
Supplementary Material for SEPAL:
Spatial Gene Expression Prediction from Local Graphs

Gabriel Mejia, Paula Cardenas, Daniela Ruiz, Angela Castillo, Pablo Arbeláez
Center for Research and Formation in Artificial Intelligence

Universidad de los Andes, Bogotá, Colombia
{gm.mejia,p.cardenasg,da.ruiz1,a.castillo13,pa.arbelaez}@uniandes.edu.co

1. Benchmark

Dataset

Parameter Visium STnet

cell min counts 103 7× 102

cell max counts 105 105

gene min counts 103 103

gene max counts 106 106

min exp frac (εWSI ) 0.8 0.01
min glob exp frac (εT ) 0.8 0.6
combat key - Patient

Table 1. Filter hyperparameters for Visium and the STNet dataset

In order to filter our datasets, we define the hyperparam-
eters shown in Table 1. The terms cell min counts and
cell max counts refer to the minimum and maximum
total counts required for a cell to remain in the dataset. Sim-
ilarly, gene min counts and gen max counts spec-
ify the minimum and maximum total counts necessary
for a gene to be included in the dataset. The parameter
min exp frac determines the fraction of observations in
a slide that must express a gene to consider it. Likewise,
min global exp frac is the fraction of observations
across the entire dataset needed to include a gene. Finally,
combat key sets the key in dataset to use as batch for
ComBat. However, in the case of Visium, this parameter is
set to “None” indicating that batch correction is unneces-
sary.

2. Architecture Optimization
We varied different stages of our model that are enumer-

ated as follows:

1. Positional encodings: We decided to sum or concate-
nate the positional embedding to the patch embedding.

2. Number of hops (m): We tuned the number of steps

required to reach from one node to another within the
graph between 1, 2, and 3 in the Visium dataset, and
only 1 in the STNet dataset due to computational cost.

3. Convolutional graph operator (GNNi(·): We tried
different convolutional graph operators from pytorch
geometric [2] such as GCNConv[5], SAGEConv[3],
GraphConv[6], GATConv[9], GATv2Conv[1], and
TransformerConv[8].

4. Learning rate: We used 10−4, 10−5 and 10−6 as
learning rate options.

5. Batch size: We experimented with batches of size 512,
256, 128 and 64.

6. Pre-processing stage: We tried to progressively re-
duce the dimensionality of our graph input by adding
an MLP with the following options of hidden channels
hi:

• No MLP

• hi = {demb, 512}
• hi = {demb, 512, 256}
• hi = {demb, 512, 256, 128}

Where demb refers to the embedding dimension (768 if
the positional encoding is sumed or 1536 if it is con-
catenated).

7. Post-processing stage: We tried to progressively de-
compress the graph network output adding an MLP
with the following options of hidden channels ho:

• No MLP

• ho = {128, ng}
• ho = {64, 128, ng}

Where ng is the number of genes to predict, set at 256.



Method ResNet18 DenseNet-121 ConvNeXt-T WideResNet-50 MobileNetV3-S ResNeXt-50 ShuffleNetV2 X0 5 Swin-T ViT-B-16
MAE 0.653 0.641 0.653 0.649 0.645 0.642 0.635 0.650 0.638
MSE 0.761 0.745 0.754 0.756 0.736 0.739 0.725 0.751 0.725

PCC-Gene 0.296 0.379 0.294 0.323 0.338 0.341 0.354 0.303 0.347
R2-Gene 0.051 0.071 0.050 0.060 0.084 0.080 0.094 0.055 0.086

PCC-Patch 0.923 0.925 0.924 0.924 0.925 0.925 0.927 0.924 0.927
R2-Patch 0.843 0.846 0.844 0.844 0.846 0.846 0.850 0.844 0.849

Params (M) 11.7 8.0 28.6 68.9 2.5 25.0 1.4 28.3 86.6
Batch Size 64 320 128 320 128 64 256 256 320

lr 1× 10−2 1× 10−3 1× 10−4 1× 10−2 1× 10−2 1× 10−3 1× 10−2 1× 10−5 1× 10−4

Table 2. Results of the extensive experimentation performed on image encoder selection over the Visium dataset. The best performance is
written in bold, and the second best result is underlined for each metric.

MLP pre GNN MLP pos

- demb, ng -
- demb, 512, ng -
- demb, 512, 256, 128 128, ng

- demb, 512, 256, 128, 64 64, 128, ng

demb, 512 512, 256, ng -
demb, 512, 256 256, 128, ng -
demb, 512, 256 256, 128, 64 64, 128, ng

demb, 512 512, 256, 128 128, ng

demb, 512, 256, 128 128, 128, 128, 128 128, ng

Table 3. Hidden channels dimensions for preprocessing MLP,
Graph Neural Network and postprocessing MLP.

8. Graph hidden channels: To fit the dimensions of pre
and post-processing stages, we follow an autoencoder-
like architecture by powers of 2. The options of hidden
channel dimensions go from 1 to 4 graph convolutional
layers as shown in Table 3.

With this systematic procedure, we generate 3888 hy-
perparameter combinations from 324 module variations in
the Visium dataset, and 1296 hyperparameter combinations
from 108 module variations in the STNet dataset.

3. Image Encoder Selection
To establish the architecture of our image encoder we

experiment with nine of the most recent and popular image
classification models, replacing their respective last layer to
predict the expression of the ng genes of interest. With each
potential image encoder we do a grid search modifying the
learning rate inside [10−2, 10−3, 10−4, 10−5, 10−6] and the
batch size inside [320, 256, 128, 64] to achieve the best pos-
sible performance in the Visium dataset. Table 2 shows the
best results for each one of the architectures. The results
show that ShuffleNet and ViT have similar performance in
most metrics, achieving the best results among almost all
the architectures examined. However, ViT has a slightly
better MSE (0.7245 Vs 0.7249), which is the selection cri-
teria. Hence, we build SEPAL applying ViT as the image
encoder I(·).

Method STNet EGN EGGN HisToGene SEPAL

MAE 0.731 0.785 0.651 0.742 0.663
MSE 0.955 1.077 0.745 0.967 0.789

PCC-Gene 0.106 -0.028 0.297 -0.048 0.292
R2-Gene -0.189 -0.304 0.059 -0.191 0.012

PCC-Patch 0.911 0.901 0.926 0.901 0.922
R2-Patch 0.796 0.770 0.845 0.800 0.836

Table 4. Results of SEPAL along with state-of-the-art models
when trained in the noisy version of the Visium dataset. The
best performance is written in bold, and the second best result
is underlined for each metric.

4. Training with Noisy Data

To validate our denoising approach, we replicate the ex-
perimentation pipeline (training protocol optimization) for
the main results in the Visium dataset. However, this time
the training data does not pass through the modified adap-
tive median filter resulting in a noisy training dataset. The
results can be observed in Table 4 and, outstandingly, even
with just 5.3% of noisy data, the performance of all meth-
ods degrades significantly. This observation validates our
missing data imputation protocol disregarding the compu-
tational method and sets a best practice for future works.
Importantly SEPAL falls to the second position of the rank-
ing because the noisy data greatly affects the computation
of ȳtrain producing a systematic bias in the predictions.

References
[1] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are

graph attention networks? arXiv preprint arXiv:2105.14491,
2021. 1

[2] Matthias Fey and Jan Eric Lenssen. Fast graph repre-
sentation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019. 1

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30, 2017. 1

[4] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting
batch effects in microarray expression data using empirical
bayes methods. Biostatistics, 8(1):118–127, 2007. 4



[5] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 1

[6] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 1

[7] Leland McInnes, John Healy, and James Melville. Umap:
Uniform manifold approximation and projection for dimen-
sion reduction. arXiv preprint arXiv:1802.03426, 2018. 4

[8] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong,
Wenjin Wang, and Yu Sun. Masked label prediction: Uni-
fied message passing model for semi-supervised classifica-
tion. arXiv preprint arXiv:2009.03509, 2020. 1

[9] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio, and Yoshua Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017. 1



Figure 1. UMAP dimensionality [7] reduction and clusters visualization for STNet dataset without batch correction. As strong batch effects
are seen depending on the patient, ComBat [4] was applied with the patient as the batch key in the processing pipeline of this dataset.



Figure 2. UMAP dimensionality reduction and clusters visualization for STNet dataset after ComBat batch correction.



Figure 3. UMAP dimensionality reduction and clusters visualization for Visium dataset without batch correction. As no evident batch
effects are present, ComBat was not applied in the processing pipeline of this dataset.



Figure 4. Visualization of the four least auto-correlated genes in
processed data for Visium in both whole slide images.

Figure 5. Visualization of the four least auto-correlated genes in
processed data for STNet in four whole slide images.

Figure 6. Visualization of the four most auto-correlated genes in
processed data for Visium in both whole slide images.

Figure 7. Visualization of the four most auto-correlated genes in
processed data for STNet in four whole slide images.


