% CI) for the ResNet

family for U-Net++ architecture on three different test sets: Der-

matomyositis, Dermofit, and ISIC 2017.

Dataset CDW Median Frequency
Dermofit [0.3037, 0.6963] [0.7180, 1.6466]

DM* [0.1479, 0.8521] [0.5986, 3.0348]

ISIC2017 [0.2020, 0.7980] [0.6265, 2.4755]
Table 11. Cross-entropy weights used for experimentation as de-

scribed in Section 5.1.1. Here, DM* represents the Dermato-

myositis dataset as described in Section 4.1 and CDW represents

Cross Distribution Weight.

ditional challenging dermatology datasets. We present the

IoU over the test set in the 95% confidence interval over the

ResNet family of encoders in Tables 3 and 4 for ISIC 2017

and the Dermofit dataset, respectively. Adding ReLu and

GeLU-based APP improves performance over the baseline

architecture (with no APP) for U-Net and U-Net++ in most

cases for the Dermofit. To better understand the result, we

average the IoU on the test set over the entire ResNet fam-

ily for U-Net and U-Net++ and present the results in Table

5. From Table 5, we observe that the addition of APP, es-

pecially ReLU-based APP, does improve performance over

the baseline (not using APP) in almost all cases for U-Net++

and U-Net. The addition of APP is did not improve perfor-

mance only in the case of the ISIC-2017 dataset for U-Net.

5.1.2 Impact of Cross-entropy loss weights

In section 3, we explained our rationale for switching

from distribution-based weights to cross-distribution-based

weights for the cross-entropy loss. In this section, we

study the impact of changing the cross-entropy weights

from cross-distribution-based weights to mean frequency

weights[6]. The median frequency weight received by each

class is derived from the reciprocal of the pixel ratio of

a particular class, normalized by the median frequency of

the class[14, 15]. The median frequency and the cross-

distribution weights, calculated over our three datasets, are

mentioned in Table 3. Mathematically, median frequency

weights (wc) are defined as follows: wc = med freq
nc

. Here,

nc is the number of pixels belonging to class c in the training

dataset, and med freq is the median of the frequency of pix-

els belonging to each class in the dataset.1 Where nc = α
β ,

here, α represents the number of pixels of a class, and β rep-

resents the total number of pixels in images where the given

class is present. We compare the weights calculated by

cross-distribution and median frequency in Table 3. We pro-

vide the full comparative result of using cross-distribution

weights and mean frequency over the three datasets in the

95% confidence interval averaged over five seed values Ta-

bles 6, 7 and 8 for the Dermatomyositis, Dermofit, and the

ISIC-2017 datasets, respectively. Additionally, to summa-

rize these results, we present the average over the ResNet

family and the three training paradigms (baseline without

APP and APP with ReLU and GELU layers) in Tables 9

and 10 for U-Net and U-Net++, respectively. From these

tables, we observe that median-frequency weights for cross-

entropy loss improve performance over cross-distribution

1In our case, there are only two classes - foreground (region of interest)

and background (area other than the region of interest).
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weights, although the improvement is marginal in almost

all cases.

6. Conclusion
We observed that our approach of using Cross Distribu-

tion Weights (CDW) improved segmentation performance

over the previous state-of-the-art approach for dermato-

myositis segmentation [22] by 12.26% for U-Net and by

12.04% for U-Net++ averaged over the ResNet family.

Furthermore, adding APP (Autoencoder Post Processing)

improves segmentation performance marginally in the case

of dermatomyositis and dermofit datasets. In the case of

the ISIC 2017 dataset, the addition of APP is only useful in

the case of U-Net++. We have open-sourced our approach

at https://github.com/pranavsinghps1/
Enhancing-Medical-Image-Segmentation.

We hope that our study and open-sourced approach will

catalyze further research at the intersection of autoimmune

diseases like dermatomyositis and the application of AI as

well as for other dermatology-related datasets. This would

help us better understand the immunology of autoimmune

diseases and answer some of the critical research questions

to develop improved healthcare solutions.2
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2Potential negative societal impact: Autoimmune diseases are ex-

tremely heterogeneous; the dermatomyositis dataset used in our experi-

ments is geographically restricted. Hence, this is a study of a particular

variant. This study might or not be generalizable for other variants. Hence

application on a wider scale for real-life scenarios should only be trusted

after clearance from the concerned health and safety governing bodies.
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