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1. Supplementary
This supplementary document is intended to provide ad-

ditional experiments, discussions, and figures that were not
included in the main manuscript due to space limitations.

2. BrainTumor Pipeline
Figure 2 illustrates our multi-task Mirror U-Net pipeline

for brain tumor segmentation. The CT and PET tasks are
replaced with FLAIR and T1Gd tasks respectively. We be-
lieve that it makes more sense to assign segmentation tasks
for each branch since unlike CT, both FLAIR and T1Gd
have a strong signal for tumor lesion boundaries. However,
for consistency, we also include (v2)-rec following the same
default tasks as (v2) in our AutoPET [4] experiments.

3. λ Hyperparameters
We set the λrec, λseg, λcls parameters following previous

work [9] that utilizes multimodal fusion, where λseg = 1.0,
λrec = 0.1, λcls = 0.1 are used with a higher λseg since
segmentation is the primary task. However, we explore fur-
ther reducing the influence of λrec and λcls in a grid search
over {0.1, 0.01, 0.001, 0.0001, 0.00001}. We find that there
is a sweet spot for both parameters (see Figure 1), however,
the difference in performance is not substantial and Mirror
U-Net is robust to λ-parameter changes in [0.1− 0.00001].

4. Discussion
Statement of Novelty. Mirror U-Net is a novel combina-

tion of multimodal fission and multi-task learning. Unlike
previous methods, which either combine multimodal fusion
with multi-task learning [9, 1, 6, 7] or employ fission-only
models [8], Mirror U-Net conditions the fission of features

Figure 1. Dice Scores of (v3) when varying λrec and λcls.

with explicitly defined tasks. We compare Mirror U-Net to
a plethora of such approaches [6, 7, 1, 9, 8] to show that this
combination of fission and multi-task learning is essential.

Clinical Relevance. The segmentation of paired
PET/CT volumes can aid the diagnosis by estimating the
metabolic tumor volume (MTV) [10] as well as the affected
anatomical regions [5], predicting an exact tumor location
and size. The separation of anatomical knowledge in CT
and physiological knowledge in PET is often seen in clin-
ical practice [3] where PET is used to identify highly ac-
tive lesions and CT is used to localize which anatomy is af-
fected. Mirror U-Net’s state-of-the-art performance on Au-
toPET [4] as well as the possibility to assign explicit tasks
to each modality, which correspond to the tasks for which
the modalities are used in clinical practice, brings us a step
closer to deploying segmentation models in practice.

Limitations. To assign the optimal tasks to each modal-
ity branch and the shared bottleneck decoder, one has to
consider which tasks make the most sense for each modal-
ity, e.g., reconstruction for CT as CT has fine structures but
little information about the lesions. For MSD BrainTumor
[2] using segmentation tasks for different parts of the tumor
led to the best results. However, we did achieve good per-
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Figure 2. Overview of the tasks used in our MSD BrainTumor [2] experiments. In (v1) and (v2) we use the union of the edema and core
predictions as our final whole tumor prediction mask.∗The whole tumor from the bottleneck at (v2) is only used as regularization. In
(v2)-rec we use the default tasks we used in AutoPET [4] for consistency with our AutoPET [4] experiments. We segment all three tumor
classes in the T1Gd branch.

formance with the default (v2) AutoPET [4] tasks also for
(v2)-rec on MSD BrainTumor [2].

Future Work. We plan to explore additional task com-
binations to further improve the effectiveness of Mirror
U-Net. For example, we will investigate the potential of
adding more anatomical information to the CT branch, such
as multi-organ segmentation and incorporating tumor clas-
sification (lymphoma, melanoma, lung cancer) from the
bottleneck. Additionally, we aim to extend Mirror U-Net
to interactive segmentation, where human feedback can
be incorporated to refine the segmentation results. Specif-
ically, we will explore the use of click-based interactions
to correct predictions from each branch individually, lever-
aging the low parameter sharing between branches and the
modality-specific skip connections.
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