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Abstract

Rheumatoid arthritis (RA) is an autoimmune disease
that causes chronic inflammation, joint destruction, and
extra-articular manifestations. Radiography is the standard
imaging modality for diagnosing and monitoring joint dam-
age in RA. However, the commonly used Sharp method and
its variants, which evaluate radiographic progression, are
time-consuming and subjective. Automated joint evalua-
tion using deep neural networks can address these chal-
lenges. This study introduces RheumaVIT, a novel vision
transformer-based pipeline for automatically scoring hand
joints affected by RA. The method consists of two stages: a
regression model for joint localization and a transformer-
based architecture for assessing erosion and joint space
narrowing (JSN). Our approach demonstrates superior ac-
curacy (up to 12% higher for erosion and 2% higher for
JSN) compared to existing state-of-the-art methods. More-
over, it has a promising ability to detect common patterns of
erosion and JSN through roll-out interpretation. To promote
further research, we are open-sourcing our clinical collec-
tion since there is no annotated dataset on RA available in
the public domain. Our paper contributes to the progress
of automated joint assessment in rheumatoid arthritis, of-
fering potential applications in both clinical practice and
research.

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that

causes chronic inflammation, joint destruction, and extra-
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articular manifestations in multiple organs. It primarily af-

fects the small joints of the hands and feet, leading to irre-

versible deformities and loss of physical function [17, 22].

The disease can impair an individual’s capacity to work, sig-

nificantly reduce quality of life, and even shorten lifespan.

However, modern treatment advances can suppress joint in-

flammation, prevent joint damage, and improve prognosis

[20]. Radiography is the standard imaging modality for di-

agnosing and monitoring the progression of joint changes

in RA [2], with erosion and joint space narrowing (JSN) be-

ing the most reliable parameters [4, 41]. The Sharp method

[10, 12, 13, 14, 18, 19, 28, 31, 32, 38, 39, 40] and its variants

are the most commonly used scoring systems to quantify

the severity and rate of joint damage progression in clinical

trials and scientific studies [29]. They individually assess

erosion by the depth of damage from 0 to 5 points and JSN

from 0 to 4 points in the joints of the hands and feet. How-

ever, the Sharp-like methods have a significant drawback:

the evaluation requires a considerable amount of time as

experts must manually appraise and assign scores to each

joint. Additionally, this method’s consistency is not perfect

due to the subjectivity of the evaluation criteria, as shown

in Table 1.

Transitioning to automated joint evaluations based on

deep neural networks can overcome these limitations. The

processing time of the neural network model is significantly

shorter than that required for manual image processing, tak-

ing just a few seconds. Moreover, because the model uses

aggregated evaluations from multiple specialists, its predic-

tions are theoretically more representative than the evalua-

tion of a single physician [4].

With the advancement of machine learning algorithms,

the use of neural networks for automatic joint assessment

has garnered considerable attention due to their ability to
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process visual information. A wide array of previous stud-

ies have explored models ranging from shallow to deep,

including basic multi-layer convolutional neural networks

[7, 37] and advanced architectures like VGG [7], U-Net

[35, 25], YOLO [42], as well as various data pre-processing

techniques such as soft tissue removal, the Sobel filter, and

CLAHE [27].

While many current studies boast results comparable to

expert annotations, several limiting factors persist. First, all

these studies showcase results on different private datasets,

which are inaccessible [27, 30, 33, 37, 42]. Furthermore,

many lack rigorous evaluations of the proposed methods’

performance, often resorting to imbalanced metrics in their

analyses [7, 15, 27, 37, 43]. These challenges significantly

impede the comparison of approaches and the identification

of a definitive state-of-the-art solution.

Transformers are currently gaining popularity in image

analysis, presenting new opportunities in the machine learn-

ing domain. It was once believed that to achieve quality

comparable to convolutional neural networks (CNNs), large

datasets and models with numerous parameters were nec-

essary [9]. However, recent studies have introduced com-

pact transformer models such as TinyViT [44], SWIN [24],

and MobileViT [26]. Moreover, there have been efforts to

train these models on relatively small datasets, still achiev-

ing commendable performance [11, 21, 36].

In this paper, we introduce the first vision transformer-

based approach for joint assessment, named RheumaVit.

This method refines existing techniques, offering a superior

and more adaptable solution. The primary contributions of

our work include:

• We developed RheumaVIT, an automated system that

assigns scores to hand joints affected by RA. This sys-

tem is two-stage: a regression model identifies joint

locations, while a transformer-based architecture as-

sesses the erosion and JSN scores of each joint.

• To leverage the transformer architecture and prevent

overfitting, we propose a strategy to augment input

data samples in accordance with the number of joints,

instead of hand images. We also implemented ex-

panded bounding boxes, transfer learning strategies,

and advanced training techniques.

• Our proposed method displayed superior performance

(up to 12% increased accuracy for erosion and 2% for

JSN) and faster convergence when compared with re-

cent state-of-the-art methods [33]. We also showcased

the model’s efficacy in precisely identifying patterns

related to erosion and JSN in a clinical context through

the implementation of roll-out interpretation.

• Lastly, we are releasing an annotated dataset consist-

ing of 330 hand radiographs. This dataset features box

annotations for 42 hand joints (21 boxes per hand) ac-

companied by joint-specific erosion and JSN labels,

curated by three radiologists.

The remainder of the paper is structured as follows: Sec-

tion 2 reviews related work pertinent to our approach. Sec-

tion 3 delves into the specifics of the proposed pipeline and

details the experimental setup. Sections 4 and 5 then present

the results, followed by a discussion and conclusions, re-

spectively.

2. Related Works
Research on the automated assessment of hand joints in

RA varies significantly in aspects from problem formulation

to the methods employed and their evaluation. First, some

studies concentrate on specific joints, such as the metacar-

pophalangeal and proximal interphalangeal joints [6, 16]. In

contrast, others classify the carpometacarpal (CMC) and in-

tercarpal joints [30]. Intercarpal joints (wrist) are frequently

overlooked in studies due to their intricate nature and prox-

imity. Although their inclusion can hamper model perfor-

mance [16], from medical perspective, they are as crucial as

other hand joints.

When considering the number of stages in a solution,

all methods for automatic joint assessment fall into two

primary categories: single-stage and two-stage methods.

Single-stage methods evaluate all joints simultaneously,

whereas two-stage methods first identify the joints before

conducting an individual assessment [7, 37, 27, 35, 6, 43].

Early attempts to create an automated RA assessment uti-

lized straightforward architectures, such as multi-layer neu-

ral networks, complemented by a range of data preprocess-

ing techniques [7, 37]. Later research incorporated more

complex models, including pre-trained VGG and CaffeNet,

as well as advanced image preprocessing techniques like

soft tissue removal, the Sobel filter, MSGVF snakes for pha-

lanx segmentation, and CLAHE [27]. A distinct approach

is presented in [35], where the authors employ a lightweight

U-Net architecture for bone segmentation, followed by a

YOLOv3 model for joint detection, and finally, a VGG for

erosion and JSN assessment. The authors of [6] utilize Reti-

naNet for finger detection and then an EfficientNet with at-

tention mechanisms to score the JSN and erosion of joints.

Lastly, [43] treats joint localization as a regression problem.

Several studies have explored single-stage methods, by-

passing the intermediate joint localization step in either

an end-to-end scoring scenario or by predicting both joint

boxes and scores simultaneously [30, 42, 25]. Radke’s

study showcased the capabilities of a dual-headed Reti-

naNet network with adaptively changing Intersection over

Union (IoU) values for effective recognition of smaller en-

tities like finger and wrist joints [30]. In [42], the authors

employ YOLOv4, enhancing it with adjustments to error
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functions, aspect ratios, and distinct handling of hand and

finger joints. Conversely, [25] treats the scoring task as a

segmentation challenge, using a U-shaped architecture to

predict a joint class (localization) for each pixel and assign-

ing erosion and JSN scores to each pixel representing a non-

background joint.

While single-stage methods might seem more efficient

in terms of speed and memory usage, their practical perfor-

mance largely hinges on the specific models employed and

data processing techniques. Such models often possess a

global receptive field, facilitating the inclusion of additional

context during training. However, this can also introduce

potential confounding elements like technical markup vari-

ations [30, 42, 25]. In contrast, two-stage methods focus on

localizing each individual joint, yielding a higher number

of training samples and considerably mitigating the influ-

ence of various confounding factors, albeit at the cost of the

benefits of a global receptive field.

Previous studies have shown promising results regard-

ing the accuracy and reliability of AI systems compared

to manual assessment by experienced clinicians or radiolo-

gists. Nonetheless, further research is necessary to address

potential issues, such as overfitting or a lack of robustness

against varying conditions across different datasets, before

these systems can be reliably implemented in clinical prac-

tice.

3. Methods and Materials

In this section, we introduce a novel deep learning-based

pipeline for automated joint assessment following the Sharp

methodology, termed RheumaVIT. Our proposed solution

consists of two phases: the localization of joints and fol-

lowed by scoring each one as depicted in Figure 2.

While the task of joint localization is relatively straight-

forward and can be efficiently tackled using a regression

model, the assessment phase demands greater scrutiny and

research. To estimate the erosion and JSN scores, we ex-

plore modern deep architectures based on both convolu-

tional neural networks and vision transformers. We con-

sider models such as VGG, EfficientNet, SWIN, Mobile-

ViT, and TinyViT [34, 9, 44, 24, 26]. In essence, our study

offers the inaugural empirical examination of vision trans-

former networks’ efficacy in scoring hand joints afflicted by

RA.

3.1. Study design

To the best of our knowledge, no open radiographic

dataset exists that classifies joint space narrowing (JSN) and

joint erosion according to the Sharp method. Addressing

this gap, the V.A. Nasonova Research Institute of Rheuma-

tology curated a clinical dataset comprising 330 bilateral

(a) Erosion (b) JSN

Figure 1: Distribution of erosion (a) and JSN (b) scores over

the entire dataset.

hand radiographs 1. These images were annotated by three

radiologists with respective experiences of 5, 7, and 30

years. Each patient is represented by a single radiograph,

with an average age of 48± 14 and the male/female ratio is

54 : 298. These radiographs were collected between 2019

and 2022. 42 patients are classified as normal, while the re-

maining have a confirmed diagnosis of rheumatoid arthritis.

A modified version of the Sharp method was employed

for the annotation process. This adaptation encompasses

all hand joints and consolidates closely spaced and over-

lapping wrist joints into one collective group. The sug-

gested technique identifies 17 erosion sites per hand: inter-

phalangeal, 4 distal interphalangeal, 4 proximal interpha-

langeal, 5 metacarpophalangeal, 1st metacarpal base, wrist,

ulnar, and radiocarpal. For JSN, this method considers 19

areas per hand: interphalangeal, 4 distal interphalangeal,

4 proximal interphalangeal, 5 metacarpophalangeal, car-

pometacarpal 3 to 5, wrist, and radiocarpal. In line with the

standard Sharp methodology, erosion scores span from 0 to

5, and JSN scores from 0 to 4; a higher score indicates more

extensive damage [29]. To determine the erosion score for

the wrist, we consider the maximum score among the mul-

tangular, navicular, lunate, and radius erosion scores. Sim-

ilarly, the highest score between multangular-navicular and

capitate-navicular-lunate is taken as the overall wrist JSN

score.

To achieve a more objective assessment, the joints were

evaluated by three radiologists. However, due to the inher-

ent subjectivity of this approach, the consistency of their re-

sults varied. This underscores the importance of combining

assessments from multiple physicians to enhance the repre-

sentativeness of a particular study. While the majority vote

is the most straightforward aggregation method, it proves

inadequate in situations with missing scores or ambiguous

decisions. Consequently, we employed the David-Skene

method [8] across our dataset to derive the final JSN and

erosion scores. Originally proposed for medical data aggre-

gation, this method facilitates adjustments for expert dis-

crepancies and produces an outcome closely aligned with

1The dataset is published under a license Creative commons

BY-NC-SA 3.0 at https://airi.net/upload/dataset/
AIRINIIReumHands.zip
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the observed data.

The distribution of erosion and JSN scores is depicted

in Figure 1. Most narrowing categories appear consistently

represented, except for scores two and four. The erosion

distribution exhibits an exponential trend, with a marked

decline in joint count as the erosion score increases.

We also annotated joint locations in 268 radiographs,

capturing all 21 standard joint locations used for scor-

ing. The wrist region covers various minor wrist joints,

including the multangular, navicular, lunate, multangular-

navicular, and capitate-navicular-lunate.

For neural network pre-training, we leveraged an open

dataset from [43] comprising data from 3818 patients. In

our experiments, we only used radiographs, as the accompa-

nying evaluations lacked joint scores for erosions and JSN.

3.2. Data preprocessing

Each radiograph in the dataset shows the patient’s left

and right hands. The joints of both hands are symmetrical,

which allows us to split the radiograph into two individ-

ual images. This approach halves the quantity of joints for

which predictions are made, while doubling the amount of

data available for training the localization model. To sep-

arate the hands in the image, the Minimum Energy Seam

algorithm [3] was utilized. Fundamentally, it ascertains a

linked sequence of pixels across the entire image with the

smallest gradient. We implement morphological opening to

reduce the background noise and CLAHE [27] to increase

the gradients at the boundary of the hands and the back-

ground.

A similar data partitioning approach is used for classifi-

cation modeling. Based on the predictions of the hand im-

age localisation model, 21 joint regions are identified for

which distinctive predictions are then made. This enables

the volume of training data to be increased by a factor of 21,

and the output size of the model to be reduced by a factor of

21. However, this technique has a limitation - the visibility

of the model is confined to a small region around the joint.

To overcome this, we randomly increase the area around the

joint by up to 4 times during model training. During eval-

uation, we make use of the average size of the observable

area to the model during the training process, which is 2.5

times the size of the original area.

3.3. Proposed method

Joint localization task involves determining the coordi-

nates of each joint’s position in an image. This is usually

done using bounding boxes, which are defined by the co-

ordinates of two opposite corners. Due to human anatomy,

the number of joints remains constant for most patients. In

other words, models only need to predict a fixed number of

coordinates for the entire image. Therefore, we employ a

regression model as the localization task. The backbone of

our model is EfficientNet-V2-L [34]. Subsequently, average

pooling with an 8× 8 kernel is applied to the 1280× 16× 8
feature map, followed by flattening into a vector. The head

of the model consists of two fully connected layers with

ReLU activation and a hidden layer size of 512. To enhance

the accuracy of the model, we emploed the CoordConv

technique [23] and concatenate the input image with two

additional channels, corresponding to x and y pixel coordi-

nates. Additionally, during training, MSE loss was initially

minimized in the early epochs, followed by the main part of

training using DIoU loss to improve localization metrics, as

described in [42].

Lloc =

{
MSE(b, b̂), if epoch ≤ 50

DIoU(b, b̂), otherwise
(1)

DIoU(b, b̂) = 1− IoU(b, b̂) +
ρ2(b, b̂)

c2
, (2)

where b denotes the bounding box coordinate vector

(xmin, ymin, xmax, ymax)
T with corresponding prediction

b̂, ρ(.) is the Euclidean distance and c is the diagonal length

of the smallest enclosing box covering the two boxes.

Joint assessment follows joint localization. The goal is

to determine the erosion and JSN scores for each joint, de-

pending on the type of joint. These scores have discrete

scales ranging from 0 to 5 and 0 to 4, respectively. The

higher the score, the greater the damage is to the joint. This

makes joint scoring to be treated as a classification task.

However, if a degenerate distribution is used as the target

during model training, there will be no gradations between

classes. To counter this, we specify the following distribu-

tion for the targets. Let p be the probability of labeling error.

For the true class, we set the probability of the target pc to

1− p if there are two neighboring classes, and 1− p
2 other-

wise. For neighboring classes, we set the target probability

to p
2 , and for all other classes - 0. In this way, regardless of

the error function, the model is penalized less for deviations

from the norm of 1 point than for more significant devia-

tions. We set p = 0.4. As a loss function we use the focal

loss. Assuming q is the predicted probability of target class,

the error function equation is

Lscor = FL = −α(1− q(x))γpc(x) log q(x) (3)

TinyViT was used as a backbone for the erosion and JSN

estimation models, providing the feature map. An idx pool-

ing operation was applied to the obtained feature map with

dimensions channels cnt×7×7, which selects the top-left

vector, i.e., the elements with zero values for the last two co-

ordinates. This approach effectively creates an equivalent of

the CLS token for the TinyViT transformer, compensating

for its absence. The model’s head consists of two fully con-

nected layers with a hidden dimension of 512, BatchNorm
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(a) Full pipeline

(b) Pipeline model architectures

Figure 2: (a) RheumaVIT is composed of the following steps. Input X-ray image of hands is split into two images of left and

right hands via seam splitting; a localization model then estimates the bounding boxes for each hand’s joints. An extended

region around the joint is cropped and fed to the input of the scoring model for erosion and JSN assessment. Specifically, (b)

The localization stage is formulated as a regression task and solved using the EfficientNet backbone, while the TinyViT-based

scoring model handles erosion and JSN classification. Pre-training the scoring model on external data in an unsupervised

fashion substantially enhanced the model’s quality.

and ReLU activation function between them. The output di-

mension of the head is 11, comprising 6 logits for erosion

and 5 logits for narrowing. During training, weighted sam-

pling was employed to form batches, with the weight set

to be inversely proportional to the frequency of the corre-

sponding class.

Transfer learning was used to reduce model overfitting.

We pre-trained the backbones (TinyViT and SWIN) on an-

other publicly available dataset of 3818 hand radiographs

[5]. The pre-training was performed in an image-to-image

self-supervised setup, where the task was to reconstruct the

clean image from a corrupted version. Our pre-training used

the backbone as a block encoder in the UNet model. The

corruption process involved adding Gaussian noise, apply-

ing geometric elastic transformations, and cropping small

rectangles. The error metric for pre-training was an L1 loss

function.

Medical imaging models are more likely to be positively

received by physicians if they have good interpretability. In-

spired by the attention rollout method [1], we adopted it as

the main idea for our interpretation method. However, it

was not possible to apply it directly to the used transform-

ers due to the differences from ViT [9]. Firstly, attention

is not computed over the whole image, but over windows

that are shifted by half in the case of the SWIN transformer.

Secondly, downsampling sometimes occurs when four win-

dows are merged into one by combining 2x2 patch blocks

into a single block. Lastly, these transformers lack a CLS

token, using instead our idx pooling equivalent. Therefore,

we modified the rollout procedure to obtain a correct atten-

tion matrix as output. In addition, due to the significantly

smaller patch size in these transformers compared to ViT,

the interpretation results are more detailed.

3.4. Implementaion details

The models were implemented using PyTorch and

trained on a server equipped with two NVIDIA V100 GPUs,

each with 32 GB of memory, and an Intel Xeon Gold 6278C

processor.

The models for erosion and narrowing assessment were

also trained in two stages. The first lasted 50 epoch and

assumed a frozen backbone with a starting learning rate of
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10−3. The next implied 100 epochs with a fully unfrozen

backbone and a starting learning rate of 5 × 10−5. The

AdamW optimizer was used with an L2 weight decay pa-

rameter of 10−2 and gradient clipping. The batch size was

set to 32. The focal loss was employed with the standard

parameter, indicating that the weight is quadratically pro-

portional to the deviation from the true probability. The

choice of the lr-scheduler depended on the backbone archi-

tecture: ReduceLROnPlateau was used for regular convo-

lutional networks, and WarmupCosineSchedule for trans-

former networks. During training the following image aug-

mentations were applied: InvertImg, ColorJitter, Horizon-

talFlip, RandomRotate90, Rotate, CropAndPad.

3.5. Evaluation Metrics

As quality metrics for the localization task, we used the

traditional Intersection over Union (IoU) score, as well as a

new metric called localization accuracy. This metric evalu-

ates the relative accuracy of the predicted bounding box lo-

cation, in relation to the true bounding box location. Specif-

ically, as long as the center of the predicted box is within

the target bounding box plus or minus half the width and

height of the box, it is considered a true positive. Localiza-

tion accuracy has been found to be more intuitive and reli-

able than traditional detection and segmentation metrics, as

it accounts for any errors in bounding box annotation.

In order to address the class imbalance associated with

the joint scoring task, we employed the weighted metrics.

These included multi-class weighted accuracy (5 classes for

JSN, 6 classes for erosion), and weighted mean absolute

error (MAE).

4. Results

In this section, we demonstrate the efficacy of a

transformer-based deep learning approach for automatic

joint assessment. We compare the performance of vari-

ous existing solutions and the latest state-of-the-art models

based on convolutional and transformer architectures. We

also detail the techniques applied to further promote pro-

ductive learning and increase the quality of the resulting

method RheumaVIT.

Table 1: Erosion and JSN scoring performance. Accuracy

and MAE are weighted across the joints. Average experts’

variability is measured in a 1 vs 2 regime.

Erosion JSN

Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓
RetinaNet [30] 0.43± 0.09 1.68± 0.24 0.41± 0.05 0.58± 0.08
Team Shirin 0.62± 0.05 0.93± 0.17 0.60± 0.04 0.43± 0.05
Csabaibio 0.56± 0.05 0.95± 0.16 0.65± 0.04 0.36± 0.04
Zbigniew Wojna [25] 0.53± 0.05 1.22± 0.21 0.58± 0.04 0.45± 0.05
RheumaVIT (ours) 0.74 ± 0.05 0.75 ± 0.18 0.67 ± 0.04 0.36 ± 0.05

Average expert 0.79± 0.03 0.48± 0.13 0.76± 0.03 0.25± 0.04

To evaluate the effectiveness of the proposed pipeline,

we compared it against the state-of-the-art solutions. First,

we consider the top solutions in three different RA2 Dream

Challenge rankings [33]. Owing to the annotation con-

straints, our analysis covers the top-ranked solution from

the Team Shirin 2, Csabaibio 3 and Zbigniew Wojna teams

[25] and a recent detection-based method for a more ex-

tensive analysis [30]. The methodologies and associated

hyperparameters of each competing solution were imple-

mented in accordance with the specifications described

in the corresponding original papers or published open-

sourced code.

Team Shirin’s two-stage approach, which utilizes trans-

fer learning and fine-tuning of high-performance CNN

models (ResNet34, DenseNet201), proved stronger than

other existing approaches for the erosion task. At the same

time, Csabaibio’s two-step solution, which applies detec-

tion model and ensemble of CNNs, achieves the highest

JSN scoring. Based on the Accuracy and MAE metrics dis-

played in Table 1, our proposed pipeline RheumaVIT out-

performs the competing solutions in both tasks. We observe

an Accuracy of 0.74±0.05 and MAE of 0.75±0.18 for ero-

sion estimation, and 0.67± 0.04 Accuracy and 0.36± 0.05
MAE for JSN estimation. The confusion matrices of the

best model for erosions and JSN are presented in Figure 3a

and Figure 3b, respectively. The model’s prediction quality

clearly aligns with that of human annotators. Notably, for

certain joints, the model’s estimation of erosion and JSN

scores even surpasses that of some physicians.

(a) Erosion (b) JSN

Figure 3: Confusion matrices for the RheuthmaVIT predic-

tions of erosion (a) and JSN (b) scores.

4.1. Localization

We considered two main approaches to address the local-

ization problem: detection and regression. We implemented

RetinaNet and SSD as detection models and observed that

2https://doi.org/10.7303/syn21478998
3https://github.com/patbaa/RA2_dream
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Table 2: Joints localization results.

IoU Loc Accuracy

RetinaNet 0.21 0.18
SSD 0.68 0.93

Resnet-50 + MSE loss 0.56 0.90
Resnet-50 + DIoU-loss 0.65 0.98
Resnet-50 + DIoU-loss + coordinate grid 0.68 0.98
EfficientNet-V2-S + DIoU-loss + coordinate grid 0.71 0.99
EfficientNet-V2-L + DIoU-loss + coordinate grid 0.72 0.98

both detection-based models and the basic variant of the re-

gression model bring comparable results in terms of local-

ization accuracy. For instance, as Table 2 demonstrates, the

model of SSD yields an IoU score of around 0.68, which

is roughly equivalent to the experiment with ResNet-50

trained via DIoU-loss and a coordinate grid.

Nevertheless, the detection-based model architecture is

excessive for joint localization tasks, since it considers the

possibility of multiple boxes of the same class, while in

current task all hand joints are unique and have the exact

amount. Therefore, we prioritized the further exploration of

the regression approach. We examined different loss func-

tions (MSE and DIoU) and backbone architectures (ResNet

and EfficientNet). Further, we found that utilization of a co-

ordinate grid as an additional input channel and generation

of a loss minimization scheme through a gradual transition

from MSE loss to DIoU-loss in later epochs resulted in re-

markable improvement of both IoU and localization accu-

racy scores (0.72 and 0.99 respectively).

4.2. Ablation study of erosion and JSN scoring

Table 3: Ablation study to establish most efficient back-

bone for scoring stage in RheumaVIT. Accuracy and MAE

are weighted across joints. Average experts’ variability is

measured in a 1 vs 2 regime.

Erosion JSN

Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓
VGG 0.63± 0.05 0.79± 0.19 0.57± 0.04 0.56± 0.07
EfficientNet 0.58± 0.05 1.23± 0, 28 0.62± 0.04 0.40± 0.05
SWIN 0.62± 0.05 0.95± 0.21 0.64± 0.04 0.40± 0.05
TinyViT 0.74± 0.05 0.75± 0.18 0.67± 0.04 0.36± 0.05
MobileViT 0.61± 0.05 1.06± 0.23 0.63± 0.04 0.41± 0.05

Average expert 0.79± 0.03 0.48± 0.13 0.76± 0.03 0.25± 0.04

To determine the optimal solution for the feature eval-

uation task of rheumatoid arthritis, we undertook a com-

prehensive ablation study. Through our experiments, we

identified the best combination of factors and the most ef-

fective backbone architecture, which together produced the

highest-quality results for evaluating scoring models.

We identified three most important factors that influence

the quality of the models: bounding box expansion coeffi-

cients, pretraining of backbone on an external dataset, and

the use of two independent models or a single shared model

to predict erosion and JSN scores. (Appendix B) For ero-

sion estimation the most effective was pre-training the back-

bone model on an external dataset and then fine-tuning the

final model with a combination of extended joint images for

both erosion estimation and JSN tasks. 3b Remarkably, the

models for JSN scoring showed superb performance when

trained independently from the erosion estimation models,

with pre-training the backbone model and usage of aug-

mented boxes having negligible influence on the final qual-

ity.

Figure 4: The histograms corresponding to MAE metric of

the models for erosion (a) and JSN (b) evaluation

We also considered five different models as backbones:

VGG, EfficientNet, Swin, TinyViT, and MobileViT. We

carefully chose the optimal hyperparameters for training for

each backbone model. Through a thorough search on three

key factors and five different backbones, conducted on a

subset of the data, we successfully determined the most suit-

able combination of factors for evaluating erosion and JSN

models. VGG, SWIN, and TinyViT models demonstrated

the highest performance. However, it can be observed that

the TinyViT transformer model excelled as among other

competing backbones Table 3 both for each metrics and for

each task demonstrating for erosion 0.74 ± 0.05 Accuracy

and 0.75±0.18 MAE and 0.67±0.04 Accuracy, 0.36±0.05
MAE for JSN, accordingly.

4.3. Interpretation

To gain insights into our model, we applied feature map

visualization using the attention rollout method. This tech-

nique provides a comprehensive understanding of how in-

put patterns are processed internally, allowing us to trace

the paths of individual neurons through the network’s lay-

ers and observe the contributions of different elements to the
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(a) Erosion (b) JSN

Figure 5: Interpretation maps for erosion (a) and JSN (b),

obtained using attention roll-out method [1]. Target joint is

in the center of each image.

model’s decision-making process. The interpretation exam-

ples of the best models are shown in Figure 5. For JSN,

the model primarily focuses on the area between the joints,

while for erosion, the focus is on the bone borders. This

observation is consistent with the definition of these de-

structive changes. Furthermore, when examining a specific

joint, the JSN model tends to consider neighboring joints

more frequently and extensively than the erosion model.

Based on the results, it can be inferred that the model ef-

fectively captures task-specific patterns that are essential for

both erosion and JSN tasks.

5. Discussion and conclusion

This paper offers a thorough review of the methodolo-

gies currently in use for automated joint assessment and

showcases the effectiveness of transformer-based models.

Through extensive empirical evidence, we confirm that the

proposed vision transformer-based pipeline, RheumaVIT,

surpasses existing methods, delivering superior accuracy

and precision.

Our study utilized a dataset curated by the V.A. Na-

sonova Research Institute of Rheumatology, comprising

330 hand radiographs annotated according to the Sharp

method. It’s worth noting that while current datasets aren’t

publicly accessible, we will make ours available for future

research. Additionally, we furnish a detailed analysis of es-

tablished approaches and modern models.

Despite the complexity and variability among patient im-

ages, the most efficient algorithms consistently achieved a

commendable prediction accuracy and reproducibility.

Our investigation led to several significant observations.

If the prior research established that JSN task was proba-

bly much more straightforward for the model, given that

it involved measuring distances, while the identification of

erosions necessitated in-depth understanding of bone mor-

phology and destruction. It can be deduced that the experi-

ments based on transformer models yielded a superior per-

formance in the JSN task, potentially due to the advanced

components of the architecture that most likely enabled

a more exact understanding of the various morphological

properties of erosion identification. Besides, considering

the characteristic postures present in radiographs, such as

bent fingers, the true distance between the bones can be mis-

interpreted, thus making it more challenging for the model

to accurately predict JSN score.

In this study, it was observed that for the assessment of

erosion and JSN, a single shared model demonstrated the

best quality for erosion, while independent models tended

to provide a better performance for the JSN assessment.

Clinically, arthritis progression typically entails firstly the

appearance of JSN and then the emergence of erosions,

hence it was hypothesized that accounting for both JSN and

erosion in a shared model might improve the accuracy of the

overall assessment of erosion. But an independent model

seemed to perform better than a shared model for the as-

sessment of JSN alone, though the exact reason behind this

remains inconclusive. Nonetheless, in this particular inves-

tigation, we assumed the main reason is the chosen pipeline

due to the uneven distribution of erosion weights, and train-

ing a single shared model for JSN might have had an ad-

verse effect on its assesment.

The evaluation of the best model with roll-out interpre-

tation revealed its ability to capture the clinical specific pat-

terns typical for erosion and JSN progression. This suggests

that the model is capable of performing sophisticated diag-

noses regarding erosion and JSN status of joint areas based

on the images.

In comparison to convolution models, transformers are

typically perceived as requiring ample data to be effectively

trained. The development of complex architectures and ex-

tensive research on the behavior of vision transformers have

made it possible to adapt them to the most existing task.

Furthermore, there are a lot of methods that can improve the

quality and prevent overfitting, such as pre-training, trans-

fer learning, augmentations techniques, as well as more

specific measures such as increasing the size of bound-

ing boxes, weighted sampling, smoothed loss function, and

careful selection of hyperparameters. Through a combina-

tion of these methods, it is possible to reach new heights of

performance when dealing with these tasks.

This study presents certain limitations associated with

the number of images available for training. For algorithms

to possess a greater level of reliability, large repositories of

annotated images taken from extensive observational stud-

ies and clinical trials must be used for experiments. Addi-

tionally, the models should be subject to constant validation

on new data in order to ascertain the accuracy and robust-

ness of the algorithms.

For potential future research, extending the joints assess-
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ment to the additional body areas commonly affected by

arthritis deserves further exploration. Several studies al-

ready include the diagnosis of small joints of the feet. Ad-

ditionally, there is a particular benefit and practical value

in increasing the model’s diagnostic capability to recognize

the stages of arthritis and even determine the type of arthri-

tis (e.g., rheumatoid, acute, and psoriatic). Also, prediction

of disease progression could offer greater insight and assis-

tance in clinical trials and research. This provides an oppor-

tunity to leverage the most modern technology, including,

for example, modern multimodal approaches as well as may

need additional features or modalities to obtain accurate re-

sults.

References
[1] Samira Abnar and Willem Zuidema. Quantifying atten-

tion flow in transformers. arXiv preprint arXiv:2005.00928,

2020.

[2] Daniel Aletaha and Josef S Smolen. Diagnosis and manage-

ment of rheumatoid arthritis: a review. Jama, 320(13):1360–

1372, 2018.

[3] Shai Avidan and Ariel Shamir. Seam carving for content-

aware image resizing. pages 10–es, 2007.

[4] Alix Bird, Lauren Oakden-Rayner, Christopher McMaster,

Luke A Smith, Minyan Zeng, Mihir D Wechalekar, Shonket

Ray, Susanna Proudman, and Lyle J Palmer. Artificial in-

telligence and the future of radiographic scoring in rheuma-

toid arthritis: a viewpoint. Arthritis Research & Therapy,

24(1):1–10, 2022.

[5] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xi-

aopeng Zhang, Qi Tian, and Manning Wang. Swin-unet:

Unet-like pure transformer for medical image segmentation.

In Computer Vision–ECCV 2022 Workshops: Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part III, pages 205–

218. Springer, 2023.

[6] Neelambuj Chaturvedi. Deepra: predicting joint damage

from radiographs using cnn with attention. arXiv preprint
arXiv:2102.06982, 2021.

[7] Son Do Hai Dang and Leigh Allison. Using deep learning to

assign rheumatoid arthritis scores. In 2020 IEEE 21st Inter-
national Conference on Information Reuse and Integration
for Data Science (IRI), pages 399–402. IEEE, 2020.

[8] Alexander Philip Dawid and Allan M Skene. Maximum like-

lihood estimation of observer error-rates using the em algo-

rithm. Journal of the Royal Statistical Society: Series C (Ap-
plied Statistics), 28(1):20–28, 1979.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] James F Fries, Daniel A Bloch, John T Sharp, Dennis J Mc-

Shane, Patricia Spitz, Gilbert B Bluhm, Deborah Forrester,

Harry Genant, Philip Gofton, Steven Richman, et al. Assess-

ment of radiologic progression in rheumatoid arthritis. a ran-

domized, controlled trial. Arthritis & Rheumatism: Official
Journal of the American College of Rheumatology, 29(1):1–

9, 1986.

[11] Hanan Gani, Muzammal Naseer, and Mohammad Yaqub.

How to train vision transformer on small-scale datasets?

arXiv preprint arXiv:2210.07240, 2022.

[12] Harry K Genant. Methods of assessing radiographic change

in rheumatoid arthritis. The American journal of medicine,

75(6):35–47, 1983.

[13] Harry K Genant, Yebin Jiang, Charles Peterfy, Ying Lu,
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[37] Kemal Üreten, Hasan Erbay, and Hadi Hakan Maraş. De-
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