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Abstract

This paper presents an end-to-end deep-learning-
based (DL-based) segmentation technique for multi-energy
sparse-view CT, where a single network achieves local CT
reconstruction and segmentation. While recent DL-based
CT segmentation outperformed traditional methods in terms
of accuracy and automation, these methods input a “re-
constructed” CT. Thus, its performance highly depends on
the CT image quality. The reliance prohibits the applica-
tion of these techniques for sparse-view CT, whereas the
sparse-view CT is another important technique to reduce
radiation dose and image acquisition time. Our end-to-
end deep learning technique integrates the reconstruction
and segmentation within a single neural network, which
allows us to improve the segmentation quality for sparse-
view CT data. The proposed method extracts fragments
of pixels from each multi-energy projection corresponding
to a bar of CT image voxels. In this way, our network,
comprising “filtering”, “back-projection,” and “segmenta-
tion” sub-networks, directly obtains the segmented CT im-
age directly from projections. Our CT segmentation on a
bar-by-bar basis is significantly memory-efficient due to the
independence of memory-expensive 3D convolution. Con-
sequently, our method delivers high-quality segmentation,
where the problems of sparse-view artifacts and memory-
expensiveness of prior methods are resolved.

1. Introduction

X-ray computed tomography (CT) is a widely-used

imaging technique that provides cross-sectional images of

objects and finds extensive applications in medical diag-

nosis. Concerning this, sparse-view CT is an important

technique to reduce radiation dose and shorten the image

acquisition time. Therefore, the reconstruction algorithms

from sparse-view projections have been intensely studied

for medial imaging and computer vision fields, includ-

ing traditional optimization-based iterative reconstruction

methods [8,14] and recent deep-learning-based (DL-based)

approaches [23, 24].

CT segmentation is another technique that plays a crucial

role in extracting certain parts from a CT image. It involves

dividing the CT image into multiple regions based on their

underlying anatomical or pathological properties. Com-

mon segmentation approaches, such as thresholding [9],

region-growing [12], and graph-cut-based methods [18],

have been widely used in CT segmentation, which is typ-

ically applied to CT “reconstructed” images and agnos-

tic to the projection images used to obtain the CT im-

ages. Moreover, there has been increasing interest in DL-

based CT segmentation methods. DL-based approaches in-

clude those based on encoder-decoder networks [16,21] and

generative adversarial networks (GANs) [5, 20]. In con-

trast to traditional methods of processing CT images, deep-

learning methods can be roughly classified into two cate-

gories, i.e., projection-domain methods [6, 22] and image-
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Figure 1. The overview of the proposed method, which obtains a segmented CT image by end-to-end deep learning from given projection

images. The network learns the relationship between the material composition of a bar of voxels and the corresponding projection of the

bar on the detector plane. To this end, the filtering module and projection module obtain the feature vector for each voxel in the bar. Then,

the segmentation module delivers the material composition ratio within each voxel.

domain methods [4, 7, 13, 21]. To obtain a segmented CT

image using these techniques, we have to use the projection-

domain methods after CT reconstruction. In contrast, we

have to use the image-domain methods before the CT re-

construction. Thus, both traditional and DL-based methods

require CT reconstruction somewhere in obtaining a seg-

mented CT image.

Unfortunately, the adherence to CT reconstruction poses

a problem when using sparse-view CT data, where the num-

ber of projections is insufficient to satisfy the Shannon–

Nyquist sampling theorem, resulting in the CT image being

contaminated by sparse-view artifacts. The sparse-view ar-

tifact is a critical issue for medical applications because the

sparsity of CT data is essential to reducing radiation dose

and shortening the image acquisition process.

On the other hand, multi-energy CT (MECT) is a next-

generation technique to enhance the information obtained

by X-ray CT imaging [2]. MECT is physically realized by

a photon-counting detector (PCD), often made of cadmium

telluride (CdTe). Unlike conventional detectors that convert

X-ray photons into visible light before generating an elec-

tric signal, PCDs directly convert the X-ray photons into an

electric signal. The PCD is expected to further reduce radia-

tion dose in medical X-ray CT imaging due to its capability

of improving contrast-to-noise ratio and reducing electronic

noise. Moreover, MECT offers more accurate material dis-

crimination over conventional single-energy CT (SECT), as

it provides additional spectral information that can be used

to differentiate materials with similar X-ray attenuation co-

efficients in specific energy levels. However, the application

of MECT for material segmentation is developing, and deep

learning techniques for that still need to be explored.

Based on these motivating factors, we propose an end-

to-end deep-learning method to obtain a segmented CT im-

age from sparse-view multi-energy projections. The term

“end-to-end” specifies that our method directly generates

segmentation from sparse-view CT data without relying on

traditional CT reconstruction algorithms. In other words,

our method directly obtains a segmented CT image from

projections using a convolutional neural network (CNN).

Furthermore, we leverage MECT to distinguish materials

more accurately. The overall process is illustrated in Fig. 1.

As shown in the left of Fig. 1, our method reconstructs a

segmented CT on a bar-by-bar basis following the recent

study for a DL-based construction of Feldkamp–Davis–

Kress (FDK) algorithm [19], which the authors refer to as

“BBB-FDK.” In this approach, the image domain is divided

into a set of bars comprised of vertically connected vox-

els. Such a divide-and-conquer strategy allows us to re-

duce the memory resource required for the reconstruction

and the amount of training data to let the training of the

CNN converge. Analogous to the original BBB-FDK, our

method can reconstruct a huge segmented 3D CT volume

using a standard GPU with a comparatively small graphics

memory, and the training data constructed with only a set

of projections given by a single CT scan was proven to be

sufficient. Along with these advantages inherited from the

original BBB-FDK, our approach obtains high segmenta-

tion quality for ultra-sparse projections, i.e., the number of

views is 1/10 of the image width while eliminating sparse-

view artifacts arising from the conventional FDK algorithm.

Contributions: The technical contributions of this study

are summarized as follows:

• This study introduces a new CT image segmentation

method based on end-to-end deep learning, where the

CNN obtains a segmented CT image directly from pro-

jection images;
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• This study shows that the rich spectral information of

MECT is beneficial even in the context of DL-based

CT image segmentation;

• This study shows several experimental results for the

proposed method to the cone-beam CT data in medi-

cal applications, such as distinguishing bones and teeth

from soft tissues.

2. Data Construction
This section introduces the process of extracting the in-

put and output for neural network training, which follows

BBB-FDK, the recent CNN-based FDK algorithm [19].

The input is image fragments extracted from each projec-

tion. We achieve this extraction through the back-projection

of a bar, consisting of vertically connected voxels in the im-

age domain, to each projection domain following the geom-

etry of an X-ray CT device. The output is the bar of vox-

els, each of which stores the probabilities for the materials

present in the voxel. The determination of the subvoxel-
level material composition involves calculating the volume

of the polyhedron enclosed by the isosurfaces. We obtain

the polyhedron for each voxel using the traditional march-

ing cubes algorithm [11]. The subsequent subsections pro-

vide more elaborated explanations for these processes of

obtaining input and output data for training.

2.1. Input: Projection region extraction

Given the geometry of the X-ray CT device, we can find

the pixel on a detector that exists in a line of X-ray radi-

ation traveling through a voxel. Therefore, we can extract

the bar of pixels on the projection associated with a bar of

voxels in the image domain. In addition, the FDK algo-

rithm, analogous to the filtered back-projection (FBP) algo-

rithm, applies a horizontal image filter, such as Ram–Lak

and Shepp–Logan filters, to each scanline of the projection

image. Inspired by this behavior, we extract the partial area

of projection images rather than the simple bar of pixels.

Accordingly, we extract an image area of wp × hp pixels

from each projection, where wp and hp are the width and

height of the area. Suppose that there are Np projections

with Ne energy levels. Then, we can obtain the input for

the neural network as a volume of (Np, hp, wp, Ne) pix-

els. The examples for the partial sinogram extracted from

MECT data are shown at the left of Fig. 1.

2.2. Output: Subvoxel-level material composition

Unlike the training data used in conventional CT seg-

mentation methods [4, 17], our method constructs the

ground-truth output data for supervised learning at a finer

level, i.e., subvoxel-level estimation of the material compo-

sition within each voxel. In this way, we can not only de-

termine whether a voxel belongs to material A or material

Case 0 Case 1 Case 2 Case 3 Case 4

Case 5 Case 6 Case 7 Case 8 Case 9

Case 10 Case 11 Case 12 Case 13 Case 14

Figure 2. Triangle configurations for boxes whose corners are

marked either inside or outside the object. These rules of trian-

gle configurations used in the standard marching cubes algorithm

can be classified into two: one is configured with a single set of

adjoining triangles (type (a)), and the other includes multiple is-

lands of triangles (type (b)).

B but also provide a more detailed analysis of the compo-

sition such that a voxel consists of 2% air, 90% material A,

and 8% material B.

We obtain such subvoxel-level material composition

through MECT simulation and segment the simulated CT

image based on the marching cubes algorithm [11]. The

marching cubes algorithm finds the surfaces of objects in

each voxel using the information of to which material each

corner corresponds. As shown in Fig. 2, the surfaces are

obtained as a set of triangles, and they divide the voxel into

several regions. The classic marching cubes algorithm em-

ploys 14 triangle patterns shown in Fig. 2, where the black

circles indicate a voxel within the isosurface, meaning its

voxel value is higher than the iso-value. Figure 2 shows

that we can classify these 14 cases into two categories: (a)

a voxel is separated into two by an isosurface of adjoining

triangles (shown with red text); (b) a voxel is separated into

more than two regions by two or more isosurfaces of trian-

gles (shown with blue text). Based on these categorizations,

we determine the material composition in each voxel by the

following steps.

Step 1: Assume that a given object consists of distinct com-

ponents, each of which is made of only one of n, i.e.,

μ1, μ2, . . . , μn. In addition to simulating the sparse-view

projection of the entire object, we simulate the full-view

projection of the set of components made of each material.

In other words, we perform a sparse-view CT simulation

for the entire object and n full-view CT simulation for the

materials of the target object.

Step 2: We reconstruct a CT volume for every n mate-

rial using the full-view projection data and then apply the
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Figure 3. The network architecture of the end-to-end bar-by-bar segmentation method. Given a bar of voxels from the target object, the

input of the network is a set of pixels in the corresponding projection regions of the bar in all energy channels, and the output is the

material composition within each voxel in this bar. The whole network consists of two parts. The former performs CT reconstruction

and is composed of filtering, averaging, and back-projection modules. The latter performs image segmentation and is comprised of a

segmentation module. The network learns the mapping between the projection regions and the material composition.

marching cubes algorithm [11] to extract the isosurface for

each material.

Step 3: For each voxel, we compute the polyhedron vol-

ume of each material and the air using the triangles given

by the marching cubes algorithm. Then, we compute the

ratio of materials of which each voxel consists. This pro-

cess slightly differs between voxels of type (a) and type (b)

depicted in Fig. 2.

(a) The voxel of type (a) includes only one closed poly-

gon Pk associated with the material μk. Therefore,

the ratio of the material composition is computed as

ρ(μk) = V (Pk)/s
3, where V (Pk) is the volume of

the internal region of Pk and s is the size of the voxel

as a regular cube.

(b) The voxel of type (b) may include multiple closed

polygons Pk,1, Pk,2, . . . , associated with the material

μk. Therefore, in this case, we calculate the ratio of

the material composition as ρ(μk) =
∑

i V (Pk,i)/s
3.

It should be noted that this process of computing the com-

position is performed n times for each voxel, given n CT

volumes associated with the materials.

3. MECT Segmentation Network
To let the CNN learn the relationship between the input

and output data constructed as in the previous section, we

build a network architecture consisting of three computation

modules, i.e., filtering, back-projection, and segmentation

Reference Dense Convolution

V
ie

w
-A

V
ie

w
-B

Reference Dense Convolution

(a) Part-A (b) Part-B

Figure 4. Comparison of a segmented part generated by dense and

convolutional reconstruction modules.

modules. As illustrated in Fig. 3, our network is considered

to be an extension of the network proposed by the BBB-

FDK paper [19], where the segmentation module based on

the U-net follows the BBB-FDK’s network to achieve CT

image segmentation.

The left side of the diagram illustrates the data extraction

process. For a voxel bar, the corresponding projection re-

gion on the detector is a 4D tensor of shape (Np, ŵp, hv, 1).
We collect projection regions from Ne energy channels and

compress their horizontal lengths to ŵp through integral

binning proposed in [19]. Subsequently, the projection re-

gions are concatenated along the energy channel axis and

fed into the BbB-FDK reconstruction network as proposed

in [19]. Here, in the back-projection module, instead of

using dense layers as in the original method, we employ

1D convolutions along the last axis of the averaged tensor.

Thus, we can effectively handle different bar formations by

leveraging the translation invariance of convolutions.
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Figure 5. Comparison of datasets used in image-domain methods, projection-domain methods, and our proposed method. In the former two

methods, the network is trained on the entire object as a single training data and involves an intermediate reconstruction step in addition to

the segmentation step. In contrast, our method trains the network on a small portion of the projection data and directly outputs the material

composition of a bar of voxels.

Figure 4 compares the effect of base layers, i.e., dense

layer (also known as a fully connected layer) and convolu-

tional layer, used in the segmentation results achieved by

the filtering and back-projection modules. To highlight the

difference in segmentation qualities given by varying base

layers, we used a mechanical component with a smooth

surface, shown in Fig. 4(a). Two different views of the

segmented part are presented. Notably, the segmentation

originating from dense layers exhibits an uneven surface

in view-A and a fractured surface in view-B. In contrast,

the network comprising convolutional layers yields a much

smoother surface. These observations imply the advantage

of convolutional layers that leverage weight sharing and lo-

cal connectivity to enhance the reproduction of the surface

geometry. Compared to the convolutional layers, dense lay-

ers are prone to overlook the spatial relationships between

voxels, potentially introducing noise or inconsistencies in

segmentation tasks. Thus, dense layers result in lacking sur-

face smoothness in the segmented results.

Following the back-projection module, the processed

bars, each corresponding to an energy channel, undergo seg-

mentation through a shallow U-net architecture designed to

accommodate the limited voxel heights of the bars. Em-

ploying 1D convolutions with a kernel size of 3, coupled

with batch normalization and ReLU activation, the encoder

employs 32, 64, and 128 feature maps successively. Dimen-

sion reduction is achieved using 1D average pooling with a

size of 2. Meanwhile, the decoder uses 64 and 32 feature

maps, incorporating 1D up-sampling of size 2. The final

layer employs a 1D convolution followed by the softmax

activation, yielding n bars with distinct material composi-

tions. The adoption of U-net is substantiated by its ability to

capture local and global features effectively. The encoder-

decoder architecture with skip connections often obtains

feature maps that correlate with the input data, thus it works

more efficiently for segmenting a small portion of data like

bars of voxels that we handle in the proposed method.

3.1. Computational efficiency

Figure 5 compares the volume-level CT segmentation

methods (i.e., (a) image-domain method and (b) projection-

domain method) and (c) our subvoxel-level method. In

Fig. 5 (a), w and h refer to the horizontal and vertical size

of the reconstruction volume. In Fig. 5 (c), Np, ŵp and hv

refer to the number of views, the horizontal length of pro-

jection regions after binning, and the number of bar vox-

els, respectively. In our implementation, w = h = 256,

Np = 25, ŵp = 11 and hv = 8. In both reconstruction

and projection-domain methods, the entire CT data of the

object is considered a single training data, resulting in high

GPU memory requirements up to 20 GB. Moreover, an ad-

ditional reconstruction algorithm is applied before or after

the segmentation, which can introduce artifacts into the fi-

nal results. On the contrary, our method divides the object

into bars and learns the direct mapping between bar projec-

tions and voxel composition, enabling efficient processing

of large-scale data on standard GPUs and eliminating arti-

facts. Moreover, the required memory of our method is only

tens of kilobytes.

3.2. Implementation

Our proposed method was implemented in Python, lever-

aging TensorFlow and Keras as machine learning software

libraries. During training, we optimize the trainable pa-

rameters using the adaptive momentum estimation method

(ADAM) [10] to minimize the cross-entropy loss for classi-

fication tasks, which is computed for pairs of the network

output and a corresponding bar region of the correct CT

segmentation. The learning rate is set to 1 × 10−4, and the

network is trained for 10 epochs with a batch size of 20.

For the training data, the input projection data con-

sisted of 24 views evenly sampled from 0° to 360°, and

each projection had a size of 256 × 256. Meanwhile, the

output segmentation data is created by reconstructing the

250-view scatter-corrected projections by the FDK algo-

rithm [3], then extracting the material composition by the

method described in Section 2.2. During the training pro-

cess, we employed the octree sampling, as described in [19],

to densely extract training data in regions with significant

CT value variations. Here, we used the tolerance of oc-

tree Ctol = 0.001 and reduced nearly 80% of the sampling

points (see [19] for more details). This approach achieves a
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Figure 6. The experiment samples used in our experiments. The

“Jaw” group consists of teeth and gum, where Jaw-A and Jaw-

B represented the lower jaw and upper jaw of one patient. The

“Chest” group includes rib and lung, with Chest-A and Chest-B

derived from two patients. The training data for each group is

indicated by underlining its name.

diverse composition of bars and reduces the redundancy in

training data, resulting in improved prediction quality and

an accelerated training process. On the other hand, we uti-

lized sparse projection data with 24 views for the test data.

4. Experiments
We validate the proposed method using simulated sam-

ples illustrated in Fig. 6. The first row of the figure shows

the 3D model of the simulated samples, the second row

shows one of the projections of the samples scanned by

150 kV single-energy X-ray, and the last row exhibits the

center slice of the reconstructed volume using the acquired

projections. The samples were acquired from two groups:

the “Jaw” group and the “Chest” group. The “Jaw” group

consists of teeth and gums from a lower jaw (Jaw-A) and an

upper jaw (Jaw-B) of a single patient. The “Chest” group

includes ribs and lungs from two different patients, referred

to as Chest-A and Chest-B, respectively. We conducted sep-

arate training and testing for each group. The training data,

indicated by the underline, were used to train the network,

and the trained networks were tested using the other sample

of the same group. The MECT simulation is performed us-

ing aRTist [1], a commercial CT simulation software. Dur-

ing the simulation, we set an X-ray filter made of copper

with 2.0 mm thickness.

4.1. Segmentation performance evaluation

In this experiment, we validated the segmentation perfor-

mance of sparse-view MECT using Jaw and Chest samples.

We trained four separate networks using MECT and single-

energy CT (SECT) data of Jaw-A and Chest-A samples,

respectively. Subsequently, we compared the performance

of these networks on Jaw-B and Chest-B samples, align-

ing with the corresponding energy settings. For the MECT

scans, we employed a tube voltage configuration consist-

ing of 8 bins, spanning the range of 0–20 kV, 20–40 kV, ...,

up to 140–150 kV. Conversely, for SECT, we determined

the tube voltage as the median value of the MECT scans,

specifically 80–100 kV.

Figure 7 compares the segmentation results of Jaw-B and

Chest-B samples obtained from SECT and MECT scans.

The reference segmentation, displayed on the left side of

each group, is the material composition obtained from the

reconstruction of the full-view scatter-corrected projections

of each part in the target object. Here, we used the tradi-

tional FDK algorithm to reconstruct a CT image. The mid-

dle and right columns exhibit the extracted surfaces, which

are obtained by applying the marching cubes algorithm [11]

to the ratio of material composition estimated by the net-

work. Two views are presented for each segmented part.

Figure 7 demonstrates that both SECT and MECT appear

to separate the target materials successfully from sparse-

view projections. However, the segmentation result with

SECT for the tooth (see Fig. 7(a)) shows a notable pres-

ence of noise. Moreover, the SECT result for the lung in

Fig. 7(b) erroneously includes a part of the ribs. In con-

trast, the segmentation results obtained using MECT data

for both samples exhibit smoother object surfaces and in-

clude significantly less noise.

In addition to the qualitative evaluation above, we show

the quantitative evaluation in Table 1. The two columns

at the left of Table 1 present Sørensen–Dice coefficients

(DICE) between the reference data and the results obtained

from SECT and MECT, respectively. The DICE value range

from 0 to 1, and the performance is higher when the DICE

value is closer to 1. Notably, the DICE value for MECT

is substantially higher than that for SECT. This observation

suggests that MECT improves the accuracy of the segmen-

tation process significantly owing to the richness of infor-

mation for material properties in MECT data. In contrast,

SECT demonstrates suboptimal performance when a spe-

cific energy range is utilized. Namely, SECT fails to provide

sufficient information for accurately segmenting the mate-

rial combination within our target object. Consequently,

employing MECT is advisable to achieve more reliable seg-

mentation results.

4.2. Influence of different energy resolutions

For MECT-based segmentation, we also experimented

with the effect of the resolution of energy bins. A narrower

energy bin provides higher spectral resolution and improved

material discrimination, but it also introduces noise due to
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Figure 7. The comparison of segmentation results between SECT and MECT of Jaw-B and Chest-B. The SECT results are predicted by

the SECT-trained network, while the MECT results are predicted by the MECT-trained network.

the presence of fewer photons in a narrow bin [15]. In this

experiment, our objective was to reveal a reasonable bal-

ance between higher segmentation precision and reduced

noise associated with bins with narrow energy ranges. To

this end, we compared the segmentation results using four

different energy resolution settings within the total range

of 150 kV. The energy settings we utilized were: (i) 8

bins with a 20 kV increment (0–20 kV, 20–40 kV, ..., 140–

150 kV), (ii) 5 bins with a 30 kV increment (0–30 kV, 30–

60 kV, ..., 120–150 kV), (iii) 3 bins with a 50 kV increment

(0–50 kV, 50–100 kV, 100–150 kV), and (iv) a single bin

with a 150 kV increment (0–150 kV). Each network was

trained and tested using the samples scanned by the same

resolution setting.

The experimental results are shown in Fig. 8. Let us

compare the result for 150 kV increment in this figure and

the SECT result in Fig. 7. The comparison suggests that

even the 150 kV increment, which results in a single energy

bin equivalently with SECT, outperforms SECT-based seg-

mentation, indicating that a broader energy range improves

segmentation quality. On the other hand, when comparing

all results of four energy resolutions to the reference data,

a decrease in segmentation precision is observed as energy

resolution decreases. Notably, the 20 kV increment result

exhibits a smooth surface without noise. In contrast, the

surfaces of other results become less smooth, particularly

noticeable in the segmentation of the gum and lung. Fur-

thermore, as the resolution decreases, noise in the tooth seg-

mentation becomes more pronounced. The DICE shown in

the second to last rows of Table 1 demonstrate performance

loss as the energy resolution decreases. These observations

suggest that denser energy bins contribute to high segmen-

tation accuracy, with the noise issue effectively mitigated

by the neural networks. Thus, our method achieves high

segmentation precision effectively by increasing the energy

resolution, suppressing more strongly noise compared to the

conventional SECT-based approach.

Table 2 presents the segmentation times obtained using

networks trained with different energy settings. The ex-

periment here was carried out on a computer featuring a

Jaw-B Chest-B

Single energy 0.966 0.960

20 kV increment, 8 bins 0.990 0.986

30 kV increment, 5 bins 0.989 0.985

50 kV increment, 3 bins 0.983 0.980

150 kV increment, 1 bin 0.980 0.978

Table 1. Dice coefficients (DICE) comparing the reference data

with the segmentation results obtained from 80–100 kV SECT,

20 kV increment MECT, 30 kV increment MECT, 50 kV incre-

ment MECT, and 150 kV SECT. A higher DICE value indicates

higher segmentation quality.

Jaw-B & Chest-B

Single energy 20 min

20 kV increment, 8 bins 33 min

30 kV increment, 5 bins 30 min

50 kV increment, 3 bins 26 min

150 kV increment, 1 bin 20 min

Table 2. Segmentation time required to process the different num-

ber of energy levels.

3.6 GHz Intel Xeon E5-1650 v4 CPU, an NVIDIA GeForce

RTX 3090 graphics card with 24GB of dedicated memory,

and a total of 256 GB RAM. The input size of a dense en-

ergy setting can be several times larger than that of a sparse

energy setting, resulting in longer processing times. Here,

the increase of the computational time is not linear with re-

spect to the number of energy bins, which means using the

higher energy resolution can often be a better choice.

5. Conclusion and Future Work

In this paper, we proposed an end-to-end CT segmenta-

tion method for sparse-view MECT. We combined an FDK-

simulated CT reconstruction neural network from [19] with

a U-net segmentation network. Instead of processing the
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Figure 8. The segmentation results of CT data scanned by different energy resolutions. Each network is trained and tested by two similar

samples scanned by the same energy setting.

entire object, we divided it into voxel bars and learned the

mapping between the projection regions of a bar in differ-

ent energy channels and the material composition of each

voxel within the bar. Here, we defined the projection region

of a single voxel as the horizontal extension of its projected

trajectory, while the projection regions of a bar consist of

several vertically-stacked trajectories. Within each voxel,

the material composition of a specific target material was

determined by the volume ratio of the polyhedron formed

by the isosurfaces contained in that voxel. This data extrac-

tion approach allowed us to extract sufficient training data

from a limited number of samples and process large-scale

3D CT data without memory constraints. Using this end-to-

end segmentation network, we achieved artifact-free seg-

mentation from sparse-view MECT by using only a limited

number of training samples. Moreover, we demonstrated

that our method achieves high segmentation accuracy by

utilizing high energy resolution while effectively mitigat-

ing noise generated by narrow bins. The increased energy

resolution improved the segmentation quality owing to the

richer information on the absorption properties for various

combinations of materials. The improved segmentation per-

formance using MECT will facilitate the discrimination of

materials with similar X-ray absorption properties.

In future work, we are interested in enhancing a filter-

ing module to focus more on the varying contributions of

energy bins. Such an update will allow the network to

identify specific energy bins that affect the segmentation

process more, as not all bins are considered to contribute

equally. By selectively focusing on the most informative

energy bins, we anticipate improvements in both the seg-

mentation quality and the efficiency of the training process.

Additionally, this approach could reduce the image acquisi-

tion time by recommending that only some specific energy

bins are enough for segmentation.
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