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Abstract

Automatic segmentation of lesions in medical images
plays a crucial role in the quantitative assessment of dis-
ease progression. While supervised deep learning-based
methods have been successful in numerous segmentation
tasks, they rely on a large number of labeled images for
training, which can be expensive and time-consuming to ac-
quire. Although unsupervised learning shows potential in
addressing this challenge, the performance of current un-
supervised algorithms is mostly unsatisfactory. To over-
come this issue, we propose a new unsupervised frame-
work for medical lesion segmentation using a novel cross-
granularity contrastive (CGC) module. Our module con-
tains coarse-grained and fine-grained discrimination paths
that enable the network to capture the distinctions between
lesions and normal tissues at different levels of context.
We evaluate our method on two large public datasets of
CT/MRI scans and demonstrate that our approach improves
a Gaussian mixture model-based segmentation by up to
9%, which surpasses all other unsupervised segmentation
methods by a large margin. Additionally, our module can
also be integrated with other existing unsupervised seg-
mentation methods to further enhance their performance.
Therefore, our framework shows great potential for use
in medical image applications with limited labeled data
availability. The code of this work will be released via
https://github.com/yu02019.

1. Introduction
Accurate segmentation of brain lesions plays an essential

role in the quantitative assessment of disease progression,

as well as pre- and post-operative treatment planning [1, 2].

As reading and annotating MRI/CT scans is a tedious and
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time-consuming process, there have been significant efforts

in recent years to develop deep learning-based algorithms

to mitigate this dilemma in clinical practice. However, most

of these algorithms focus on supervised training, which re-

quires an enormous amount of annotated datasets. Acquir-

ing such data is highly challenging and even impractical

for several reasons. First, labeling 3D MRI/CT volumes

is time-consuming and requires specialized medical knowl-

edge. Second, lesion regions are characterized by signifi-

cant heterogeneity in texture, size, location, and patholog-

ical appearances. These issues make it challenging to ob-

tain a comprehensive training dataset that covers all pos-

sible cases, potentially compromising the performance and

generalization ability of the learned-based network.

Given these constraints, there has been a growing inter-

est in exploring unsupervised strategies, such as unsuper-

vised anomaly segmentation. Unlike supervised methods,

unsupervised strategies require no labeled data for train-

ing or little labels for fine-tuning. Zimmerer et al [3] pro-

posed Context VAE, an expansion of VAE [4]. By reassem-

bling an input image with clipped patches, it compels the

VAE encoder to embed more information. Chen et al [5]

proposed Constrained VAE, which employs the encoder to

map the recovered pixels to the same location in the la-

tent space as the original. While several previous studies

have been introduced to this research area, most of them are

reconstruction-based approaches aiming to model healthy

brain anatomy distribution. Although such generative mod-

els have promising potential for reconstructing medical im-

ages, they are not inherently suitable for semantic segmen-

tation tasks as they do not receive explicit constraints and

guides during training. To address this issue, a possible so-

lution is leveraging the hidden patterns in images through

contrastive learning [6]. However, these existing contrastive

learning approaches often rely on pixel-level labels to fine-

tune the model, which is difficult to obtain in practice.

In contrast to previous approaches, we propose a com-
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pletely unsupervised framework to address the aforemen-

tioned concerns. Our approach is based on the observa-

tion that lesion regions exhibit anomalous contrast com-

pared to healthy tissue, resulting in a semantic content of the

foreground object that is inherently distinct from its back-

ground. We leverage this information by utilizing differ-

ent granularity contrastive representations, enabling effec-

tive segmentation of lesions. The main contributions of this

paper are summarized as follows:

• We propose a novel cross-granularity contrastive

(CGC) module that contains coarse-grained and fine-

grained discrimination paths. We demonstrate in the

experiments that this module can efficiently incorpo-

rate context from different levels, thus enhancing rep-

resentation learning.

• To initiate our segmentation, we employ a Gaussian

mixture model (GMM) to generate a foreground prob-

ability map, thus keeping our entire segmentation

framework unsupervised. However, we also show our

CGC module is not restricted to the GMM method and

can be used in combination with other unsupervised

segmentation methods and further refine their results.

• To mitigate the noise issue during training, we in-

vestigate the correlation between performance and the

temperature-calibrated logit map, which has rarely

been studied in medical image segmentation.

• Our proposed unsupervised framework shows superior

performance in lesion segmentation on both MRI and

CT images compared to state-of-the-art algorithms, in-

dicating its potential for application to other medical

modalities.

2. Related Work
2.1. Unsupervised Anomaly Segmentation

Unsupervised anomaly segmentation aims to identify ab-

normal voxels in images from test sets. This approach is

particularly appealing due to its potential to alleviate chal-

lenges in real clinical scenarios where vast labeled data

is difficult to obtain or when encountering infrequent dis-

eases. Currently, the majority of prior unsupervised tech-

niques fall into the category of reconstruction-based meth-

ods. These techniques rely on trained models that can gen-

erate healthy counterparts to input data and then use pixel-

wise residuals between the model’s generation and the input

to detect anomalies and lesions. For example, variational

auto-encoders (VAE) [3, 7, 8, 9], vector quantized varia-

tional autoencoders (VQ-VAE) [10, 11, 12], and generative

adversarial networks (GAN) [13, 14] constitute the most

common methods in this community. Most these methods

attempt to model normal distribution of healthy in a low-

dimensional latent space and are constrained by the input

through reconstruction loss. They presume that the recon-

struction of unseen anomalous regions should be inaccurate,

hence yielding large residuals that can be used to localize or

segment anomalies in images. In this vein, more recently,

Silva-Rodrı́guez el al [15] proposed inequality constraints

and an alternative regularizer to force the attention map to

be activated and maximize its Shannon entropy for enhanc-

ing the performance of VAEs segmentation pipeline. Pinaya

et al [10] used an ensemble of autoregressive transformers

combined with a VQ-VAE.

Different from detection and localization tasks, seman-

tic segmentation usually requires that the models under-

stand the high-level information existing in the image con-

text. Unfortunately, the above-mentioned reconstruct-based

methods miss the understanding of anomalous texture and

lack the ability to discriminate differences between abnor-

mal tissue and normal tissue. Moreover, these methods

might experience a substantial performance drop when en-

countering imperfect reconstructions [16], thus raising con-

cerns about their robustness.

2.2. Contrastive learning

Contrastive learning has emerged as a powerful self-

supervised learning technique in the domain of computer

vision. The main principle behind contrastive learning is to

encourage representations of similar samples to be closer in

the latent space while pushing representations of dissimi-

lar samples further apart. By doing so, the model can learn

meaningful and discriminative features without the need for

explicit labels. In two representative works, SimCLR [6]

and MoCo [17] conduct two training strategies that pro-

duce SOTA results. SimCLR investigates the usage of in-

batch samples for negative sampling, whereas MoCo uses

a dictionary as a queue to store negative samples for train-

ing. There are many efforts to deploy contrastive learning in

medical image analysis, involving modalities such as MRI,

CT, and PET [18, 19, 20, 21, 22]. Note that most of these

contrastive-based methods generate positive samples using

diverse augmentations, making it challenging to explicitly

capture the differences between lesions and normal tissues.

In contrast to previous work, we construct positive and neg-

ative samples mainly by considering the pathological fea-

tures of lesions directly.

As a consequence, these limitations prompt the need for

more robust and effective approaches in the domain of unsu-

pervised anomaly segmentation. To address these concerns

in existing methods, we introduce the CGC module to ad-

dress such issues, which is further detailed in Sec. 3.3.
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Figure 1. Proposed cross-granularity contrastive module for our segmentation framework that contains coarse-grained (light blue box) and

fine-grained discrimination (orange box) paths. See text for a detailed explanation for all components.

3. Methods

3.1. Architecture

An overview of our proposed unsupervised lesion seg-

mentation model is shown in Fig. 1. Based on the observa-

tion that an intensity distribution discrepancy inherently ex-

ists between lesion and normal tissue, we aim to exploit this

relevance in MRI/CT images themselves in an unsupervised

manner. Concretely, let X = {X1, X2, · · · , XN} be a set

of N images from one batch, where Xi ∈ R
C×H×W×L.

The encoder Ec(·) codes X into high-dimension feature

maps z in the latent content space C at the bottleneck of

the network, in which zi ∈ R
c×h×w×l. Using the extracted

feature maps as a basis, the CGC module leverages the spa-

tial content in different granularity explicitly to promote the

capacity of network’s representations. The coarse-grained

path utilizes global-level aggregation features to enable the

network to identify the location of the lesion, while the fine-

grained path addresses context divergence among various

mini-patches. Then, the enhanced feature maps are up-

sampled via decoder D(·) to original resolution and super-

vised with pseudo-label Ŷ generated by Gaussian Mixture

Model (GMM), which can be formulated as follows:

Lbce = −
K∑

k=1

(ŷi)
k
j log(D(Ec(xi)))

k
j (1)

where ŷi is the foreground probability of pixel xi, D(·)kj
denote the probability prediction of voxel j for class k.

3.2. Foreground-background Determination

To make the network aware of the foreground (lesion)

vs background (normal tissue), we utilise a GMM prob-

ability model based on the idea of heterogeneity among

foreground-background contrasts, which locates teach class

region hypothesized by Multidimensional Gaussian distri-

bution and can be formulated as follows:

p(x) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (x−μ)TΣ−1(x−μ) (2)

pM (x) = Σc
j=1αj · (x|μj ,Σj) ,Σ

c
jαj = 1 (3)

where formula (2) is the multi-dimensional Gaussian dis-

tribution, Σ is the covariance matrix, μ is the mean vector.

The Gaussian mixture distribution is represented by formula

(3), where αj stands for the mixture coefficient and the Jth
Gaussian distribution probability. c is the number of Gaus-

sian components. The variables in equation (4) are resolved

using the maximum likelihood approach:

{αj , μj ,Σj} = argmaxα,μ,Σ ln (Πn
i pM (xi)) (4)

In order to optimize parameters, the Expectation-

Maximization (EM) technique is typically utilized because

equation (4) contains hidden variables. Following the dis-

covery of the Gaussian distribution, the elements are di-

vided based on the posterior probability corresponding to

the prototype, that is:

λi = argmaxj∈{1,2,...,k}
αj · (xi|μj ,Σj)

Σk
l=1αl· (xi|μl,Σl)

(5)
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where λi represents the posterior probability that the voxel

xi belongs to the j-th Gaussian component, where k is the

total number of components in the Gaussian mixture.

By utilizing this Gaussian Mixture Model, we can lever-

age the contrast diversity among lesion and normal tissue,

thereby providing the explicit guidances for our proposed

two contrastive learning strategies.

3.3. Lesion-Normal Tissue Discrimination

3.3.1 Coarse-grained Discrimination

We deem that embedding feature z = Ec(·) followed

by a shallow multilayer perceptron (MLP) projection head

ought to learn different semantic information and thus have

different representations in the latent feature space. To

this end, we supervise this via cross entropy loss, named

as Lcg
bce, with down-sampled foreground probability map

p(xi). Specifically, we use the residual block to enrich

global content ulteriorly and followed by f1×1×1 convo-

lution. The formulation of Lcg
bce is similar to the formula 1,

so we omit it here to avoid redundancy.

Suppose the network is able to differentiate the fore-

ground and background thus assigning corresponding prob-

ability pi of each pixel in the map and finally nurture dis-

entangle the feature map zi into lesion regions rlesioni =
pi⊗zi and normal tissue regions rnormal

i = (1−pi)⊗zi un-

der global texture during the training process, respectively.

3.3.2 Fine-grained Discrimination

To make the semantic feature disentanglement more pre-

cisely, we further split z into internal mini-patch z̃ ∈ Ω
for fine-grained discrimination, which focuses more on lo-

cal texture. Concretely, we deem positive pair Ω+ =
{z̃i(x̃i)|∀C(x̃i) ∈ C(rlesioni )}, whereas the negative ones

Ω− = Ω\Ω+, thus exploit representations in contrastive

manner. Mathematically, we have:

Lfg
cl =

N∑
i=1

−1

|Ω+|
∑

x+∈Ω+

log
exp (CL+/τ)∑
xi∈Ω′ exp (CL/τ)

(6)

where CL+ = sim(z̃xi
, z̃x+), CL = sim(z̃xi

, z̃x), x
+ ∈

Ω+ and Ω
′
= Ω\{xi}. τ is the temperature scaling pa-

rameter. sim(·, ·) is a pairwise similarity function that uses

cosine distance to determine how similar two vectors are in

the latent space:

sim(x, y) =
xyT

‖x‖+ ‖y‖ (7)

Besides, considering the fact that a foreground proba-

bility map Pi cannot guarantee that lesions are completely

included, we select a relatively high temperature τ to make

logits-softmax values more smooth. The overall objective

loss function can be written as follows:

Loverall = Lbce + λcgLcg
bce + λfgLfg

bce (8)

4. Experimental setting
4.1. Dataset

We validate our method on two public datasets: the 2018

Multimodal Brain Tumor Segmentation Challenge (BraTS)

dataset [27] and CQ500 dataset [28]. The BraTS dataset

consists of 285 annotated MRI subjects with gliomas. Each

subject has four aligned modalities, T1, T1ce, T2, and

FLAIR. The CQ500 [28] comprises 491 CT scans with clin-

ical radiology reports. 61 scans with intracranial hemor-

rhages (ICH) diagnosed by three senior radiologists were

used in our study as CQ500 dataset. The ground truths of

lesion regions are annotated by two senior radiologists.

4.2. Evaluation Metrics

We evaluate the performance of unsupervised brain le-

sion segmentation at the level of individual voxels, where

the consideration of class imbalance becomes crucial since

anomalous voxels are typically less common than nor-

mal voxels. Hence, we introduce several metrics widely

used here in medical imaging analysis, including sensitivity

(SEN) and Dice, which can be formulated as follows:

SEN =
TP

TP + FN
(9)

Dice =
2 · TP

2 · TP + FP + FN
(10)

where TP, FP, and FN stand for true positive, false positive,

and false negative, respectively.

4.3. Experiment Details

For both datasets, we conduct 5-fold cross-validation and

randomly split 80% scans as training sets and 20% scans as

testing sets at subject-level. In the preprocessing process,

we resampled scans from CQ500 to 1 × 1 × 1 mm3 res-

olution. In order to remove the skull, we initially perform

coarse processing on the original images using clustering

and morphological methods, followed by obtaining refined

results through Brain Extraction Net (BEN) [29]. The scans

from the BraTS dataset have been skull-stripped already

with the shape 240 × 240 × 155. We randomly cropped

patches to X ∈ R
192×192×64 from two datasets for training

models, respectively.

The foreground probability map P was calculated by

GMM, and then the models were trained using images with-

out real ground truth. It should be noted that the net-

work weights training processes were detached from the
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Table 1. Comparison of brain tumor segmentation performance on BraTS and CQ500 dataset.

Methods
BraTS dataset CQ500 dataset

Dice Sensitivity Dice Sensitivity

Full supervision 0.9134± 0.1026 0.9136±0.1150 0.7962±0.1523 0.7840±0.2138

AE 0.3543±0.2462 0.4542±0.2401 0.3381±0.2369 0.5142±0.2616

Context VAE [3] 0.4261±0.1874 0.4371±0.2596 0.3969±0.2446 0.5348±0.2212

GMVAE [23] 0.4418±0.1726 0.5374±0.2127 0.4147±0.2184 0.5362±0.2449

f-AnoGAN [24] 0.4835±0.1675 0.5332±0.2446 0.4024±0.2172 0.5528±0.1882

Bayesian VAE [4] 0.5348±0.1618 0.5575±0.2375 0.4391±0.2474 0.5446±0.2076

AnoVAEGAN [25] 0.5184±0.1560 0.5737±0.2098 0.4467±0.2286 0.5649±0.1844

AMCons [15] 0.7362±0.1642 0.7684±0.2084 0.4741±0.2310 0.4588±0.2469

Mumford-Shah [26] 0.7156±0.1881 0.7063±0.2157 0.5206±0.1937 0.5087±0.2336

Ours (P from [26]) 0.7743±0.1365 0.7576±0.1974 0.5569±0.1861 0.5348±0.1875

GMM w/ threshold 0.7585±0.2091 0.7965±0.1892 0.6490±0.1975 0.5535±0.1485

Ours w/o CGC 0.7929±0.1877 0.8013±0.1815 0.6625±0.1945 0.6427±0.2013

Ours (P from GMM) 0.8405±0.1323 0.8178±0.1756 0.6993±0.1755 0.6768±0.1825

Table 2. Ablation study for each module and mini-path size on the BraTS dataset.

Methods
BraTS dataset

Dice ASSD [mm]

Full supervision (backbone) 0.9134± 0.1028 1.1581±1.2894

Full supervision (nnUNet) 0.9161± 0.0873 1.0257±1.1316

P from GMM w/ threshold 0.7585±0.2091 2.1472±1.9426

Backbone + P 0.7929±0.1877 1.2330±1.1821

Backbone + P + Global granularity 0.8164±0.1631 1.3392±1.6271

Backbone + P + Local granularity 0.8248±0.1548 1.2513±1.2484

Ours (z̃ : R12×12×4) 0.8392±0.1389 1.2367±1.4205

Ours (z̃ : R6×6×4) 0.8405±0.1323 1.1756±1.1439
Ours (z̃ : R3×3×4) 0.8388±0.1410 1.1943±1.4263

calculation of P to prevent them from decelerating train-

ing speed. The images in one batch were sent to content

encoder Ec. For dataset with multi-modalities, we concate-

nate all modalities into one channel, following the standard

literature [30]. After residual blocks and 3 times down-

sampling, we got embedding features z ∈ R
24×24×8 at the

bottleneck of the network.

For all training procedures, we used the Adam optimizer

with a learning rate of 0.0001, and set the size of the batch

to 2. The proposed framework was deployed in the Pytorch

library and trained on two NVIDIA A6000 GPUs with 400

epochs. Empirically, we set λcg, λfg = 1, respectively. The

code will be released to encourage more efforts toward de-

veloping unsupervised lesion segmentation algorithms.

4.4. Probability Map Generation

For the BraTS dataset, we used T2-FLAIR scans to gen-

erate foreground probability maps, denoted as P , through a

modified clustering pipeline called AUCseg [31]. The clus-

ters with higher cluster center values in T2-FLAIR modality

are signed as the foreground in GMM due to the pathologi-

cal features of lesions, which typically exhibit high intensi-

ties/signals in T2-FLAIR modality. In the GMM clustering,

clusters with higher cluster center values in the T2-FLAIR

modality were identified and considered as the foreground.

This choice was guided by the pathological features of le-

sions, which tend to exhibit high intensities or signals in

the T2-FLAIR modality. As such, these higher-intensity

clusters were assumed to correspond to the regions of in-

terest, i.e., the lesions, and were therefore labeled as the

foreground in the GMM-based probability map. Similarly,

we can also acquire P from the CQ500 dataset.

Although the primary ablation experiments in this work

are conducted on the BraTS dataset, we employ the CQ500

dataset to showcase the generalization capabilities of our

proposed method across diverse brain lesions and imaging

modalities.

2351



Table 3. Ablation study of temperature on the BraTS dataset.

Temperature (τ ) 0.07 0.1 0.2 0.3 0.7 0.9

Dice 0.8254 0.8375 0.8405 0.8392 0.8248 0.8211

ASSD [mm] 1.4744 1.1809 1.1756 1.1550 1.2665 1.1871

Figure 2. Visualization of exemplary segmentation results on BraTS and CQ500 dataset. From left to right: images to be segmented(1st

column), segmentation results of different comparative methods (2rd-9th column), results of our method based on GMM (10th column),

and the ground truth segmentation (the last column).

5. Results and Discussion

5.1. Evaluation on BraTS and CQ500 Dataset

We first compare our method with existing state-of-the-

art (SOTA) deep learning based methods for unsupervised

anomaly segmentation following the successful practice of

[32, 33]. The quantitative evaluation results are shown in

Table 1. Our proposed method achieves the Dice scores of

84.05% and 69.93% on BraTS and CQ500 datasets, respec-

tively, which surpassed all other methods by a large margin,

demonstrating the effectiveness of our method. Compared

to the baseline foreground probability map with threshold

of 0.5 reaching an average Dice of 75.85% and 64.90%

on the BraTS and CQ500 dataset, respectively, our method

enhances Dice by about 8.20%-5.03%, which could be at-

tributed to the learned contrastive representation and noise

calibration effect by our module.

It is also worth noting that our method is not bound

to GMM-initiated segmentation, but can also be used as a

plug-and-play module to improve the results of other un-

supervised methods, e.g., it also improves Mumford-Shah

segmentation by almost 6% on the BraTS dataset.

Fig. 2 illustrates that most anomalous voxels are pre-

cisely covered by the prediction of our method. On the

contrary, We can also observe that reconstruct-based meth-

ods exhibit varying degrees of mis-segmentation, e.g., Con-

text VAE [3] and Bayesian VAE [4], resulting in unsatisfac-

tory performance in both datasets. This occurrence might

be attributed to the inherent limitations of solely relying on

pixel-wise residuals for anomaly detection. The inability

to fully capture the complex and diverse characteristics of

anomalies, especially in challenging scenarios, can signifi-

cantly impact the accuracy of the segmentation results.

In addition, we also conducted full supervision experi-

ments to demonstrate the upper-bound of our framework.

Concretely, these experiments were conducted using real

labels and the backbone of our method, while maintaining

consistent experiment settings, such as dataset splits, with

the unsupervised methods.

Taking into account the results presented above, these

experiments demonstrate that our method is able to locate

and segment lesion regions regardless of the modalities or

imaging protocols. These findings reinforce the potential

of our method as a versatile and valuable tool for lesion

detection and localization in various clinical settings.

5.2. Ablation Studies

5.2.1 Effectiveness of Each Module

We execute the ablation study on BraTS dataset and re-

port quantitative performances in Table 2. We also perform

full supervision experiment using nnUNet [30] as back-

bone to present whether variations from implementation de-

tails could dominate results. As shown in Table 3, when

only using foreground probability P with a threshold of

0.5, 75.85% of Dice is reached. Training the backbone

only using P achieves 79.29% of Dice. By utilizing either

coarse-grained or fine-grained discrimination techniques,

we achieved Dice scores of 81.64% and 82.48%, respec-

tively. Combining the two approaches yields the highest

Dice score of (84.05%).

We also conduct experiments about the size of mini-

patch z̃ ∈ {R12×12×4, R6×6×4, R3×3×2}. We found that

the patch size can have a minor impact on performance.

2352



Using smaller patches may result in fragmented semantic

content, while larger patches may contain both lesion and

normal tissues, leading to ambiguous content.

5.2.2 Effectiveness of Temperature-calibrated Logits

Contrastive training procedure usually uses low temperature

(e.g. τ = 0.07 ) to excavate hard samples [34]. However,

in the presence of label noise, employing smoother logits

may help improve the model’s performance [35]. Hence,

we explore different temperature settings as a calibration

strategy. Table 3 demonstrates that our model achieves its

best performance when τ = 0.2, indicating that our temper-

ature scaling approach strikes a balance between hardness

for sample discrimination and softness for label noise.

6. Conclusion

To summarize, we have presented a new unsupervised

framework for medical image segmentation using a novel

cross-granularity contrastive module. Our module con-

tains coarse-grained and fine-grained discrimination paths,

enabling the network to capture the distinctions between

lesions and normal tissues at different levels of context.

We evaluate our method on two large public datasets of

CT/MRI scans and demonstrate that our approach improves

a Gaussian mixture model-based segmentation by up to 9%,

which surpasses all other unsupervised segmentation meth-

ods by a large margin. Additionally, our module can also

be combined with other existing unsupervised segmentation

methods to further enhance their performance. Therefore,

our framework shows promising potential for use in medi-

cal image applications with limited labeled data availability.
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