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Abstract

Age-related Macular Degeneration (AMD) is a degener-
ative eye disease that causes central vision loss. Optical
Coherence Tomography Angiography (OCTA) is an emerg-
ing imaging modality that aids in the diagnosis of AMD by
displaying the pathogenic vessels in the subretinal space.
In this paper, we investigate the effectiveness of OCTA from
the view of deep classifiers. To the best of our knowledge,
this is the first study that solely uses OCTA for AMD stage
grading. By developing a 2D classifier based on OCTA pro-
jections, we identify that segmentation errors in retinal lay-
ers significantly affect the accuracy of classification. To ad-
dress this issue, we propose analyzing 3D OCTA volumes
directly using a 2D convolutional neural network trained
with additional projection supervision. Our experimental
results show that we achieve over 80% accuracy on a four-
stage grading task on both error-free and error-prone test
sets, which is significantly higher than 60%, the accuracy
of human experts. This demonstrates that OCTA provides
sufficient information for AMD stage grading and the pro-
posed 3D volume analyzer is more robust when dealing with
OCTA data with segmentation errors.

1. Introduction

Age-related Macular Degeneration (AMD), one of the

leading causes of severe irreversible vision impairment, is a

progressive eye disease associated with abnormal vascular

alteration and growth originating from the choroid. Start-

ing from an early non-exudative stage, AMD can progress

to an exudative stage where 90% of patients may lose vi-

sion [5]. Since the progression of AMD has manifestations

associated most commonly with the choroidal neovascular

(CNV), early detection of pathological vessels is crucial in

This work is supported by grant NIH R01 EY033847-02.

optimal treatment management and maintaining vision for

AMD patients.

However, imaging vessels within different retina layers

is not supported by typical retinal imaging techniques. For

example, fundus imaging can only reveal large retinal ves-

sels, drusens, and areas of atrophy, which may indicate the

presence of AMD, but make it difficult to determine the

stage of the disease. Fluorescein Angiography (FA) can

show CNV only at a specific time point, which is often short

and challenging to capture. Optical Coherence Tomogra-

phy (OCT) can display retinal layers and fluid but lacks the

ability to visualize vessels. In contrast, OCT Angiography

(OCTA), as an emerging imaging modality, has the capa-

bility to display vascular networks in different retinal layers

[8, 25, 12], as depicted in Fig. 1 and Fig. 3. It shows superfi-

cial and deep vascular complex (SVC and DVC), avascular

layer and choriocapillaris (CC). By visualizing the patho-

logical CNV vessels directly, it enables not only an earlier

detection, but also a way to monitor the clinical response

to treatment. In Fig. 1, we provide a comparison between

fundus and OCTA w.r.t. different AMD stages.

Unfortunately, even with the above-mentioned benefits,

OCTA has not been regarded as the gold standard in clin-

ical decision making yet, because the correlation between

vessels in OCTA and AMD stages is not strictly proven.

On the clinical side, ophthalmologists are actively searching

biomarkers for AMD diagnosis from OCTA, mainly based

on manual analysis and their own experience. In this work,

we present experimental evidence of the informativeness of

OCTA from the perspective of data-driven classifiers. We

believe that deep learning is capable of this task with two

advantages. Firstly, some deep learning algorithms have

been proven to surpass human-level performance on natu-

ral image classification [14]. Moreover, it is more efficient

for computer to handle 3D data or multiple projections than

human. Consequently, we expect that deep learning classi-

fiers would identify hidden patterns imperceptible to human

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Comparison between fundus and OCTA w.r.t. AMD stages. As shown by the blue arrows, all AMD stages exhibit drusens

and it is difficult to differentiate each stage based on the pattern of drusens. For instance, in the provided example, the early stage (dry)

displays clearer drusens than the progressive stage (active). In contrast, OCTA allows for a distinction between dry and normal stages

using the hollows in CC projection, and between active and dry stages with the presence of CNV in avascular projection. It is still an

ongoing challenge to tell active stage from remission for human experts, yet this paper demonstrates it is achievable with the proposed deep

classifiers in both 2D and 3D cases.

eyes and improve AMD diagnosis.

In this paper, we focus on OCTA modality only and build

a series of deep learning based AMD stage graders. We

summarize our contributions as follows:

• We experimentally verified that the OCTA projections,

which ophthalmologists usually use for diagnosis, are

easily affected by layer segmentation errors. Those er-

rors degrade the classification performance.

• We propose to use 3D raw OCTA volume to avoid the

impacts of those errors. To achieve this, we modify a

pretrained 2D network to perform volume classifica-

tion. We also adopt an additional projection supervi-

sion to facilitate training of shallow feature extractor.

• Experimental results show that the proposed classifier

can achieve the accuracy of more than 80%, regardless

of the presence of layer segmentation errors. These re-

sults prove the effectiveness of our methods and sug-

gest that OCTA is a promising modality to distinguish

various stages of AMD disease.

2. Related Works

OCTA analysis in computer vision. In recent years,

OCTA has emerged as a valuable tool in ophthalmology,

offering a non-invasive way to visualize and analyze the

vascular network of the retina. Therefore in the realm of

computer vision, most OCTA-based works have focused on

segmentation tasks. Alam et al [1] used U-Net to perform

artery-vein classification and adopted transfer learning to

compensate for the small dataset. In [13], the avascular

area was detected in OCTA projections with a multi-scaled

encoder-decoder neural network. Li et al [19] proposed to

segment vessels with 3D OCTA inputs to get rid of pro-

jection images and retinal layer segmentation. In addition

to segmentation, there are also some deep learning-based

OCTA classification works. For example, Le et al [18]

adopted the VGG16 network to classify diabetic retinopa-

thy stages. Lin et al [20] went further and performed classi-

fication and segmentation simultaneously using boundary

shape and distance map as additional supervision to im-
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Figure 2. The proposed network structures for (a) 2D projections, (b) 3D volumes and (c) 3D volumes with 2D projection supervision. The

layers in blue have pretrained weights while those in red are trained from scratch.

prove accuracy. Apart from classification and segmentation,

some researchers have focused on 3D vessel reconstruction

[35], projection quality assessments [33] and improving the

en face OCTA generation [36]. Although these works have

shown promising results, none of them have considered the

grading of AMD stage, which is a critical task in the clinical

management of AMD patients.

AMD diagnosis with deep learning. To the best of our

knowledge, there is no existing AMD diagnosis work us-

ing OCTA modality only. Instead, they usually use color

fundus, FA and most recently OCT modality. Alqudah et

al [2] trained a customized CNN to classify retina into five

distinct stages of AMD based on OCT B-scans. Motozawa

et al [21] first classified AMD/no AMD and then identified

the presence of exudative changes. Das et al [9] integrated

multi-scale deep image features to enhance OCT classifica-

tion. He et al [16] leveraged GANs to generate synthetic

images in order to increase training data size. In addition to

stage classification, Banerjee et al [3] combined hand-craft

and CNN features in a LSTM to predict AMD progression.

Rakocz et al [23] designed a SLIVER-net to classify risk

factors of AMD progression which could operate on both

2D B-scans and 3D volumes. Russakoff et al [27] predicted

the likelihood of converting from early/intermediate to ad-

vanced AMD. Furthermore, there have been several recent

works [31, 17, 30] that employ multimodal images such

as fundus photographs, OCT B-scans, and OCTA projec-

tions to grade AMD. In this paper, we focus on the latest

work [30] in Sec. 4.2 for comparison, which utilizes OCT

B-scans, OCT projections and OCTA projections.

OCTA datasets. The advancement in deep learning

has led to significant progress in the field of retinal dis-

ease diagnosis and management. Various challenges have

been organized to evaluate the performance of computer-

aided diagnosis systems on different retinal diseases, such

as glaucoma and AMD. The GAMMA challenge [34] is

one such challenge, which provides 2D fundus image and

3D OCT volume, focusing on glaucoma diagnosis. The

ADAM challenge [11] evaluates the performance of auto-

mated AMD diagnosis based on fundus image. Although

these challenges have provided valuable insights into the

development of automated diagnosis systems, they do not

include OCTA information in their datasets, which is the

key objective of this paper. Consequently, it is impossible

for us to experiment on those datasets. In the supplemen-

tary material, we report the detailed information about exist-

ing OCTA datasets to show their limitation in OCTA based

AMD stage grading. In this paper, we experiment with an

OCTA dataset collected by ourselves, which has the largest

number of AMD samples available and is specifically cu-

rated for AMD stage grading task.

3. Methods

3.1. 2D Classifier based on OCTA projection images

In clinical practice, ophthalmologists usually refer to

OCTA projections for diagnosis, inspiring related classifiers

[18, 30] using the same inputs. In this section, we also de-

velop a baseline classifier with 2D OCTA projection inputs,

for analysis and comparison.

Classifier structure. Different from existing method

[30], which used a custom CNN without pretraining, our ap-

proach utilizes a well established image classification net-

work as backbone. Moreover, we pretrain the backbone

with ImageNet [10], and subsequently fine-tune it with our

OCTA projections. As shown in Fig. 2 (a), we adopt the Ef-

ficientNet in our network, because it is reported to achieve

the best trade-off between performance and model size [29].

Since we set up four input channels to take four OCTA pro-

jections, we include an additional convolution layer with

2413
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Figure 3. Illustration of the interrelationships among OCT and OCTA raw volume, B-scans, and OCTA projection. A single B-scan is a

cross-sectional slice of the 3D volume with a specific y-axis value. Retinal slab masks are derived from retinal layer segmentation in each

B-scan of 3D OCT volume. OCTA projections are generated by summing up the motion responses in selected OCTA slabs followed by

quality enhancement.

kernel size 1 before the EfficientNet to address channel mis-

matching. Additionally, since we only have four target cat-

egories, we adjusted the output of the last fully-connected

layer to match the number of categories.

Warmup strategy. Consequently as shown in Fig. 2,

the layers are divided into two groups: the red layers with

no pretrained weights and the blue layers pretrained with

Imagenet [10]. Since different layers have different initial-

ization weights, the red layers could disrupt the tuning of

the blue ones if fine-tuned all the layers together. So we use

a warmup strategy as follows. We first freeze all the blue

layers and train only the red ones for 600 epochs. During

this step, we also train all the BatchNorm layers to better

transfer from natural images distribution to OCTA projec-

tions distribution. Then we finetune all the layers together

for another 900 epochs with a smaller learning rate.

3.2. Presence of layer segmentation errors

During the development of our 2D classifier, we find that

OCTA projections are not always reliable due to their sen-

sitivity to the quality of retinal layer segmentation, which

plays an important role in OCTA projection generation.

This problem is common but often overlooked in most pub-

lished literature [18, 30]. It is worth noting that previous

research [19] has also reported that failures in layer seg-

mentation can lead to difficulties in OCTA vessel segmen-

tation. In this section, we aim to investigate the prevalence

of layer segmentation errors and their impact in context of

AMD stages grading.

OCTA projection generation. Raw OCTA data capture

the movements of blood in a 3D retinal space which are

difficult to interpret by humans. Therefore, OCTA imag-

ing machines commonly project raw OCTA volumes onto

2D images to enhance their visual interpretation. The pro-

jection process may differ among commercial instruments.

Here, we consider the image taken by Heidelberg1 as an ex-

ample [24]. As illustrated in Fig. 3, the Heidelberg software

estimates the boundaries of different retinal layers to di-

vide the 3D space into several slabs. Within selected slabs,

which are determined by anatomical criteria, it calculates

the summation of OCTA responses along z-axis to generate

a 2D image. Additionally, the software employs a contrast

function and a projection artifact removal algorithm to en-

hance the image quality. When executed successfully, these

steps produce highly informative and visually appealing 2D

images that are easily interpretable by doctors.

Influence of segmentation errors. Unfortunately, the

estimated layer boundaries in the first step are not al-

ways accurate, resulting in segmentation errors that sig-

nificantly impact the quality of OCTA projections. Since

most commercial instruments usually estimate those bound-

aries based on image gradient and graphcut algorithm [28],

which is not robust enough, the layer segmentation errors

are actually prevailing, especially for distorted retina with

AMD disease. To gain a better understanding of the mag-

nitude of the problem, we conduct a manual check of 530

OCTA samples from different AMD stages and report the

results in Table 1. Not surprisingly, we find that almost

three-fourths of samples in the active stage have layer seg-

mentation errors. The overall error rate among 530 samples

is as high as 54.3% and, more accurately, we can calcu-

late the balanced overall error rate by averaging the last row

1The Heidelberg HRA+OCT Spectralis System, version 1.11.2.0 (Hei-

delberg Engineering, Heidelberg, Germany)
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Figure 4. Examples of avascular projection w/o and w/ manual

layer segmentation error correction by human experts. Layer seg-

mentation errors lead to incorrect vascular networks, missing ves-

sels and noise in OCTA projections, which complicates the classi-

fication for both ophthalmologists and neural networks.

of Table 1, which is 46.2%. These findings indicate that

the problem of layer segmentation error is pervasive and re-

quires urgent attention. As shown in Fig. 4, layer segmen-

tation errors lead to incorrect vascular networks or missing

vessels in OCTA projections, which complicates the classi-

fication for both ophthalmologists and neural networks. The

influence of layer segmentation errors on deep classifier is

quantified and discussed in Sec. 4.1.

3.3. Avoid segmentation errors with 3D input

Since the errors in layer segmentation significantly af-

fect the quality of OCTA projections, we propose to di-

rectly apply raw OCTA volume2 for classification. In this

section, we provide a detailed description of our method,

which utilizes a 2D convolutional neural network to analyze

3D OCTA data. We then delve into the reasons behind our

choice of channel dimension and how we further improve

the training process to achieve optimal performance.

2D backbone for volume classification. Considering

that there is no available large-scale 3D dataset for pretrain-

ing a 3D classifier, we use a 2D network with pretrained

weights to analyze 3D data. It means that we take one di-

mension of 3D as channel and the other two as spatial. As

shown in Fig. 2 (b), we gradually reduce the input channel

by extending the additional convolution to two Conv-BN-

Swish blocks with kernel size 3. Each block divides the

channels by 2 and the input channel of the EfficientNet is

ultimately revised to a desired number, i.e. 64 in our ex-

2OCTA volume in this paper represents for the raw blood motion re-

sponses in 3D space before projection. No structural OCT B-scan is used

in this method.

Table 1. Distribution of error-free and error-prone samples and as-

sociated error rates. Clearly, samples with more severe AMD have

larger error rate. The overall error rate shows layer segmentation

error is a common problem in OCTA projections. Please refer to

Fig. 4 for visual indication of the detrimental effects of segmenta-

tion errors on the quality of the OCTA projections.

sample type Active Remission Dry Normal Total

# w/ seg. error 138 91 57 2 288

# w/o seg. error 52 39 90 61 242

error percentage 72.6% 70% 38.8% 3.2% 54.3%

periments. Based on the ablation experiments reported in

Table 5, we find that better accuracy is achieved by treat-

ing the dimensions of B-scan as spatial and incorporating

different B-scans in the channel dimension, i.e. taking the

y-axis as the channel.

Why y-axis is better. This result is not in line with our

expectations, because the 2D network, which takes OCTA

projections as input, is equivalent to treating the z-axis as a

channel. So we investigated this issue and identified an ex-

planation. In typical convolutional networks, the first con-

volution layer reduces the spatial resolution by a factor of

2 while significantly increases the number of channels, for

instance, from 3 to 64. Consequently, there is no significant

loss of information in this layer. In contrast, our additional

convolution blocks drastically reduce the number of chan-

nels, from 256 to 64, resulting in a loss of information if

they are not appropriately trained. When considering the

z-axis as a channel, this loss of information is especially

significant. However, it is less pronounced when using the

y-axis as the channel because consecutive B-scans are often

similar to each other and contain a lot of redundancy.

Projection supervision. This analysis leads to a method

further enhancing the performance, whose key idea is to im-

prove the training of shallow feature extractor. To achieve

this, we propose to add another branch onto the Efficient-

Net backbone, as illustrated in Fig. 2 (c). This newly added

branch functions in a similar way to the decoder of the

Unet [26] and is capable of generating OCTA projections

from the 3D OCTA volume. By doing so, the additional

convolutional blocks, along with some shallow layers in Ef-

ficientNet, can better preserve the information necessary for

displaying vessel patterns and aiding in AMD grading. It is

worth noting that this branch serves only for loss calculation

and can be discarded during the inference stage. As a result,

we improve accuracy without requiring additional inputs or

incurring extra inference time costs.

4. Experiment Results
Dataset. Because there is no public OCTA dataset suit-

able for AMD stage grading, we use our own dataset col-

lected from Jacobs Retina Center at Shiley Eye Institute

in experiments. The dataset consists of 889 raw OCTA
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volumes with corresponding projections belonging to four

AMD stages: active, remission, dry and normal. Please re-

fer to Fig. 1 for examples. ‘Active’ means the pathogenic

vessels are leaking fluid while ‘remission’ means the patho-

logical vessels were once active but recovered after treat-

ment and showing no fluid. ‘Dry’ represents an early stage

of AMD which is not exudative and ‘normal’, as name im-

plies, is obtained by imaging healthy retina. For dataset

division, we firstly choose a predetermined number of sam-

ples from each category to form the testing set. Then,

we randomly select validation set from the remaining sam-

ples to conduct a 5-fold validation experiment. Following

this strategy, we created two sub-datasets: an easier subset

which only had samples with no layer segmentation errors

in its testing set, indicated as ‘error-free’ and a harder subset

containing numerous samples with errors in its testing set,

indicated as ‘error-prone’. Please refer to the supplemen-

tary material for more details about the dataset design.

Implementation. We implement all our deep classifiers

on PyTorch platform. To save GPU memory, we down-

sample OCTA projections and volumes to 256×256 and

256×256×256, respectively. Then we adopt several data

augmentations to increase their diversity. In detail, we

use random flipping, rotation and cropping with resizing.

We randomly apply gamma transformation and Gaussian

smooth to increase the diversity of intensity. For projec-

tions, we also use grid distortion to augment the shapes. For

both 2D and 3D data, we adopt a sample-wise normalization

to whiten the sample intensity. Oversampling training data

in each category is used to balance their distribution. The

networks are trained by Adam optimizer with 10−5 weight

decay. The initial learning rate is 10−3 and decreases via

a cosine scheduler with minimum value 10−5. The cosine

loss serves as our optimization target, which is proven to

be effective with small data amounts [4]. For projection su-

pervision branch, we employ MSE to compute projection

differences, and the ratio between cosine loss and MSE is

decided by ablation experiments shown in Table 5. We have

released our models and codes on this website.

4.1. Influence of layer segmentation errors

We create two datasets to assess the impact of layer seg-

mentation errors: ‘clean’ and ‘mixed’. They have the same

size but the ‘clean’ set only includes error-free samples,

while the ‘mixed’ set includes data with and without seg-

mentation errors. For ‘clean’ dataset, we randomly selected

14 samples from each category for testing and used the re-

maining samples as training. Then we considered samples

with errors. For the three categories except ‘normal’, we re-

placed 7 testing samples with randomly selected 7 samples

with errors. Consequently, we obtained a testing set that has

the same scale as ‘clean’ but includes data both with and

without errors. We generated a training set with same prop-

Table 2. Classification accuracy with different training/testing

datasets. ‘Clean’ means a set with no segmentation errors and

‘Mixed’ means a set mixed with samples with and without errors.

Train on Test on Accuracy

Clean set Clean set 69.64%

Clean set Mixed set 53.57%

Mixed set Clean set 64.29%

Mixed set Mixed set 57.14%

erties by running the same process and name this dataset as

‘mixed’. By considering both ”mixed” and ”clean” dataset,

we plan to simulate the process in which we correct layer

segmentation errors in ‘mixed’ dataset.

We conduct 5-fold validation experiments using

Resnet18 [15] on both datasets and use the ensemble

prediction as the final result by averaging the predictions of

5 classifiers trained in each fold. Note that we can choose

to train and test with either ‘clean’ or ‘mixed’ set, resulting

in 4 different combinations, shown in Table 2. The first

two rows of Table 2 show that the classifier struggles

to generalize from clean samples to those with errors,

indicating data with and without errors follow different

distributions. Taking the last row into account, we find

adding samples with errors to the training set benefits,

showing that the classifier may learn the joint distribution

of samples with and without errors if given enough training

data. The accuracy in the last two rows shows that, even

trained on samples with errors, the clean test still works

better, implying that samples with errors are hard to learn.

This experiment suggests two ways for improving the

performance: 1) collecting enough data to cover the joint

distribution of samples with and without errors; 2) avoid-

ing layer segmentation errors and reducing the gap between

each distribution. We focus on the second option, as it is

not practical to collect sufficient data in a short time.

4.2. Performance of deep classifier

In this section, we experiment mainly on two datasets,

namely error-free and error-prone. For the error-free test

set, we utilized the clean test set from Sec. 4.1. However,

as indicated in Table 2, the training set must be cleaned to

enhance its performance. Therefore, we integrated error-

free training samples along with samples without error an-

notations, referred to as ‘unknown’ samples, while elimi-

nating all known error-prone training samples. By adopting

this approach, we can effectively cleanse the training set

while keeping its size. In contrast, the error-prone test set

comprises solely of samples containing errors in all AMD

stages, and all samples except those designated for testing

were utilized to construct the error-prone training set. More

detail about relevant datasets can be found in the supple-

mentary material.

2416



Table 3. Ensemble accuracy (%) and RoC-AUC performance of

different AMD graders with 2D inputs. Error-free and Error-prone

are two testing sets w/ and w/o segmentation errors, respectively.

MM: Multimodal information (including OCT B-scan, OCT and

OCTA projections), PT: Pretraining.

Setting Error-free Error-prone
2D Input

MM PT Accuracy AUC Accuracy AUC

Thakoor � � 55.36 0.8159 57 0.8176

et. al. [30] � � 62.5 0.8512 66 0.8428

� � 73.21 0.8565 62 0.8065
ours(2D)

� � 80.36 0.9264 72 0.8697
Human - - 58.92 - 60 -

For baseline method, as far as we know, there is no deep

learning based AMD stage grader using OCTA only. There-

fore, we use a multimodal AMD grader [30] for perfor-

mance comparison. We train their networks on our dataset

for fair comparison since their dataset is not publicly avail-

able. We implement two classifiers based on their official

codes which use OCTA information only and use multi-

modal information from OCT B-scan, OCT and OCTA pro-

jection. Note that there are two differences between their

task and ours: 1) they do not have ‘remission’ in their tar-

get categories, and 2) we do not have high-definition OCT

B-scans in our dataset, so we use common B-scans as an

alternative. We also replace ORCC projection used in their

experiments with SVC projection. We conduct 5-fold val-

idation experiments on two sub-datasets: an easier subset

which only has samples with no layer segmentation errors

in its testing set (error-free), and a harder subset contain-

ing numerous samples with errors (error-prone). In Table 3

and 4, we report the ensemble accuracy, AUC of RoC in

‘one v.s. rest’ manner, and the performance of human ex-

perts on the same test sets. Please refer to supplement ma-

terial for details of human expert evaluation.

As shown in Table 3, Ours-2D with pretrained weights

significantly outperforms Thakoor et. al. [30] regardless of

the use of multimodal information. This is due to the dif-

ference in network structure and training strategy. Note that

[30] trained a customized network with four 3D convolu-

tion and three fully connected layers from scratch, which is

much simpler than EfficientNet. The benefit of EfficientNet

backbone is evident from the first and third rows and, as

shown in the third and fourth rows, pretraining the model

further improves its ability to identify useful patterns in

OCTA projections. Note that Ours-2D demonstrates sig-

nificant improvements compared to human experts, indicat-

ing the potential of OCTA as a diagnostic modality in AMD

grading. These promising results call for further exploration

of OCTA-derived biomarkers for accurate AMD diagnosis.

When considering Ours-3D in Table 4, we observed

a notable improvement compared to Ours-2D. Since the

structures of both networks are quite similar (Fig. 2), this

Table 4. Ensemble accuracy (%) and RoC-AUC performance of

different AMD graders with 3D inputs. PT: Pretraining, PS: Pro-

jection Supervision.

Setting Error-free Error-prone
3D Input

PT PS Accuracy AUC Accuracy AUC

Effic.Net 3D � � 75 0.9489 69 0.8841

Med.Net34 [7] � � 73.21 0.9238 73 0.9009

� � 82.14 0.9524 74 0.9055
ours(3D)

� � 83.93 0.9298 80 0.912

gain demonstrates the advantages of directly grading 3D

OCTA volumes and reducing the gap between data with

and without errors. The advantage of Ours-3D method can

be also substantiated by examining the performance dif-

ferences of Ours-2D and Ours-3D in error-free and error-

prone settings. In the error-free setting, where fewer sam-

ples are affected by errors, the improvement gained from

using Ours-3D is relatively smaller. However, in the error-

prone setting, where errors are more prevalent, the perfor-

mance of Ours-2D experiences a significant decline, while

Ours-3D maintains high performance levels. This differen-

tial behavior in error-free and error-prone settings serves as

evidence that the proposed Ours-3D method is more robust

in the presence of layer segmentation errors.

In comparing Ours-3D with 3D EfficientNet and Medi-

calNet34 [7], both of which utilize 3D convolutions, we find

that 2D backbone is more effective. This finding is actu-

ally consistent with some early works in action recognition

[32, 22, 6]. Their experiments verified that well-designed

2D convolution network is better than 3D, especially when

training data is limited. Our result indicates that utilizing a

pretrained 2D network is currently a promising method for

analyzing 3D OCTA until a large-scale 3D OCTA dataset

is available. Finally, the efficacy of our proposed projec-

tion supervision is demonstrated in the last two rows, where

the accuracy is improved to over 80%. It also indicates that

OCTA is an informative modality for AMD grading.

4.3. Ablation study

This section presents our ablation experiments, which

aim to investigate the impact of different factors on the per-

formance of our classifiers. Specifically, we examine the

effects of different choices of channel axis, different ratios

of loss weights, and the use of pretrained weights and pro-

jection supervision. The accuracy of different classifiers

trained on the first validation fold are reported in Table 5.

Firstly, our results indicate that taking y-axis as the chan-

nel is more effective than z-axis when projection supervi-

sion is not used. The reason has been elaborated in Sec. 3.3.

Then the use of projection supervision improves the z-axis

inputs while negatively impacting y-axis channel inputs.

This outcome is consistent with our expectations since tak-

ing z-axis as channel means taking x and y dimension as

2417



Table 5. Ablation experiments w.r.t the choice of channel axis and

the loss weight ratio. The accuracy here pertains to the perfor-

mance of individual classifier trained on the first validation fold,

instead of the outcome of ensemble.
Settings

Accuracy (%)
Channel axis Pretrain Proj. Supervision Weight ratio

y axis 54

y axis � 69

y axis � � 1:10 64

z axis 50

z axis � 64

z axis � � 1:10−1 69

z axis � � 1:10 72

z axis � � 1:103 74

z axis � � 1:104 67

spatial which aligns with the spatial dimension of OCTA

projections. It is unreasonable to generate OCTA projec-

tions from a stack of OCTA B-scans. Furthermore, our

experiments on various weight ratios demonstrate that the

ideal ratio between Cosine loss and MSE loss is approxi-

mately 1:103 for z-axis channel inputs. Finally, our experi-

ments also show that the use of pretrained weights improves

the performance of the classifiers, regardless of which di-

mension is selected as the channel.

4.4. Detailed comparison with human expert

As described in Fig. 1, we expect our method outper-

forms human experts in this four-stage grading task. To

compare the performance of our proposed method with that

of human experts, in this section, we conducted a detailed

analysis of the confusion matrix in different settings.

Firstly, we evaluated the matrix of the human expert on

the error-free test set. It can be observed that the ophthal-

mologist who took this experiment performed well in dis-

tinguishing between the ‘dry’ and ‘normal’ categories but

struggled in differentiating between the ‘remission’ and ‘ac-

tive’ categories. This highlights the ongoing challenge in

accurately determining the active stage of AMD for human

experts, thereby emphasizing the significance of our work.

Subsequently, we analyzed the matrix of the human ex-

pert on an error-prone test set. It can be found that the hu-

man expert continued to face difficulty in distinguishing be-

tween the ‘active’ and ‘remission’ categories, but this time,

the accuracy of the ‘dry’ category significantly decreased.

This is exactly the consequence caused by layer segmenta-

tion errors, i.e. the incorrect vascular networks and missing

vessels in the OCTA projections caused confusion for the

human expert.

In contrast, our proposed method, termed Ours-3D,

shows a significant improvement in the confusion matrix,

accurately classifying the majority of test samples in each

category. On the error-free test set, Ours-3D performed

slightly worse in the ‘remission’ category, owing to the rela-

tively fewer training samples in this category. On the error-
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Figure 5. Confusion matrix comparison between our proposed

method and human experts on different test sets. Ours-3D, outper-

forms human experts in accurately distinguishing between the ‘ac-

tive’ and ‘remission’ categories. Also, as indicated by the smaller

performance drop observed in the ‘dry’ category, our method

demonstrates greater robustness to layer segmentation errors.

prone test set, our method demonstrated greater robustness

to segmentation errors by directly taking the raw OCTA

volume as input and bypassing the impact of those errors.

Overall, our proposed method not only outperforms human

experts in this AMD grading task but also offers increased

robustness to segmentation errors, which is a critical con-

sideration in accurately detecting and grading AMD.

5. Conclusion

In this paper, we firstly elaborate the influence of layer

segmentation errors in the context of AMD stage grading

and propose to address it via analyzing the 3D OCTA vol-

ume directly. With the pretrained 2D EfficientNet backbone

and projection supervision, we achieve an accuracy of over

80% on both error-free and -prone test sets, which signifi-

cantly outperforms 60% accuracy of human experts. Our re-

sults suggest that OCTA modality alone can identify differ-

ent AMD stages and encourage the exploration of OCTA-

derived biomarkers for diagnosis. In future work, we plan to

explain the decision-making of these well-performed clas-

sifiers so as to develop deep learning-based biomarkers for

accurate AMD diagnosis.
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