
DISGAN: Wavelet-informed Discriminator Guides GAN to MRI
Super-resolution with Noise Cleaning

Qi Wang1,*, Lucas Mahler1, Juliu Steiglechner2,1, Florian Birk2,1, Klaus Scheffler2,1, and Gabriele
Lohmann2,1

1Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract

MRI super-resolution (SR) and denoising tasks are fun-
damental challenges in the field of deep learning, which
have traditionally been treated as distinct tasks with sep-
arate paired training data. In this paper, we propose an
innovative method that addresses both tasks simultaneously
using a single deep learning model, eliminating the need
for explicitly paired noisy and clean images during train-
ing. Our proposed model is primarily trained for SR, but
also exhibits remarkable noise-cleaning capabilities in the
super-resolved images. Instead of conventional approaches
that introduce frequency-related operations into the gen-
erative process, our novel approach involves the use of a
GAN model guided by a frequency-informed discriminator.
To achieve this, we harness the power of the 3D Discrete
Wavelet Transform (DWT) operation as a frequency con-
straint within the GAN framework for the SR task on mag-
netic resonance imaging (MRI) data. Specifically, our con-
tributions include: 1) a 3D generator based on residual-
in-residual connected blocks; 2) the integration of the 3D
DWT with 1 × 1 convolution into a DWT+conv unit within
a 3D Unet for the discriminator; 3) the use of the trained
model for high-quality image SR, accompanied by an in-
trinsic denoising process. We dub the model ”Denoising
Induced Super-resolution GAN (DISGAN)” due to its dual
effects of SR image generation and simultaneous denoising.
Departing from the traditional approach of training SR and
denoising tasks as separate models, our proposed DISGAN
is trained only on the SR task, but also achieves exceptional
performance in denoising. The model is trained on 3D MRI
data from dozens of subjects from the Human Connectome
Project (HCP) and further evaluated on previously unseen
MRI data from subjects with brain tumours and epilepsy to
assess its denoising and SR performance. Our code is avail-

able at https://github.com/wqlevi/DISGAN .

1. Introduction
High-resolution MR images play a crucial role in pro-

viding detailed anatomical information essential for down-

stream MRI analysis. However, obtaining high-resolution

(HR) MRI scans is a labor-intensive process prone to mo-

tion artifacts, particularly challenging for subjects with

brain diseases such as brain tumors or epilepsy. Addi-

tionally, inherent physical limitations of MRI scanners and

hardware introduce various types of noise into diagnostic

or analytical images, leading to lower spatial resolution and

loss of anatomical details. As a result, researchers have

turned to deep learning methods to enhance the quality of

existing MRI images, focusing on both denoising and Sin-

gle Image Super-Resolution (SISR) techniques.

Conventional SR aims to recover HR MR images from

lower-resolution images of the same subject, while denois-

ing tasks focus on removing common noise sources such as

Gaussian noise and motion artifacts to obtain cleaner image

content. Traditionally, these tasks require separate training

and paired datasets in most deep learning methods.

Both SISR and denoising are inherently inverse prob-

lems, and in the context of medical imaging, the challenge is

further compounded by the curse of dimensionality. More-

over, access to 3D MRI data is significantly limited com-

pared to the abundance of 2D image datasets, making train-

ing an SISR model on 3D medical images more demanding.

As real-world medical images, such as brain MRI, contain

vital anatomical information in all three dimensions, the pri-

mary focus of this paper lies in tackling the task of SISR on

3D volumetric MRI.

In the 2D domain, various studies have been conducted

to achieve high image fidelity in SISR tasks using GAN ar-
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chitectures [3, 9, 7, 17]. Recently, other models, such as

score-matching models [30], diffusion probability models

[12], and transformers [4], have also been employed to pro-

duce SR results with advanced image quality, both in metric

scores and visual fidelity. In the 3D MRI domain, some of

these models have been re-implemented, with the majority

of them utilizing GANs [1, 26, 8, 31], continually pushing

the boundaries of state-of-the-art performance.

However, training GAN models is known for its in-

stability and sensitivity to parameter changes, requiring

careful architecture design, especially in high-dimensional

spaces with deep architectures. Wasserstein variations of

GAN [23, 10] have proven effective and popular in training

SR models in the 3D MRI domain. Nevertheless, we ob-

served that results from WGAN (or WGANGP) variations,

such as DCSRN [1], often suffer from blurring, likely due

to convergence issues or oscillating around suboptimal so-

lutions [25, 35].

In this paper, we propose a novel approach that incor-

porates instance noise to guide the training process, uti-

lizes relativistic GAN loss [15] to accelerate convergence,

and introduces a 3D Discrete Wavelet Transform (DWT)-

informed discriminator to lead the generator towards min-

imal noise generation. The proposed model demonstrates

stable training dynamics and produces high-quality results

while significantly improving noise cleaning on both sim-

ulated noisy data and real-world images without additional

training, outperforming other existing models.

Our work addresses the limitations of traditional SR

models that heavily rely on fixed datasets, lacking robust-

ness when applied to noisy images. In contrast, our pro-

posed model, DISGAN, achieves better than state-of-the-

art results in recovering detailed brain MRI structures while

effectively cleaning noise, thereby presenting high-fidelity

image content. The key contributions of our work are:

• We propose a GAN framework for the SR task that out-

performs existing methods in restoring detailed struc-

tures.

• We demonstrate the robustness of our proposed model

to simulated noisy images during the SR process,

guided by a frequency-informed discriminator.

• We show the effectiveness of noise cleaning in our

model, enhancing the quality of real-world clinical

data, such as images of patients with epilepsy or brain

tumors.

In summary, this paper presents a novel DISGAN model

that not only enhances the resolution of MRI images but

also effectively cleans noise, addressing a critical need in

the field of medical imaging and advancing the state-of-the-

art in MRI image super-resolution and denoising.

2. Related works

2.1. Wavelet transforms

Wavelet transforms are widely used in generative models

to explicitly introduce frequency bias to the models in tasks

like SR, denoising, and domain transfer[14, 2]. Some of

these works use GANs for better image generation, mostly

implementing DWT explicitly in the generator. Our model

includes the DWT functions in the discriminator, acting as

a measurement in frequency space between generated dis-

tribution and the real one.

2.2. Super resolution in medical imaging

Learning-based SISR has been extensively studied for

both 2D and 3D images. In this task, neural networks aim

to learn a non-linear mapping from low-resolution (LR)

to high-resolution (HR) images by exploiting the power-

ful capabilities of convolutional neural networks (CNNs),

as demonstrated in previous studies [3, 7, 37, 9].

In the 2D domain, SRCNN [3] introduced the first end-

to-end CNN architecture for LR to HR image mapping, sig-

nificantly outperforming traditional SISR methods. Sub-

sequent architectures such as SRGAN [7], VDSR [17],

RCAN [37] and ESRGAN [9] further improved perfor-

mance by incorporating GAN frameworks, perceptual loss,

deeper architectures and attention mechanisms. More re-

cent approaches using transformers [4, 22] and diffusion

models [30, 28] have achieved state-of-the-art quality in 2D

SISR tasks. However, these methods typically require large

amounts of training data.

In medical imaging, studies on 2D MR images have pro-

duced remarkable results, such as the squeeze-excitation at-

tention network [36] and the transformer architecture [19].

However, 3D volumes of MR images are typically re-

quired for downstream analysis, making 3D models more

favourable. Consequently, 3D models, such as those in [26],

have demonstrated superiority over 2D models in SISR

tasks for MR images.

This paper focuses only on 3D MR image training, and

novel architectures have not yet been fully adapted to the 3D

MRI domain due to its high dimensionality and limited data.

As a result, GAN-based methods remain the mainstream

choice for 3D MRI training due to their efficiency and high

performance. Previous works, such as [26, 1, 8, 31, 33, 34],

have explored GAN training, densely connected residual

blocks, implicit neural representation and image gradients

to achieve impressive 3D MR image SR results.

Despite the success of these studies, they are often con-

strained by having the same modality or image sequence

as the training dataset, and the quality of the reconstruction

can be limited in some cases.
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Figure 1: The diagram of our DWT-informed discriminator. The input is HR or SR patch volumes, the output is a scoring

tensor with the same spatial dimension as the input. The overall architecture follows a ”U-shape” topology, where output

after each blocks of the down-sampling and up-sampling branches are interconnected.

3. Methods
3.1. Network structure

Here, we propose our DISGAN architecture, which con-

sists of a generator, a discriminator as shown in Figure 1,

and a feature extractor. The generator consists of three Vol-

umetric RRDB blocks [13] (VRRDB) and uses pixel shuf-

fling as an upsampling operation. The feature extractor uses

convolutional layers and activation layers in front of the

multilayer perceptrons, which we train simultaneously with

the GAN model.

The model takes paired LR and HR patches of the vol-

umetric MRI and outputs an SR image. Specifically, as for

the generating part, the LR volume is the input to the gen-

erator to output the SR image. Then the feature extractor

takes the pair of HR and SR to measure the feature-wise Eu-

clidean distance. For the discriminator, the input is the pair

of HR and SR images, and the output is a discrimination

score. During training, we add linearly annealed Gaussian

noise to stabilise the training. We use relativistic GAN loss

as the target for adversarial training.

3.2. Wavelet informed discriminator

We propose the Discrete Wavelet Transform Convolu-

tion Unit (DWT+conv) for extracting frequency-wise fea-

ture in the discriminator. As a fundamental operation of

the DWT+conv, we use 3D Haar wavelet transform for

calculating the sub-band frequency features, which are fil-

Figure 2: Diagram of the proposed DWT+conv units. Each

DWT+conv unit takes high-resolution feature as input, and

parse it through a 3D DWT using Haar wavelets while re-

ducing the feature resolution by half. The low frequency

feature is fed to a 1×1 convolution layer to confine the num-

bers of output filters, whereas seven high frequency features

are concatenated along filters’ dimension before being fed

into another 1× 1 convolution layer.

tered into sub-bands comprising: one low frequency band

(LLL), seven high frequency bands along different di-

rections: LHL,LLH,LHH,HLL,HHL,HLH,HHH
(see Figure 2). After categorizing sub-frequency features,

low frequency sub-band features are passed into a 1 × 1
convolution to restrict the number of output filters; high fre-

quency sub-band features are concatenated along the filters’
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dimension before being fed into another 1 × 1 convolution

for the same purpose.

3.3. Objective function

In order to generate images with both high perceptual

quality and balanced training performance, we combine L1

loss in the image domain, perceptual loss [16, 7], and rel-

ativistic GAN loss (LRaGAN ) [15] as the overall objective

function for the generator network. The parameters of the

generator are constrained to learn both feature-wise (Lperc)

and image-wise (Lpixel) representations of the ground truth,

which the objective function seeks to minimize. The overall

objective function of the generator is defined as:

LG = Lperc + αLpixel + βLRaGAN
G (1)

where α = 0.01 and β = 0.005 are empirical parameters

for weighting image space L1 loss and relativistic averaged

GAN loss for generator (LRaGAN
G ).

The discriminator and the feature extracting networks

are updated based on their respective loss, LRaGAN
D and

Lperc.

4. Experimental settings
4.1. Evaluation metrics

Various metrics have been proposed to assess the ac-

curacy of super-resolution results, such as peak signal-to-

noise ratio (PSNR) and normalised-root-mean-square error

(NRMSE). Since our goal is not only to maximise per-pixel

similarity but also to correctly preserve anatomical struc-

tures, we use the Structural Similarity (SSIM) metrics to

evaluate the quality of super-resolution results.

4.2. Datasets

To test our approach, we use several datasets from dif-

ferent scanners, imaging modalities or body parts. Three

of these datasets are part of the Human Connectome

Project [32]1, the rest are from [5]. We name the datasets

according to the most distinctive attribute of each dataset,

as described below.

As a pre-processing step, all images are standardised to

have a mean of zero and a standard deviation of one. During

training, each complete HR volume is patched into over-

lapping HR patches with a shape of 64 × 64 × 64, with

a step size of 16 along each dimension, the LR patches

are simulated by linearly down-sampling the HR patches

to 32 × 32 × 32. All experiments use the model trained in

this way on the Insample dataset.

1Data were provided [in part] by the Human Connectome Project, WU-

Minn Consortium (Principal Investigators: David Van Essen and Kamil

Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers

that support the NIH Blueprint for Neuroscience Research; and by the Mc-

Donnell Center for Systems Neuroscience at Washington University.

Dataset ”Insample”. This dataset was downloaded

from the Lifespan Pilot Project as part of the Human Con-

nectome Project (HCP) [32]. It consists of T1-weighted

(T1w) MR images of 27 healthy individuals aged 8 to 75

years (15 women) acquired on a Siemens 3T scanner. In

our model, we divided them into 20 subjects for training

and 7 for testing. The resolution of the ground truth images

is 0.8mm isotropic, with a matrix size of 208× 300× 320.

Dataset ”Epilepsy”. This dataset was downloaded from

one of the OpenNeuro online repositories [29]. The repos-

itory we used contains mainly brain MRIs of epilepsy pa-

tients in T1w contrast. We use the image of one sub-

ject out of the 85 epilepsy subjects to evaluate the perfor-

mance of the denoising SR. The image has a matrix size of

208× 320× 320 with a resolution of 0.8mm.

Dataset ”Tumor”. This dataset is from the BraTS chal-

lenge validation dataset [24]. The BraTS validation dataset

contains several pathologically confirmed MRI scans, of

which we use one from the brain tumour MRI with T1w.

The image has a matrix size of 240× 240× 155 with a res-

olution of 1mm and has been skull-stripped in the dataset.

Model PSNR ↑ SSIM ↑ NRMSE ↓
Tri-linear 33.038 0.876 0.023

ESRGAN-3D [9] 37.022 0.933 0.013

DCSRN [1] 37.635 0.954 0.013

ArSSR [8] 28.038 0.280 0.048

Wang et al. [33] 36.922 0.943 0.013

DISGAN (ours) 39.342 0.962 0.006

Table 1: Quantitative comparison for SR models in dataset

”Insample”. Our model achieves the best performance in

most of the metrics.

5. Results
5.1. Implementation details

We trained a generator network, a critic network and a

feature extractor network. The generator network consists

of 3 residual-in-residual dense blocks[9], which are densely

connected residual units embedded without a batch norm

layer. The critic network is the same as a discriminator

without the final nonlinear activation layer. The feature ex-

tractor uses convolutional layers of ResNet10 before lin-

ear layers. All three networks are initialised by Kaiming

initialisation[11] and optimised by Adam optimiser[18], us-

ing coefficients of β1 = 0.9, β2 = 0.999 and a learning rate

of γ = 10−4. The variance of the instance noise decreases

linearly in each iteration, from σ = 1 to 0. Training is done

simultaneously on the PyTorch framework[6], the genera-
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(a) Tri-Linear (b) ESRGAN-3D (c) DCSRN

(d) Wang et al. (e) DISGAN (ours) (f) GT

Figure 3: Super-resolution results of an exemplary subject using various methods. The zoom-in view and the colormaps (red

for high and dark blue for low residual, using jet colormap, same for all other colormaps) of its absolute residuals of the green
boxes are show below each column. Note that our method recovers detailed structures the most, such as the blood vessel

(zoom in for better view). The residual maps highlight our model to have the best approximation, which is in line with the

quantitative results in Table 1.

tor and the discriminator network for 60000 iterations, on

NVIDIA’s Ampere 100 GPU.

5.2. High fidelity super-resolution on brain MRI

In this experiment, we test the performance of our model

against other 3D SR models on the ”Insample” dataset. For

comparison, we tested our approach against four other ap-

proaches, namely ESRGAN-3D [9], DCSRN, and Wang et

al. [33]. ESRGAN was proposed in 2D, so we reconfigure

it by replacing all 2D with 3D convolutions. Specifically,

we pre-trained the first 54 layers of a 3D VGG-19 network

on 3D MRI images from the same dataset. The DCSRN

model is available in 3D, but we retrained the model on

the ”Insample” dataset. The results are shown in Figure 3.

Note that our model recovered the ground truth best, provid-

ing high quality anatomical structures with less noise. This

is particularly true for the detailed blood vessel structures,

which is reflected by the smallest residual in the zoomed re-

gion; our model also performs dominantly by recovering the

finest structures of the cerebellum. The quantitative results

are shown in Table 1.

Furthermore, as shown in Figure 4, the DWT-informed

discriminator of our model guides the generator to produce

images with high fidelity in both image space and frequency

space, which is obtained by Fourier transforming the mag-

nitude image without explicitly constraining the frequency

space data. We crop the center matrix of 50 × 50 × 50 of

the frequency space of the image for better contrast when
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(a) Tri-Linear (b) ESRGAN-3D (c) DCSRN

(d) Wang et al. (e) DISGAN (ours)

0

140

0

0.76

(f)

Figure 4: Residual plots in both image and spatial frequency space of the same SR slices in Figure 3 over different methods.

Each odd numbered column illustrates the absolute residual for SR methods against GT; each even numbered column illus-

trate the absolute residual of images in center-cropped frequency space of each models against the GT’s. Note our model

(DISGAN) shows the minimum residual in both image space and frequency space.

visualising the difference.

5.3. Removal of simulated noise

In this experiment, we test the robustness of the model

for the SR task on an image corrupted by simulated noise.

The Gaussian noise is added to the HR image to simulate

the noisy data, then the image is linearly downsampled by

a factor of two as the LR input to the model. All models

are dedicated SR models without any training on the de-

noising task, so the simulated noisy data can be considered

as out-of-distribution data for the models. The models are

evaluated on images added with four levels of increasing

noise, whose standard deviation starts at 0 and increases by

0.1 per level to 0.3.

As shown in Figure 5, our model produces SR images

with clean content during the first three levels. At level 4,

the performance of these models is most severely degraded,

with all methods failing to maintain anatomical correctness

(e.g. some white matter structures are blurred, see region in

yellow boxes of Figure 5). On the other hand, as shown in

the metrics profile in Figure 6, our model outperforms other

methods by a wide margin in the first two noise levels. It

also maintains a low NRMSE value, reflecting a minimal

residual against the GT, in line with its image quality.

5.4. Noise removal in real world patients

In this experiment, we tested our model in recovering the

anatomical details while performing noise cleaning on real-

world patient MRI images, which are an unseen dataset for

DISGAN and were acquired using different setups. We used

MRIs of one subject each from the ”Tumor” and ”Epilepsy”

datasets for the noise cleaning tasks. The generation pro-

cess is identical to the previous experiments, which involves

downsampling HR to an LR volume and generating SR

from it.

Noise removal on ”Epilepsy” dataset. As shown in

Figure 7, the GT of the image contains random noise

throughout and ringing artefacts in the prefrontal area of

the cortex. Comparably, our DISGAN model reduces both

random noise and ringing artefacts to a minimum, restoring

a clean anatomical content.

Noise removal on the ”Tumor” dataset. In this ex-

periment, we use a T1w brain MRI image from a subject

in the ”Tumor” dataset. Figure 9 shows the MRI with the

patient’s brain tumour and has noisy image content, which

makes it difficult to identify the tumour. After the denoising

SR process, our DISGAN model effectively restores the im-

age content with minimal noise, representing a high quality

anatomical structure of the brain. In addition, the contour

of the tumour becomes more visible and the overall con-

trast for grey and white matter is improved, making visual

inspection easier.

6. Ablation studies

For a detailed understanding of the effects of each com-

ponent, we perform two ablation studies on the generator

and discriminator building blocks. For the generator, we

compare the generating ability of Volumetric RRDB (VR-

RDB) blocks, modified from its 2D RRDB block, and the

3D version of the SwinIR model. For the discriminator, we

compare the effect of the DWT+conv unit in guiding high
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(a) DISGAN (ours) (b) DCSRN (c) Wang et al. (d) GT

Figure 5: Comparison of different SR models on images with simulated noise. From left to right, each column stands for SR

results from DISGAN (ours), DCSRN [1], Wang et al. [33], and GT; from top to bottom, each row stands for images with

different levels of noise with increasing standard deviation of σ = 0, 0.1, 0.2, 0.3. Note the difference in zoom-in views of

the region marked in yellow and green, with corresponding quantitative results shown in Figure 6. DISGAN (ours) keeps

clean image contents throughout the noise-adding scheme.

0 0.1 0.2 0.3

30

35

40

45

σNoise

0 0.1 0.2 0.3

0.01

0.02

σnoise

Figure 6: The bar plots of PSNR (left) and NRMSE

(right) metrics from different SR models on simulated noisy

dataset, in accordance with Figure 5. For PSNR the higher

the better, for NRMSE, the lower the better. DISGAN

(Ours), Wang et al. [33], and DCSRN [1] are colored in

blue, red, and yellow respectively.

fidelity denoising SR generation.

6.1. Building blocks in the generator

To understand the architectural effects of the genera-

tor, we implemented and compared our generator with the

SwinIR [20] generator for our SR task. SwinIR is the

state-of-the-art model for 2D SR tasks, based on the effi-

cient SwinTransformer blocks [21]. We reimplemented the

SwinIR generator by replacing the 2D convolutions with 3D

ones, and created tokens of size 4×4×4. Due to the lack of

3D data pre-training, we trained the SwinIR generator from

scratch on the same ”Insample” dataset, on patched MRI

volumes from the ”Insample” dataset, with the remaining

components of the GAN unchanged.

The results show a better recovery of details in the

anatomical structures in the brain MRI. As shown in Fig-

ure 8, our VRRDB generator outperforms the SwinIR gen-

erator by completing details in the tail of blood vessels (see

zoom-in views and residual maps). We speculate that the
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(a) GT

(b) DISGAN (Ours)

Figure 7: Noise cleaning of our DISGAN model on real

world epilepsy noisy data. (a) the Ground truth image with

random noise and ringing artefacts, indicated by the green

arrows; (b) same anatomy after the noise removal by our

DISGAN model. Note our DISGAN output images with

more homogeneous intensity in gray and white matters, as

well as minimal random noise and ringing artefacts.

(a) GT (b) Ours+VRRDB (c) Ours+SwinIR

Figure 8: Residual plots of SR results from SwinIR gener-

ator and VRRDB. The first row shows the sagittal view of

the SR results, the second row shows zoom-in region and its

absolute residuals.

reason for this is that the essence of the SR task lies in ap-

proximating local information rather than paying attention

at a global scale.

6.2. DWT Unet as denoising discriminator

In this section, we show the different images produced

by models with different discriminators. These include

a simple convolutional network, an Unet-shaped convolu-

tional network [27], and an Unet-shaped convolutional net-

work with DWT+conv units. Our DISGAN model has the

same generator architecture as Wang et al. [33], which has a

normal multiple convolutional layers. As shown in Figure 3

and Figure 5, our model achieves cleaner image content and

more structural details, reflecting the design capability of

the DWT-informed discriminator.

(a) GT

(b) DISGAN (ours)

Figure 9: Noise cleaning of our DISGAN model on real

world brain ”Tumor” noisy data. (a) the Groud truth image

with random noise degrades the image quality, corrupting

the visibility of the structures; (b) the same anatomy after

the noise cleaning by our DISGAN model.

7. Discussion

In this paper, we propose DISGAN, a GAN architecture

for SISR and denoising of 3D MRI without the need for

separate denoise training. Specifically, we propose an ef-

fective 3D DWT+conv block as a fundamental unit of our

discriminator, which can indirectly guide the generator to

output an image with high frequency fidelity and minimal

noise. Our experimental results prove that our DISGAN

model achieves distinguishable SR results with the closest

detail restoration, while minimising noise.

However, it is still an open question to understand the

design factor leading to the generalisability of GAN models.

In the future, we also plan to investigate the maneuverability

of DISGAN for dedicated denoising tasks and improve the

denoising ability for such unified model.
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