
Effect of Stage Training for Long-Tailed Multi-Label Image Classification

Yosuke Yamagishi, Shohei Hanaoka
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
{yamagishi-yosuke0115, hanaoka-tky}@g.ecc.u-tokyo.ac.jp

Abstract

In this study, we focus on the multi-stage training ap-
proach for training image classification models in the ICCV
CVAMD 2023 Shared Task CXR-LT: Multi-Label Long-
Tailed Classification on Chest X-Rays. In the proposed ap-
proach, the input image size and batch size are adjusted at
each stage of the training process. In the first stage, we use
a smaller input image size and a larger batch size for model
training. Following that, we increase the image size and re-
duce the batch size in the second stage. A thorough search
of the related literature did not yield validations of a sim-
ilar approach for data with a long-tailed distribution. We
successfully balance accelerated model training and per-
formance by combining the proposed technique with var-
ious enhancements, such as oversampling, postprocessing
using view positions, and ensemble methods, despite using
a smaller model architecture and smaller input image size.

1. Introduction
In image recognition, several previous studies have in-

vestigated the construction of deep learning models, where

increasing the image size has gradually led to reduced train-

ing time and an improvement in the final accuracy [7, 16,

12, 11]. We demonstrated it by adopting a simpler ap-

proach, specifically via stage training, where the training

is divided into multiple stages instead of gradually increas-

ing the input size during training. Consequently, high-

performing models can be constructed more efficiently.

The setting of the batch size during the first stage of

training was another interesting factor. It is well-known

that increasing the batch size accelerates the training mod-

els. On the other hand, there are contrasting opinions on

the impact of batch size changes on the performance of the

model [10, 15]. Increasing the batch size can accelerate the

training process; however, limitations due to the VRAM of

the GPU may force us to lower the image size. The perfor-

mance can be maintained by lowering the input image size

and further increasing the batch size during the first stage of

stage training, enabling efficient optimization of the training

process.

Previous studies have applied stage training by divid-

ing the training process into stages on different datasets [8].

There have been no reported investigations specifically fo-

cusing on the same dataset. Prior studies have addressed

long-tailed data in chest X-ray images [6], exploring vari-

ous loss functions, and data augmentation techniques. We

validated the proposed method using the dataset from the

ICCV CVAMD 2023 Shared Task CXR-LT: Multi-Label

Long-Tailed Classification on Chest X-Rays [5, 4].

In this study, we propose the use of a multi-stage train-

ing approach to enhance performance in the context of long-

tailed multi-label classification tasks. Specifically, we aim

to examine how the batch size and input image size in the

first stage of stage training affect the performance of the fi-

nal model. To this end, we conducted experiments using the

CXR-LT dataset, which contains chest X-rays with a long-

tailed distribution of multi-label classes. Our findings shed

light on whether increasing the batch size during the train-

ing of the model on low-resolution images in the first stage

accelerates the training and maintains the performance.

2. Dataset

In this study, we used only the MIMIC-CXR-JPG [4, 9]

data and labels provided in the ICCV CVAMD 2023 Shared

Task CXR-LT. No external data were used. We employed

the holdout method and split 80% of the data for training

and 20% for validation. The MIMIC-CXR-JPG dataset con-

tains duplicated studies, incorporating image data acquired

concurrently from the same patients and including images

captured from various perspectives, including frontal and

lateral views. To ensure that the same study does not mix

both the training and validation data, we performed the

splitting using the ”GroupKFold” function in scikit-learn.

Consequently, the training data were divided into 211,879

images, and the validation data into 52,970 images. The

distribution of the training and validation data is listed in

the Table 2.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

2721



Label All Train Valid

Support Devices 0.337 0.334 0.346

Lung Opacity 0.302 0.303 0.298

Cardiomegaly 0.290 0.290 0.293

Pleural Effusion 0.261 0.261 0.263

Atelectasis 0.255 0.255 0.257

Pneumonia 0.182 0.181 0.182

No Finding 0.158 0.158 0.157

Edema 0.146 0.146 0.145

Enlarged Cardiomediastinum 0.114 0.114 0.114

Consolidation 0.061 0.060 0.063

Pneumothorax 0.057 0.057 0.054

Fracture 0.045 0.045 0.044

Infiltration 0.039 0.039 0.039

Nodule 0.029 0.029 0.031

Mass 0.021 0.021 0.020

Calcification of the Aorta 0.016 0.016 0.018

Emphysema 0.016 0.016 0.015

Hernia 0.015 0.015 0.015

Pleural Thickening 0.013 0.013 0.013

Tortuous Aorta 0.013 0.014 0.012

Lung Lesion 0.010 0.010 0.009

Subcutaneous Emphysema 0.009 0.009 0.009

Fibrosis 0.004 0.004 0.004

Pleural Other 0.003 0.003 0.003

Pneumomediastinum 0.003 0.003 0.003

Pneumoperitoneum 0.002 0.002 0.002

Table 1. Overall label ratio is stored in the ”All” column, while the

training data ratio is stored in the ”Train” column, and the valida-

tion data ratio is stored under the ”Valid” column.

3. Method

In this study, we conducted multi-stage training to train

the model. Specifically, we created models under various

learning conditions and compared their performance on the

validation data and development data. The summarized in-

formation is presented in Table 5.

3.1. Multi-Stage Training

For training the model, we adopted multi-training with

varying image resolutions and batch sizes. In this study,

we used a maximum of three stages for multi-staging. A

summary of the training is presented in Table 5.

In the first stage, the model was trained using the lowest

resolution of 224x224 pixels. To compare the impact of the

batch size, we created two models with batch sizes of 256

and 128, respectively.

In the second stage, we divided the batch size into two

options. The first option has a batch size of 128 and a reso-

lution of 320x320 (referred to as model2-5 in Table 5), and

the second option has a batch size of 80 and a resolution of

384x384 (referred to as model6 in Table 5).

In the third stage, we further increased the resolution to

512x512 and set the batch size to 48.

Oversampling, as described below, was not applied in the

first stage. In the second stage, oversampling was added to

some models, while others did not.

3.2. Oversampling

For some models, we applied simple oversampling by

duplicating data for certain labels. Determining which

data to oversample was based on the predictions made on

the validation data of ”model2”, as indicated in Table 5.

Specifically, the AP was calculated for each label based

on the predictions on the validation data, and we over-

sampled the labels’ data that were below the threshold of

0.10 or 0.15. When the threshold is set to 0.1, the fol-

lowing labels’ data are doubled: ”Infiltration,” ”Lung Le-

sion,” ”Pleural Other,” ”Pleural Thickening,” ”Pneumome-

diastinum,” ”Pneumoperitoneum,” and ”Tortuous Aorta.”

When the threshold is set to 0.15, the data of the following

labels are doubled: ”Calcification of the Aorta,” ”Fibrosis,”

”Fracture,” ”Infiltration,” ”Lung Lesion,” ”Nodule,” ”Pleu-

ral Other,” ”Pleural Thickening,” ”Pneumomediastinum”,

”Pneumoperitoneum”, and ”Tortuous Aorta”.

3.3. Test Time Augmentation

Test time augmentation (TTA) was performed during in-

ference. TTA is a well-known technique for improving the

accuracy at inference time [14]. It entails generating aug-

mented versions of the original image and feeding both the

original and augmented images into the model for predic-

tion. The predictions from these multiple images are then

aggregated to obtain the final prediction. In this study, we

used the original images and their horizontally flipped ver-

sions, utilizing them as inputs to the model to obtain predic-

tion values. We then obtained the mean of these prediction

values as the final prediction.

3.4. Postprocessing

The MIMIC-CKR-JPG dataset includes the position of

the image captured in the ”ViewPosition” column, which is

broadly classified into frontal and lateral views. It was ob-

served that some labels in the competition had better perfor-

mance when evaluated from the frontal view. As indicated

in Table 5.3, the frontal view achieved better results for a

majority of labels. Therefore, we first calculated the per-

formance difference between the frontal and lateral views

using the validation data of model3. For studies where both

frontal and lateral views were available, we replaced the

predictions with those from the frontal view for labels that

performed better in the frontal view. In cases where mul-

tiple frontal views were captured, we calculated the mean

2722



Figure 1. Postprocessing flowchart. ”Superior Label” refers to val-

ues where the prediction AP of frontal images was superior to

those of lateral images, while ”Inferior Label” refers to values

where the prediction AP is inferior. In cases where both frontal

and lateral images were available in the same study, we calculated

the mean of the frontal image predictions and replaced it with the

profile image predictions.

of their predictions as the final prediction. We summarize

the AP per label for the effects of the base model used,

ensemble techniques, and post-processing. Figure 1 is the

flowchart for this postprocessing.

3.5. Ensemble

It is well known that ensemble methods, which aggregate

predictions from multiple models, can improve predictive

performance. We developed a total of four models to obtain

the final prediction via an ensemble of these four models

(model3, 5, 6 and 7). To obtain the final prediction, we

used a simple average of the predicted values from the four

models and applied postprocessing.

4. Experiment
4.1. Environment

The model trainings and inferences were conducted on

an RTX 3090 GPU with 24GB of VRAM. Python 3.7.12

was used to construct the deep learning models, and the Py-

Torch framework version 1.12.1 was employed.

4.2. Preprocessing

First, we resized the images uniformly. In the first stage,

the input image size was set to 224x224 pixels. In the sec-

ond stage, it was increased to either 320x320 or 384x384

pixels. Lastly, for the third stage, the image size was set to

512x512 pixels. Data augmentation was performed using

the Albumentations library [1]. We applied random hor-

izontal flipping (“HorizontalFlip” function), vertical flip-

ping(“VerticalFlip” function), and cutout (“CutOut” func-

tion) [3], which black out up to 5% of the image size with

a maximum of five cutout regions. The probability of ap-

plying each augmentation was set to 50%. Finally, we nor-

malized the images using the mean and standard deviation

of the ImageNet dataset before using them as inputs to the

model [2]. This data augmentation was consistent across all

models during training.

4.3. Model

We utilized the EfficientNetV2-S architecture as the

model [16]. EfficientNetV2 was introduced as an archi-

tecture that achieves high performance with smaller mod-

els. In the EfficientNetV2 series, we adopted the model ar-

chitecture with 24M parameters, which has the lowest per-

formance but also the fewest parameters. The architecture

and pre-trained weights were obtained from the timm li-

brary [17]. Among the available pre-trained weights, we

selected those that were pre-trained using the 22k ImageNet

dataset and fine-tuned using the 1k ImageNet dataset [2].

4.4. Training Settings

For the scheduling of the learning rate, we used a warm-

up period, reaching the maximum learning rate, followed by

a cosine curve decay. We employed binary cross-entropy as

the loss function. AdamW with a weight decay of 0.000001

was used as the optimizer [13]. We calculated the aver-

age precison (AP) for each label and the mean average

precision (mAP) at the end of each epoch and selected

the best one among all epochs as the model used for final

predictions. In this process, we used the scikit-learn ”la-

bel ranking average precision score” function to calculate

the mAP. The detailed parameters, including the number of

warm-up epochs, total epochs, and the highest learning rate,

are listed in Table 5.

5. Results
The mAP for all models in both validation data and de-

velopment data is documented in Table 5. Additionally,

the results from multi-stage training, oversampling, post-

processing, and ensemble techniques are presented in Ta-

ble 5.4, including the results for each label.

5.1. Effect of Multi-stage Training

In the first stage of training, two variations were em-

ployed for the batch size: 256 and 128 (model0 vs model1).

Upon completing the first stage, the model with a batch size

of 256 outperformed the model with a batch size of 128,

including validation data (0.282 vs 0.268) and development

data (0.298 vs 0.256).

As mentioned above, oversampling was applied using

the weights of model0 and model1, and the performance

of the second stage model was compared. When comparing

the model constructed using the larger batch size in stage 1

2723



Model Stage Pre-Weight Image size Batch size Max LR OS-threshold Val mAP Dev mAP

model0 1st ImageNet 224x224 256 0.001 N/A 0.282 0.298

model1 1st ImageNet 224x224 128 0.001 N/A 0.268 0.256

model2 2nd model0 320x320 128 0.001 N/A 0.300 0.302

model3 2nd model0 320x320 128 0.001 0.10 0.303 0.304

model4 2nd model1 320x320 128 0.001 0.10 0.297 0.298

model5 2nd model0 320x320 128 0.001 0.15 0.299 N/A

model6 2nd model0 384x384 80 0.001 0.10 0.301 0.306

model7 3rd model3 512x512 48 0.001 0.10 0.305 0.304

Table 2. All models employ EfficientNetV2-S as the backbone with 30 epochs, utilizing the first epoch for learning rate warm-up. The

”Model” column lists the names of the models mentioned in this paper. The ”Stage” column indicates the training stage, and for the 2nd

and 3rd stage, the total number of epochs is 60 and 90, respectively. The ”Pre-Weight” column represents the pre-trained weights used

at the start of training. For stage 1 models, ImageNet was used, while either model0 or model1 was used for stage 2 models. ”Image

size” refers to the dimensions of the input images used for training the model. ”Batch size” represents the batch size used during model

training. ”Max LR” denotes the maximum learning rate after warm-up. The ”OS-threshold” column contains the threshold value used for

oversampling. For instance, if the threshold is set to 0.1, it indicates that any label in the validation set of ”model2” with an mAP below

0.1 is duplicated, and N/A means no oversampling was applied. ”Val mAP” represents the average mean average precision for all labels on

the validation data, while ”Dev mAP” represents the average mean average precision for all labels on the development data. The models in

bold are the four used in the ensemble for the final predictions.

with the model that uses the smaller batch size (model3 vs

model4), the former outperformed the latter in both valida-

tion data (0.303 vs 0.297) and development data (0.304 vs

0.298).

Furthermore, model3 was utilized to train the third stage

(model7). The input image size for the third-stage model

was expanded to 512x512. The results for the valid data

were slightly better in model7 compared to model3 (0.305

vs 0.303); however, no improvement was observed in the

development data (0.304 vs 0.304).

In the first stage of multi-stage training, we accelerated

the learning process by using a smaller input image size and

a larger batch size (input image size: 224x224, batch size:

256). Furthermore, we compared the behavior of the loss

function and scores when we used a larger input size and a

smaller batch size for stage 1 (input image size: 320x320,

batch size: 128). The results are presented in Figure 2. The

training was conducted until epoch 30 for stage 1, and from

epoch 31, it transitioned to stage 2 training.

At epoch 31, the scheduler was reset, resulting in a tem-

porary degradation in the scores for both cases. However,

ultimately, better results were achieved in both scenarios

compared with the final outcome of the first stage. The final

values for the two models are as follows: the validation loss

function was 0.1846 for the model with input image size

224x224 and batch size 256, and the validation loss func-

tion was also 0.1846 for the model with input image size

320x320 and batch size 128, both values are equal.

Regarding mAP, the former achieved a value of 0.3003,

while the latter scored 0.2995. This indicates that the model

with an smaller input image size of 224x224 and a larger

batch size of 256 was slightly superior in terms of mAP

performance.

Therefore, our proposed method can complete the train-

ing faster than the conventional approach, and the obtained

results are nearly identical or slightly better.

5.2. Effect of Oversampling

We also evaluated the impact of oversampling by divid-

ing the threshold for the procedure. The results for the val-

idation data were calculated for three models: one without

oversampling, one with oversampling at a threshold of 0.10,

and one with oversampling at a threshold of 0.15 (model2

vs model3 vs model5). The model with oversampling per-

formed at a threshold of 0.10 exhibited the best perfor-

mance, with scores of 0.300 vs 0.303 vs 0.299. Moreover,

the performance of the models without oversampling and

with oversampling at a threshold of 0.10 was also compared

using the development data (model2 vs model3), resulting

in scores of 0.302 vs 0.304, where the model with oversam-

pling again outperformed the other.

5.3. Difference in AP per View Position

As mentioned in the methods section, the MIMIC-CXR-

JPG dataset contains multiple views of the same study.

These views can be broadly categorized into frontal and

lateral images. In many labels, it is expected that the

frontal images are easier to interpret compared to lateral

images. Therefore, following the method described, a post-

processing step was performed to replace the predictions of

lateral images with the predictions of frontal images.

The labels for performing the post-processing were de-

termined based on the performance of model3 on the vali-

dation data. The results are summarized in Tabel 5.3.

2724



Figure 2. Upper graph illustrates the curves of the loss function

during both training and validation, while the lower graph repre-

sents the mAP curve on the validation data. The first stage encom-

passes the training process up to the 30th epoch, and the second

stage extends up to the 60th epoch. In the first stage of training,

the input image size was set to 224x224, and the batch size was

256 (”image 224x224, batch 256”). In the same way, during the

first stage, another experiment was conducted with an input image

size of 320x320 and a batch size of 128 (”image 320x320, batch

128”). In the second stage, both experiments used an input image

size of 320x320 and a batch size of 128, which were kept the same

across both experiments.

As expected, the predictions of frontal images were su-

perior to the predictions of lateral images in the majority

of the labels. A significant difference could be observed,

particularly in ”Subcutaneous Emphysema” with a value of

0.251 and ”Pneumomediastinum” with a value of 0.222.

Overall, the difference in mAP between frontal and lat-

eral images was 0.054, indicating that the predictions for

frontal images were superior. Specifically, the mAP for

frontal images was 0.317, while the mAP for lateral images

was 0.263.

5.4. AP for each label

We verified the changes in AP for each label using the

development data and test data.

Through training from the 1st stage model (model0) to

the 2nd stage model (model2), we observed improvements

Label Front Lateral Dif

Support Devices 0.909 0.732 0.177

Lung Opacity 0.573 0.538 0.035

Cardiomegaly 0.671 0.624 0.047

Pleural Effusion 0.808 0.811 -0.003

Atelectasis 0.600 0.509 0.091

Pneumonia 0.293 0.302 -0.009

No Finding 0.450 0.457 -0.007

Edema 0.540 0.399 0.141

Enlarged Cardiomediastinum 0.183 0.150 0.033

Consolidation 0.228 0.181 0.047

Pneumothorax 0.420 0.242 0.178

Fracture 0.128 0.088 0.040

Infiltration 0.051 0.055 -0.004

Nodule 0.097 0.080 0.017

Mass 0.215 0.112 0.103

Calcification of the Aorta 0.109 0.093 0.016

Emphysema 0.182 0.213 -0.031

Hernia 0.486 0.647 -0.161

Pleural Thickening 0.085 0.061 0.024

Tortuous Aorta 0.053 0.050 0.003

Lung Lesion 0.035 0.038 -0.003

Subcutaneous Emphysema 0.489 0.238 0.251

Fibrosis 0.127 0.093 0.034

Pleural Other 0.055 0.013 0.042

Pneumomediastinum 0.258 0.036 0.222

Pneumoperitoneum 0.185 0.065 0.120

Mean 0.317 0.263 0.054

Table 3. We calculated the mean average precision for the pre-

dictions of model3 on the validation data, separating them into

two groups: ”Front” (images with ViewPosition of AP or PA) and

”Lateral” (images with ViewPosition other than AP or PA). ”Dif”

represents the result obtained by subtracting the AP of lateral from

the AP of frontal. The labels with a higher AP in the frontal view

than in the lateral view are indicated in bold.

in AP for both data sets across 22 out of 26 labels. This in-

dicates significant score enhancements in a substantial por-

tion of data with a long-tail distribution. The overall mAP

improved from 0.286 to 0.302 for the development data and

from 0.291 to 0.308 for the test data.

By applying oversampling, improvements in AP could

be observed for the minority labels ”Pneumoperitoneum”

(validation data ratio of 0.002) and ”Pneumomediastinum”

(validation data ratio of 0.003) in both data sets. Overall,

the mAP improved from 0.302 to 0.305 for the development

data, but a slight decrease was observed from 0.308 to 0.307

for the test data.

Furthermore, through post-processing, we witnessed AP

improvements for 15 out of the 26 labels in both datasets.

Moreover, the overall mAP improved from 0.313 to 0.315.

2725



Figure 3. This figure depicts the flowchart of the model’s stage training and inference. Firstly, in the 1st stage, training is conducted with

an input image size (IMG) of 224x224 and a batch size (BS) of 256. The 2nd stage models (model3, model5, model6) used for the final

inference are represented, and OS denotes the threshold used during oversampling. Furthermore, during the training of the 3rd stage,

model7 was created. Inference from the four models (2nd stage and 3rd stage) is combined through averaging to perform an ensemble.

Finally, post-processing is applied to obtain the final prediction.

The ensemble improved scores for 23 out of the 26 la-

bels. The overall mAP improved from 0.313 to 0.326 for

the development data and from 0.315 to 0.330 for the test

data.

The flowchart for multi-stage training and inference for

making the final prediction is summarized in Figure 3.

6. Conclusion

In the first stage, when tested with a consistent input im-

age size of 224x224, larger batch sizes consistently yielded

better accuracy. We further leveraged the first-stage model’s

superior-performing weights as pretrained weights for the

second-stage model, leading to enhanced performance in

the second stage. Interestingly, when comparing two first-

stage models — one trained with an input size of 224x224

and a batch size of 256, and another with an input size of

320x320 and a batch size of 128 — the former, despite un-

derperforming at the end of the first stage, matched the lat-

ter’s performance in the second stage. This indicates that,

even with the acceleration of the initial training phase, our

approach establishes a pathway to an efficient learning pro-

cess without compromising the final performance.

Furthermore, we demonstrated that employing multiple

techniques, such as oversampling, postprocessing, and en-

semble, can improve scores even with long-tail data. In par-

ticular, the ensemble method improved scores for 23 out of

26 labels. Although the models used in this ensemble all

share the same architecture and were trained using the same

data, which might suggest limited model diversity, the sig-

nificant score improvements indicate that even minor dif-

ferences in training settings or input image sizes can lead to

increased model diversity. This makes these results partic-

ularly valuable.

As a limitation in this study, the learning rate was kept

the same even when changing the batch size. It has been

suggested that adjusting the learning rate when changing the

batch size would be beneficial; however, this would also de-

pend on the scheduler, which would require thorough con-

siderations.

In this experiment, we achieved efficient learning by set-

ting a larger batch size and a smaller input image size in the

first stage of training. This approach potentially overcomes

the limitations of GPU VRAM by suppressing memory con-

sumption and optimizing learning speed and efficiency.

The method used in this study is facile and has high gen-

erality, making it applicable to various types of data, not just

those with long-tail distributions. There is also potential to

apply this method to multitask scenarios.

2726



Label 1st stage 2nd stage Oversampling Postprocess Ensemble

Support Devices 0.870 / 0.865 0.887 / 0.884 0.885 / 0.881 0.888 / 0.885 0.897 / 0.894
Lung Opacity 0.580 / 0.561 0.593 / 0.571 0.588 / 0.569 0.600 / 0.581 0.611 / 0.590
Cardiomegaly 0.646 / 0.647 0.646 / 0.648 0.644 / 0.646 0.663 / 0.665 0.669 / 0.668
Pleural Effusion 0.802 / 0.810 0.808 / 0.817 0.805 / 0.816 0.807 / 0.816 0.812 / 0.822
Atelectasis 0.569 / 0.575 0.579 / 0.583 0.578 / 0.583 0.593 / 0.596 0.600 / 0.602
Pneumonia 0.288 / 0.281 0.296 / 0.289 0.290 / 0.286 0.283 / 0.286 0.301 / 0.292
No Finding 0.459 / 0.462 0.461 / 0.467 0.464 / 0.464 0.460 / 0.464 0.470 / 0.471
Edema 0.525 / 0.521 0.536 / 0.532 0.533 / 0.533 0.545 / 0.543 0.551 / 0.551
Enlarged Cardiomediastinum 0.166 / 0.171 0.168 / 0.177 0.166 / 0.176 0.168 / 0.181 0.171 / 0.183
Consolidation 0.210 / 0.203 0.210 / 0.206 0.205 / 0.202 0.212 / 0.216 0.216 / 0.225
Pneumothorax 0.350 / 0.367 0.399 / 0.418 0.393 / 0.416 0.407 / 0.431 0.421 / 0.451
Fracture 0.102 / 0.107 0.123 / 0.120 0.124 / 0.120 0.146 / 0.133 0.186 / 0.171
Infiltration 0.061 / 0.053 0.064 / 0.056 0.063 / 0.055 0.064 / 0.055 0.064 / 0.056

Nodule 0.098 / 0.093 0.113 / 0.105 0.111 / 0.103 0.117 / 0.112 0.153 / 0.137
Mass 0.164 / 0.152 0.166 / 0.168 0.163 / 0.165 0.185 / 0.175 0.198 / 0.187
Calcification of the Aorta 0.081 / 0.075 0.110 / 0.103 0.109 / 0.098 0.141 / 0.112 0.156 / 0.130

Emphysema 0.268 / 0.149 0.263 / 0.155 0.278 / 0.146 0.284 / 0.146 0.279 / 0.161
Hernia 0.478 / 0.457 0.506 / 0.487 0.513 / 0.481 0.491 / 0.481 0.531 / 0.499
Pleural Thickening 0.063 / 0.063 0.078 / 0.073 0.069 / 0.078 0.094 / 0.105 0.114 / 0.119

Tortuous Aorta 0.059 / 0.052 0.064 / 0.055 0.065 / 0.055 0.069 / 0.058 0.066 / 0.063
Lung Lesion 0.055 / 0.029 0.068 / 0.030 0.062 / 0.028 0.055 / 0.028 0.064 / 0.031
Subcutaneous Emphysema 0.338 / 0.457 0.427 / 0.488 0.416 / 0.457 0.450 / 0.471 0.465 / 0.507
Fibrosis 0.087 / 0.105 0.117 / 0.108 0.114 / 0.110 0.117 / 0.106 0.148 / 0.116
Pleural Other 0.017 / 0.024 0.022 / 0.036 0.037 / 0.026 0.028 / 0.032 0.050 / 0.059
Pneumomediastinum 0.075 / 0.223 0.075 / 0.266 0.139 / 0.296 0.152 / 0.319 0.149 / 0.326
Pneumoperitoneum 0.020 / 0.076 0.085 / 0.175 0.123 / 0.195 0.129 / 0.206 0.134 / 0.262
Mean 0.286 / 0.291 0.302 / 0.308 0.305 / 0.307 0.313 / 0.315 0.326 / 0.330

Table 4. The table above shows the AP for each label and the mAP. Each AP is presented in the format of Development Data / Test Data.

Moreover, the AP that achieved the best performance up to that point is highlighted in bold. The table labels are arranged in descending

order of frequency in the data, following the same order as the Tabel 2 The ”1st stage” refers to model0 (trained with a size of 224x224

and a batch size of 256), while the ”2nd stage” refers to model2 (based on the 1st stage model and trained with a size of 320x320 and

a batch size of 128). ”Oversampling” indicates the model trained with oversampling in addition to the training conditions of model2

(model3). ”Postprocess” represents model3 with the post-processing method described in the paper. ”Ensemble” denotes the AP obtained

by averaging the predictions from model3, 5, 6, and 7.

2727



References
[1] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-

chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.

Kalinin. Albumentations: Fast and flexible image augmen-

tations. Information, 11(2), 2020.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

[3] Terrance Devries and Graham W. Taylor. Improved regular-

ization of convolutional neural networks with cutout. CoRR,

abs/1708.04552, 2017.

[4] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M

Hausdorff, Plamen Ch Ivanov, Roger G Mark, ..., and H Eu-

gene Stanley. Physiobank, physiotoolkit, and physionet:

Components of a new research resource for complex phys-

iologic signals. Circulation, 101(23):e215–e220, 2000.

[5] Gregory Holste, Song Wang, Ajay Jaiswal, Yuzhe Yang,

Mingquan Lin, Yifan Peng, and Atlas Wang. CXR-

LT: Multi-Label Long-Tailed Classification on Chest

X-Rays. https://physionet.org/content/
cxr-lt-iccv-workshop-cvamd/1.0.0/.

[6] Gregory Holste, Song Wang, Ziyu Jiang, Thomas C.

Shen, George Shih, Ronald M. Summers, Yifan Peng, and

Zhangyang Wang. Long-tailed classification of thorax dis-

eases on chest x-ray: A new benchmark study. In Lecture
Notes in Computer Science, pages 22–32. Springer Nature

Switzerland, 2022.

[7] Jeremy Howard. Training imagenet in 3 hours for usd 25;

and cifar10 for usd 0.26. https://www.fast.ai/
posts/2018-04-30-dawnbench-fastai.html,

2018. Accessed: July 15, 2023.

[8] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works, 2018.

[9] Alistair Johnson, Matthew Lungren, Yifan Peng, Zhiy-

ong Lu, Roger Mark, Scott Berkowitz, and Steven Horng.

Mimic-cxr-jpg - chest radiographs with structured labels

(version 2.0.0). PhysioNet, 2019. Accessed: 2023-07-15.

[10] Ibrahem Kandel and Mauro Castelli. The effect of batch size

on the generalizability of the convolutional neural networks

on a histopathology dataset. ICT Express, 6(4):312–315,

2020.

[11] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation, 2018.

[12] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution, 2017.

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization, 2019.

[14] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and

John Guttag. Better aggregation in test-time augmentation,

2021.

[15] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and

Quoc V. Le. Don’t decay the learning rate, increase the batch

size, 2018.

[16] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller mod-

els and faster training, 2021.

[17] Ross Wightman. Pytorch image mod-

els. https://github.com/rwightman/
pytorch-image-models, 2019.

2728


