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Figure 1. Attention Map Visualization. Given an image, we generate the attention map visualizations using a pretrained DINO [11]. The

attention maps bear observable resemblance to the ground truth segmentation maps. Inpired by this phenomenon, we innovatively pass these

segmentation map visualizations along with the input image to the segmentation network to generate the semantic segmentation prediction.

Abstract

Although purely transformer-based architectures pre-
trained on large datasets are introduced as foundation mod-
els for general computer vision tasks, hybrid models that
incorporate combinations of convolution and transformer
blocks showed state-of-the-art performance in more special-
ized tasks. Nevertheless, despite the performance gain of
both pure and hybrid transformer-based architectures com-
pared to convolutional networks, their high training cost and
complexity make it challenging to use them in real scenarios.
In this work, we propose a novel and simple architecture
based on only convolutional layers and show that by just tak-
ing advantage of the attention map visualizations obtained
from a self-supervised pretrained vision transformer net-
work, complex transformer-based networks, and even 3D
architectures are outperformed with much fewer computation
costs. The proposed architecture is composed of two encoder
branches with the original image as input in one branch and
the attention map visualizations of the same image from mul-
tiple self-attention heads from a pre-trained DINO model in
the other branch. The results of our experiments on medi-

*The authors contributed equally to this work

cal imaging datasets show that the extracted attention map
visualizations from the attention heads of a pre-trained trans-
former architecture combined with the image provide strong
prior knowledge for a pure CNN architecture to outperform
CNN-based and transformer-based architectures. Project
Page: dai-net.github.io

1. Introduction

Medical image segmentation aims to highlight critical

parts of an image, such as organs and tumors, in various

modalities (e.g., CT, MR, etc), for the purpose of clinical di-

agnosis. The cost and availability of annotation and segmen-

tation by experts necessitates automatic methods, and deep-

learning based techniques have given a significant boost to

the field in recent years. The next leap in performance is

likely to stem from methods that can leverage large amounts

of unannotated data in a self-supervised manner, and un-

cover the underlying structure and knowledge in the data

to improve segmentation of medical images. The pipelines

in medical image segmentation networks commonly follow

an encoder-decoder architecture resembling a pixel-to-pixel

mapping from image to segmentation maps.

One of the earliest and most successful representatives

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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of this approach is U-Net [65], which uses CNN blocks and

skip-connections from encoder to decoder at different reso-

lution levels. Many works proposed CNN architectures that

were inspired by or expanded upon U-Net [33, 70, 69, 37].

Until today though, most CNN-based approaches are out-

performed by ensembles of vanilla U-Net architectures as

proposed in nnU-Net [38], which showed that image pre-

processing heuristics may have a larger effect than architec-

tural improvements. The inductive bias of CNNs is beneficial

for faster convergence. However, it can also cause the model

to saturate faster and miss complex underlying relations.

Therefore, more complex networks like attention-based mod-

els [15] were explored for medical image segmentation.

Transformers [76] introduced attention layers for natural

language processing (NLP), and were recently adapted to Vi-

sion Transformers (ViT) for different computer vision tasks

[24]. Some models for medical image segmentation em-

ployed purely transformer-based architectures [16, 8]. Oth-

ers followed a hybrid approach and incorporated transformer

blocks in the encoder [12, 85, 83, 16], decoder [51, 52], both

[80, 97, 54] or other network parts [15, 93, 46]. Although

transformer-based designs lead to a lack of inductive bias

and a wider field of view compared to CNNs, they require

a large amount of data for training. Further, the memory

requirement of attention layers grows quadratically with the

number of image patches, which leads to higher compu-

tational resources compared to CNNs, particularly during

training. Interpretability is also another crucial criteria, espe-

cially in sensitive scenarios like medical applications, and

despite some efforts to improve it [14, 42], investigating

the interpratibility of attention-based architectures is more

challenging compared to CNNs [40].

The lack of carefully annotated data in medical imaging

is another challenge to adopting transformers for medical

image segmentation. As a consequence, the adoption of self-

supervised learning methods for segmentation tasks has been

proposed [8, 16]. There are several approaches proposed

for pretraining Transformers. The most common one is

introduced for natural language processing through defining

pretext tasks [76]. Although adopting this approach for

images showed promising results [24], the DINO model

[11] which was recently adopted for self-supervised training

of vision transformers, could be a better fit for computer

vision tasks. DINO follows a student-teacher scheme for

distilling the knowledge of the teacher branch to the student

branch. The teacher branch receives a larger field of view,

and the teacher’s knowledge is propagated to the student in

an unsupervised manner. Despite the difference in training

of DINO [11] and ViT [24], both reported an emergence of

meaningful shapes in their attention map visualizations.

In this work, we take advantage of these attention map

visualizations extracted from the pretrained DINO model

for the generation of pairs of image-attention map visual-

ization. We hypothesize that these visualizations encode

additional information that can be leveraged for downstream

tasks such as semantic segmentation. Our goal is to leverage

the benefits of transformers in medical image segmentation

without having to bear their limitations and high complex-

ities. Therefore, we generate pairs of image-attention map

visualizations to combine the perspective and richness of

extracted features in transformers with the simplicity and

effectiveness of CNNs in medical image segmentation.

As it can be observed in Figure 1, each head resembles

certain parts of the segmentation maps; thus the model is

enforced to capture all the available information by incor-

poration of the generated attention-map visualizations as

input data. To achieve this goal, we propose DAINet (Dual

Attention-Image Network), a novel method for incorporat-

ing the knowledge of the transformer into a simple CNN

architecture. For this, we propose two architecture variations

that take the image and attention-map visualization pairs

an input. First, we concatenate the input image with the

attention map visualizations at channel level and feed these

to the segmentation network. This variation is limited by

the entangled representation learning of the visualizations

and spatial features that need to be extracted from the image.

Therefore, we propose a second variant with two distinct

encoders. The first encoder receives the input image and the

attention visualizations are fed to the second encoder. This

simple modification enforces the network to extract more

meaningful features that may correlate better with the pre-

dicted segmentation maps. We verify this with an ablation

study of skip connections from the attention encoder to the

decoder of the segmentation network. In summary, our main

contributions in this work are:

• We demonstrate that transformers trained in a self-

supervised manner could capture essential information,

which can be leveraged for downstream tasks such as

semantic segmentation. To the best of our knowledge,

this is the first work that directly incorporates these

information for the image segmentation task.

• We introduce a simple yet effective CNN-based archi-

tecture to employs the attention maps visualizations

along the original image for medical image segmen-

tation. This potentially allows for more investigatory

measures like interpretability that has been widely stud-

ied for CNNs and is cruical for medical applications.

• We show the effectiveness of our approach in two well-

known organ segmentation datasets and compare its

performance to other well-known segmentation tech-

niques based on transformers and CNNs.
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2. Related Work
Deep learning has immensely affected medical image seg-

mentation [88, 86, 28, 2, 87]. Among earlier architectures,

Long et al. [57] introduced an image-image mapping based

on Fully Convolutional Network. Later, U-Net revolution-

ized medical image segmentation with its encoder-decoder

architecture connecting in a bottleneck and skip-connections

between encoder and decoder components [65]; since then,

U-Net has been primarily used as a benchmark in medical

image segmentation. Some other architectures also proposed

incorporating the components of U-Net, e.g., [70, 69, 25],

which most of them use U-Net-based skip connections. Gen-

eralization is improved by shortening the gap between the

encoder and decoder semantic maps [98]. Adding residual

connections for each encoder and decoder block and dividing

the input image into patches with a weighted map for each

patch as input to the model is also investigated [82]. Diako-

giannis et al. [22] utilized U-Net backbone, combined with

residual connections, atrous convolutions, pyramid scene

parsing pooling and multi-tasking inference, and Jha et al.
[41] explored the advantages of residual blocks combined

with the squeeze and excitation blocks. V-Net [59] and 3D

U-Net [99] utilized similar architecture for 3D medical im-

age segmentation [66]. U-Net architecture use-cases also

expanded to other medical image analysis tasks such as

computer-aided diagnosis [71, 73, 72, 53, 23], image denois-

ing [89, 58], image registration [4, 34], and it is also utilized

in diffusion models for state-of-the-art image generation

[36, 26]. Apart from the traditional U-Net form, Y-Net [27],

a segmentation network with two encoders and one shared

decoder has been recently proposed for medical image seg-

mentation. Y-Net introduces a spectral encoder that extracts

frequency domain features and shows superior performance.

The spectral encoder consists of Fast Fourier convolutional

(FFC) blocks with fast Fourier transform at their core.

Convolutional layers have inherent inductive bias, that

limit the ability of the network to make spatial relation in

different parts of the input image. Some works employed

sequence-to-sequence modules like RNN and LSTM in med-

ical image segmentation [35, 68]. Dilated convolutions [90],

as the name suggests, tried to modify convolutional layers to

have a broader view, and they were used by many methods

to preserve the spatial size of the feature map and to en-

large the receptive field [17, 95, 92]. The receptive field can

also be enlarged by using larger kernels [60] and enriched

with contextual information by using kernels of multiple

scales [18]. Hardnet [13] employs a Harmonic Densely Con-

nected Network that is shown to be highly effective in many

real-time tasks, such as classification and object detection.

Wang et al. used attention maps in each feature map of the

encoder-decoder block to enlarge the representation between

farther areas in the image [78] and it was extended by the

incorporation of scalar gates in the attention layer [75]. In

the same work, they proposed Local-Global training strategy

or LoGo that aims to consider specialized branches for local

and global views.

2.1. Vision Transformers

Transformer architecture was first introduced for machine

translation and thereafter became the dominant backbone ar-

chitecture for Natural Language Processing; it is constructed

mainly by attention-blocks in the form of encoder-decoder,

which utilized the GPUs much more efficiently compared to

other sequence-sequence blocks like LSTM and RNN [76].

Depending on the task, many architectures adopted the origi-

nal encoder-decoder form [49, 47, 19] and some only used

the encoder part [21, 55, 45, 5] or decoder part [61, 20, 84].

Inspired by the success of transformers, many attempted

to bring transformers to vision tasks [79, 9, 63, 94], and

Dosovitskiy et al. [24] inspired by the relative simplicity

of BERT architecture [21], introduced vision transformers

(ViT) as the state-of-the-art in image classification tasks;

They also explored the concept of hybrid architectures that

uses CNNs to generate embeddings, and other works like

CvT [81] improved the ViT performance by incorporating

CNNs. LeViT [31] used low-resolution attention maps and

combined them with CNNs to improve the inference time.

Many other works extend ViT to other tasks like video clas-

sification [7] and ViLT [43] extract and combine features

from text and image for better inference. To fit the trans-

former architecture for tasks other than classification, hybrid

architectures were proposed. For object detection, DETR

[10] uses a CNN block as the entry backbone for feature

extraction and bounding box detection and uses the encoder-

decoder transformer block for prediction of the labels. For

semantic segmentation, SETR [96] transformers are imple-

mented to extract features in the encoder for sequentializing

images without using the traditional FCN [57]. Ranftl et
al. [64] leverage vision transformers in place of CNNs as a

backbone for dense prediction tasks.

2.1.1 Self-Supervised Learning in Vision Transformers

Self-supervised learning to pretrain transformers initially in-

troduced as pretext task in NLP by masking random embed-

ding vectors and optimizing the model to recover them. In

the same way, ViT [24] also uses a simple pretext approach,

by randomly masking patches of the input image, and asking

the model to predict its average color. In another work, Atito

et al. [3] utilize group mask model learning (GMML) for pre-

text pretraining of vision transformers to improve the simple

masking approach. SelfPatch [91] is also a pretext technique

that aims to learn better patch-level representations. On the

other hand, DINO [11] follows a student-teach scheme that is

more common in computer vision. EsViT [50] also exploits

Knowledge Distillation with a fixed teacher network and a
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student network that is continuously updated in an attempt

to minimize a loss function. Caron et al. [11] claimed in

DINO that with this self-supervised approach, the extracted

features in self-supervised vision transformers contain mean-

ingful and intuitive information about the image, which does

not appear as explicit as supervised vision transformers or

CNNs, which also inspired this work to benefit from such

information in medical image segmentation. Ge et al. [30]

also presented a pipeline to use the priors of transformers in

a CNN network; it has two branch architectures: one for the

CNN, and the other for the transformer that guides the CNN

branch in a self-supervised manner, and both branches are

trained simultaneously.

2.2. Transformers for medical image segmentation

A pure transformer-based model for medical image seg-

mentation was introduced by Karimi et al. [16] for 3D medi-

cal image segmentation, and Swin-UNet [8] based on Swin-

Transformers [56] showed its effectiveness on ACDC [6] and

other datasets; however, hybrid architectures were more re-

searched. In most of such architectures, similar to U-Net, an

encoder-decoder shape is followed. Transformer blocks are

utilized in different parts of such networks. Swin UNETR

[74], Trans Claw-UNet [12], Claw-UNet [85] and LeViT-

UNet [83] adopted transformers for feature extraction in the

encoder. TransUNet [16] with a similar approach showed

superior performance on synapse dataset [48] and ACDC

[6]. Fewer works explored Transformers in only decoder

parts [51, 52]. On the other hand, UTNet [80], nnFormer

[97] and Dual Swin Transformer UNet (DS-TransUNet) [54]

incorporated the transformers along CNNs in both encoder

and decoder part. TransAttUNet [15] employed guided at-

tentions in skip-connections to provide more expressive rep-

resentation. Axial Fusion Transformer UNet (AFTer-UNet)

[93] implement a fusion layer with axial fusion layers, and

SegTHOR [46] also suggested another type of fusion layer.

3. Method
We present a simple architecture for semantic segmenta-

tion adapted from the well-known U-Net [65]. Unlike other

complicated methods, rather than incorporating transformer

components in our architecture, we propose extracting atten-

tion map visualizations from the multi-head attention layer

of the last block in a pre-trained vision transformer model

such as DINO [11] and feeding them to the segmentation

network in addition to the input image. Our framework con-

sists of two steps: 1) self-supervised training of the DINO

model to obtain the attention map visualizations for images,

2) Training our proposed segmentation model using the seg-

mentation map annotations, input images, and their corre-

sponding attention map visualizations from step 1. Figure 2

shows an overview of our proposed segmentation network

in step (2), while the input to the lower branch is obtained

from step (1).

3.1. Definitions

Given a dataset D of input images x ∈ R
H×W×C

with height H , width W and number of input channels

C, and their corresponding segmentation map annotations

y ∈ R
H×W×N , where {x, y} ∈ D. The number of classes

in our dataset is defined by N . The goal of our segmentation

model parameterized by θ is to predict the semantic segmen-

tation maps ŷ = θ(x). We denote the pre-trained DINO

[11] model by φ. We extract the attention map visualization

from each self-attention head in DINO and denote them by

νi where i ∈ {1, ..., h} defines the head index and h defines

the total number of heads. Therefore, the predicted segmen-

tation map becomes a function of ν in addition to x, leading

to ŷ = θ(x, ν).

3.2. DINO

As mentioned earlier, DINO [11] is a vision transformer-

based architecture that is trained in a self-supervised manner

without labels. DINO consists of a teacher (parameterized

by φt) model and a student model (parameterized by φs)

and is trained using self-distillation. The teacher and the

student share the same architecture and receive two aug-

mented cropped views x1, x2 from the input image x. The

architecture of φ is based on a vision transformer [24] (ViT),

followed by a projection head with the dimension K that

outputs the probability distributions Ps, Pt of the student

and teacher models, respectively; where P (x)(j) is the prob-

ability distribution of input image patch x(j) in Equation 1:

P (x)(j) =
exp(φ(x)(j)/τ)

∑K
k=1 exp(φ(x)

(k)/τ)
. (1)

Each network has its own parameters φs, φt and tem-

perature τs, τt, which yields Ps, Pt using Equation 1. The

temperature parameter defines the sharpness of the probabil-

ity distribution P . The backbone model (ViT-S/16) receives

a grid of image patches x(j) with resolution 16 × 16 as

input. A set of embeddings are generated by feeding the

image patches to a linear layer, and are then followed by a

learnable token with the goal of aggregating the information

from the whole grid sequence. The embeddings are passed

to a standard Transformer network which is a sequence of

self-attention and feed-forward layers with skip connections.

There are in total h self-attention heads in the last block of

the network, that generate the attention map visualizations

νi,j for i ∈ (1, ..., h) of image patch x(j).

DINO Optimization The student model parameters are

updated by applying stochastic gradient descent and mini-

mizing the cross-entropy loss between the features from the
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student and teacher (Equation 2):

Lst =
−Pt(x1) logPs(x2)

2
+

−Pt(x2) logPs(x1)

2
. (2)

The teacher model parameters are optimized via an expo-

nential moving average of the students’ parameters using:

φt ← λφt + (1− λφs), (3)

where λ defines a a cosine scheduler from 0.996 to 1.

3.3. Semantic Segmentation

The main contribution of our method lies in showing

that the self-attention visualizations in a self-supervised pre-

trained transformer-based architecture can be employed with-

out actually using the transformer components in the main

model architecture, thus leading to a simple architecture,

similar to U-Net, that uses additional features as input to per-

form the segmentation task more effectively. We also define

a switching mechanism that allows further customization for

keeping or removing skip connections.

We present two versions of our segmentation model. The

first version simply adapts the U-Net [65] model by increas-

ing the number of input channels in θ and concatenating

the input image x with the attention map visualizations ν.

This modification is done by changing the number of input

channels in the initial layer of the U-Net from C to C + h
(number of attention heads).

We hypothesize that since the input image and the atten-

tion map visualizations are from different domains, introduc-

ing an extra encoder to extract the features from the attention

map visualizations would lead to better feature modulation.

Furthermore, we believe that the attention map visualizations

from a model encode more valuable information than the

original image, which would have higher correlation with

the final segmentation map; thus facilitating the possibility

of the model to assign higher weights to such features in a

separate encoder.

Therefore, we propose a network with two encoders and

a shared decoder for predicting the semantic segmentation

map. The first encoder Ex gets the original image x as input,

while the second encoder Eν , which has h input channels,

receives the attention map visualizations ν of the different

heads. The features extracted by these two encoders are

concatenated at the bottleneck and then fed to the shared

decoder D.

Since the skip connections from the encoders provide a

direct connection to the decoder features and, as a result,

the predicted segmentation map, we explore the settings of

employing the skip connections at different points. These

are denoted by switches ( 1 , 2 , 3 , 4 ) in our experiments

defining whether the skip connection exists at the specified

point or not. Figure 2 depicts the DAINet network with all

switches 1 = 2 = 3 = 4 = 1.

Losses To optimize our segmentation model, we employ

the combined cross-entropy, and dice loss [39]. The dice-

coefficient loss (Equation 5) has high flexibility towards

class imbalance, while the cross-entropy loss (Equation 4)

helps with the curve smoothing [39].

�CE(ŷ, y) = − 1

N

N∑

n=0

yn log(ŷn), (4)
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Table 1. Quantitative results of our segmentation model compared to SOTA on Synapse Dataset [48]

Method DSC (%) ↑ HD95 (mm) ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

V-Net∗ [59] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

DARR∗ [29] 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

R50 U-Net∗ [1] 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

R50 AttnUNet∗ [67] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

U-Net# [65] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

AttnUNet# [67] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

R50 ViT# [24] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

ViT∗ [24] 61.50 39.61 44.38 39.59 67.46 62.94 89.21 43.14 75.45 69.78

TransUNet [16] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

TransClaw U-Net [12] 78.09 26.38 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55

MT-UNet [77] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

U-Net † 79.52 33.99 89.64 69.73 82.79 77.26 93.50 61.71 84.15 77.36

Swin-UNet [8] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

TransCASCADE [62] 82.68 17.34 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52

DAINet (Ours) 84.26 13.79 89.66 72.47 87.89 83.90 95.34 67.61 93.74 83.48

�DICE(ŷ, y) = 1− 2yŷ + ε

y + ŷ + ε
, (5)

where ε is added to the numerator and denominator for nu-

merical stability. The total loss (Equation 6) for the seg-

mentation model then is the sum of dice and cross-entropy

loss:

Lseg =
1

2
�CE +

1

2
�DICE . (6)

4. Experiments
In this section we present the results of our experiments

on two publicly benchmarks for medical image segmenta-

tion namely the ACDC [6] and Synapse [48] datasets. These

datasets hold images of MR and CT belonging to differ-

ent sets of organs with different sizes and intensities with

challenging structures and shapes for the evaluation of our

proposed networks. As follows, we shortly refer to the

public benchmarks used in this work, then we present the

experimental setup and implementation details. Finally, we

demonstrate the results of our experiments compared against

state-of-the-art (SOTA) methods and after that an ablation

study of different settings of our proposed method. We used

the average dice score and Hausdorff distance for the eval-

uation, which are the standard metrics in medical image

segmentation.

4.1. Datasets

Synapse The Synapse dataset [48] is a multi-organ seg-

mentation dataset of abdominal CT images. We follow the

same experimental protocol to MT-UNet [77] for training

and evaluation of our model. In total, 30 abdominal CT scans

and their corresponding semantic segmentation maps, be-

longing to eight abdominal organs (aorta, gallbladder, spleen,

left kidney, right kidney, liver, pancreas, spleen, and stom-

ach) are adopted. Each CT volume in the dataset has varying

number of between 85 to 198 slices with a resolution of

512 × 512. Similar to [77], we employ 18 volumes for

training and 12 volumes for testing.

ACDC The Automated Cardiac Diagnosis Challenge

(ACDC) dataset [6] consists of cardiac MR images from

150 patients. Similar to Synapse, we follow the same ex-

perimental protocol as MT-UNet [77] and TransUNet [16],

which utilize the data of 100 out of the 150 patients in this

dataset. For each data sample in the dataset, the data for two

modalities of end-diastole (ED) and end-systole (ES) are

provided. The annotations provided in the dataset provide

semantic segmentation maps belonging to three regions, left

ventricle (LV), right ventricle (RV), and myocardium (Myo).

The train / validation and test splits follow the same setting

as previous work with 70, 10, and 20 samples respectively.

The slices in this dataset have a resolution of 352× 352 and

each volume has between 7 and 17 slices.

4.2. Experimental Setup

We follow the same training and evaluation scheme as

[77], if not otherwise stated. We use the Adam optimizer [44]

for training the model. The initial learning rate is set to 1e−4,

with a step scheduler to gradually decrease the learning rate

in each iteration of the training with a rate of 0.9. The

model has a weight decay of 1e−4 for regularization. The

maximum number of training epochs is set to 300, while we

apply early stopping for our model based on the validation

dice score. The batch size was set to 16 and the image

resolution was 224× 224. For augmentation purposes, we

apply random flipping and rotations to the images during the

training. We report the dice score value for different organs

and regions and the average dice score for both datasets.

For the Synapse dataset [48], we also report the Hausdorff

distance (HD95) between the predicted and ground truth

segmentation maps.
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To extract the attention map visualizations for both ACDC

and Synapse datasets, we employed the pre-trained DINO

[11] model on ImageNet and fine-tuned it on the correspond-

ing dataset. We adopt the ViT-S/16 model and fine-tune it

on images with a resolution of 256× 256, with a batch size

of 64 for 800 epochs and with a learning rate of 1e−4 on

the training set of each dataset. To employ attention map

visualizations with the same resolution as the input images

for the segmentation task, we downsample the attention map

visualization to 224 × 224. The ViT-S/16 model has 6 at-

tention heads, which would also set the number of input

channels to our attention encoder to 6.

4.3. Results

We present quantitative and qualitative results of our

method compared against the state-of-the-art as follows.

Then, we show an ablation study of the components of our

architecture. The quantitative results of our model com-

pared to the SOTA on the ACDC dataset is presented in

Table 2. To have a fair comparison against the SOTA, we

train and evaluate the UNet model which is the most similar

architecture to ours. The values reported in Table 1 are ob-

tained from each original paper unless specified. The UNet †
model has the same configuration as Swin-Unet. The results

marked with ∗ are obtained from [16] and # from [8]. All

the experiments demonstrate the superiority of DAINet to

comparable previous work. DAINet outperforms the com-

plex transformer-based architectures such as MT-UNet [77]

and Swin-UNet [8] by a large margin in terms of dice score.

The qualitative results in Figure 3 show that DAINet predicts

the segmentation map more accurately compared to U-Net.

4.3.1 Comparison to SOTA

We show the results of our experiments on the Synapse

dataset [48] both quantitatively in Table 1 and qualitatively in

Figure 3. As it can be seen in Table 1, DAINet outperforms

Swin-Unet in terms of the average dice score and HD95

by 5.13 percent and 7.76 points, respectively. The results

show that the performance differences among the compared

methods could be dependent on the shape and the size of

the segmented anatomy. It can be observed that for the

larger organs, the results have less variations. For instance in

Table 1, we see that the dice score in the liver has the highest

value among abdomen organs, and despite the fact that our

model outperformed others, the improvement is marginal

and only around 1.05%. We also observe that the models

have much more variations in segmenting organs with less

compact forms or irregular shapes. For instance, in the case

of Aorta, our proposed method, U-Net and Attn-Unet have

similar performances while transformer based-architectures

have lower performance in terms of dice score. This could be

due to the existence of skip connections in the U-Net family

that directly enrich the decoder’s inference with image priors.

Additionally, our ablation study in Table 3, offers some

evidence that the placement of skip-connections in the U-

Net family could be a potential factor in segmentation of

different organs as well. It can be seen that with lowering

the effect of skip connections in the attention map branch of

the last layer, the performance of LV improves, which is the

only label Table 2 at which U-Net is marginally better.

Table 2. Comparison of our method against related work on the

ACDC [6] dataset (∗ obtained from [16], and † trained by us).

Method RV Myo LV DSC (%)

R50 U-Net∗ [1] 84.62 84.52 93.68 87.60

R50 AttnUNet∗ [67] 83.27 84.33 93.53 86.90

ViT-CUP∗ [24] 80.93 78.12 91.17 83.41

R50 ViT∗ [24] 82.51 83.01 93.05 86.19

TransUNet [16] 86.67 87.27 95.18 89.71

Swin-Unet [8] 85.77 84.42 94.03 88.07

MT-UNet [77] 86.64 89.04 95.62 90.43

U-Net† [65] 89.67 89.27 95.76 91.57

TransCASCADE [62] 89.14 90.25 95.50 91.63

DAINet (Ours) 90.53 89.52 95.63 91.90

Ground Truth U-Net [65] DAINet (Ours)

Figure 3. Some qualitative results on comparison of DAINet
against U-Net on the test data of the Synapse dataset [48].
( Aorta, Gallbladder, Left Kidney, Right Kidney, Liver,

Spleen, Pancreas, and Stomach)
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4.3.2 Ablation Study

In Table 3, we present an ablation study of the proposed

method. We analyze and discuss the role of different skip

connections by gradually adding them from the first / last

block to the bottleneck, as well as feeding the attention maps

to a single encoder together with the image as follows.

Single Encoder In this experiment, we present the results

of the model with a single encoder, where the attention

map visualizations are simply concatenated together with

the input image to a single encoder. The basis for proposing

a dual encoder network for our method is that the original

image and the attention maps are from different domains

and allowing their features to be extracted by two separate

encoders provide richer features at the bottleneck. This

can be seen in Table 3, as it shows that the dual encoder

architecture achieves 1.5% higher dice score compared to

the single one.

Residual Connections The results of the ablation study

in Table 3 show that having all four skip connections from

the attention encoder to the decoder give the best overall

performance; however, this is not the case for all of the re-

gions. We observe that the removing the last skip connection

has an advantage in LV, and we speculate that this effect

might be due to the fact that some shapes, maybe because

of simplicity, benefit from using the priors that are directly

obtained from the shapes and the priors from transformers

makes the inference more complex; therefore, lowering the

effect of the skip-connection in the last layer of the attention

encoder yields better performance

Computational Cost We have compared the number of

parameters that are used in transformer-based and state-of-

the-art models in medical image segmentation. We observed

that the number of parameters in some of the models is

comparably large, and in turn, the training cost of the model

is expected to be higher. On the other hand it is assumed that

in most cases, the transformer block requires more training to

capture the inductive bias as is reported by Dosovitskiy [24].

It can be therefore considered that this affects the training

speed and cost even further.

Table 3. Ablation study of our model on ACDC [6]

Encoder Connection
Att. Skip-

RV Myo LV DSC (%)
1 2 3 4

Single - - - - 88.69 87.22 95.25 90.38

Dual

0 0 0 0 89.83 89.29 95.67 91.60

0 0 0 1 90.23 89.27 95.65 91.71

0 1 1 1 90.39 89.42 95.75 91.85

1 1 1 1 90.53 89.52 95.63 91.90

5. Limitations

Our proposed pipeline receives pairs of image-attention

map visualizations, which do not change during the training.

The transformer block in our method can also be fine-tuned

for different datasets for further improvement, but on the

other hand, other models that incorporate the transformer

blocks into their architecture are easier to be fine-tuned. If

the generated attention-map visualizations capture irrelevant

features, as seen in Figure 1, especially visible in Attention

Head 3 in sample B, it might give incorrect bias for the

segmentation task.

Ideally, to demonstrate the full potential of these archi-

tectures, utilizing a ViT/DINO foundational model in 3D,

pre-trained in a self-supervised manner on large amounts of

unannotated medical images is preferred. However, such a

model does not exist, and training our own backbone would

require significant amounts of data and computational re-

sources. Instead, we use this work as an opportunity to inves-

tigate how to optimally incorporate a 2D DINO backbone for

medical image segmentation and showcase its effectiveness.

In our results, we are able to show that our two simple 2D

CNN architectures utilizing DINO attention maps are suffi-

cient to outperform many reference and SOTA approaches,

even those trained in 3D. In fact, our 2D method is also

outperformed a 3D hybrid ViT-CNN architectures that is

pre-trained on a large data [32] on HD95 metric (ours: 13.79

compared to 20.53), whose attention maps are not directly

usable in our approach as those from 2D DINO. This work,

therefore, opens the path for new possibilities when novel

backbone architectures become available.

6. Conclusion

In this work, we presented a simple yet effective model

for semantic segmentation of medical images called DAINet.

With this architecture, we showed that the self-attention map

visualizations in transformers trained in a self-supervised

manner, such as DINO could capture meaningful features

that can be directly used as input for improving medical

image segmentation. We used a model (here DINO) pre-

trained on the ImageNet dataset and fine-tuned on our target

dataset, and showed its effectiveness of the extracted features

in medical image segmentation. Unlike other methods that

incorporate the transformer blocks in the main architecture,

our architecture does not depend on the transformer blocks

in the run-time, and it can achieve state-of-the-art perfor-

mance on two medical image segmentation benchmarks. We

also presented an ablation study on different customization

of the architecture. The proposed method can open the path

for future architecture designs that aim to be lightweight and

interpretable, yet take advantage of the representation power

of transformers in their pipeline.
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[99] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: Learning

dense volumetric segmentation from sparse annotation, 2016.

3

2315


