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Figure 1: Chart (a) visually displays the relative proportions of published papers according to their application, and chart
(b) illustrates the count of published papers based on INR design in medical tasks during different time periods (with ”H”
indicating the first or second half of the year). The assessment of the statistics is based on a sample of 64 research papers
published during the years 2021 to 2023.

A. further discussion

The field of medical imaging has witnessed a remarkable
upsurge in the utilization of implicit neural representation
(INR) techniques, as evident from the exponential growth in
research papers dedicated to this domain (Figure 1). This
surge of interest in INR within the medical imaging com-
munity has resulted in a multitude of applications across di-
verse medical imaging scenarios. Recognizing the signifi-
cance of INR and the influx of contributions in this realm,
the time is ripe for a comprehensive survey of the existing
literature. In the main part of our paper, we conducted an

all-encompassing survey aimed at providing a comprehen-
sive overview of recent advancements in INR models within
the field of medical imaging. Through an exhaustive anal-
ysis of the pertinent literature, we discovered that we are
the pioneers in delivering comprehensive coverage of the
implementation of INR models specifically tailored for the
medical domain. By meticulously identifying and succinctly
summarizing the pivotal findings and techniques employed
in these models (refer to Table 1), we strive to not only pro-
vide invaluable insights but also forge novel research paths.
Moreover, our intention is to ignite a renewed fervor within
the vision community, encouraging them to capitalize on the



immense potential of INR models in the context of medical
imaging.
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Table 1: A comparison of different proposed methods in different medical imaging task. The table is divided into different
sections based on the imaging task, including Reconstruction, Segmentation, Neural Rendering, Compression, and Registra-
tion.

Application Method Input Output Activation
Function Modality Highlight Ref

NeRP (x, y, z) Intensity ReLU
MRI
CT

Reconstructs high-quality CT and MRI images from sparsely sampled measurements by embedding a prior
image from an earlier scan, training the network to learn the neural representation of the target image, and
inferring the trained network to generate the final reconstructed image.

[7]

DCTR (x, y, z)
Linear

Attenuation
Coefficient

ReLU CT Calculating the loss between the new CT measurement and the measurement taken in the previous time step,
then propagates the loss back to the MLP in order to remove noise from the new scan and reconstruct its CT
image.

[5]

IREM (x, y, z) Intensity ReLU MRI Generates 3D MRI volumes by fitting implicit neural representations on sagittal, coronal, and axial planes of
the brain to reconstruct the vacant voxels between them.

[14]

ArSSR
(x, y, z)

Image Embedding Intensity ReLU MRI

represents the 3D brain MRI surface using high-resolution (HR) and low-resolution (LR) image pairs. The
LR image is processed through task-specific super-resolution CNN to extract features, which are concatenated
with the HR image coordinates. This concatenated input is then used by a decoder MLP to generate the 3D
voxel intensity.

[13]

INR-LCS
(x, y, z)

τ (Temporal variable)
z (latent code)

SDF Sine
Fluorescent
Microscopy

• Uses an MLP to represent the signed distance function (SDF) of evolving cell shapes at any point given its
spatial coordinates (x, y, z), a temporal parameter (t), and a conditioning latent code that provides additional
information and influences the generated cell shapes.
• Can aid researchers in studying subjects such as cell division, migration, or modifications in cellular struc-
tures.

[11]

Reconstruction

CoiL (θ, l) Response (r) ReLU CT By utilizing the viewing angle θ and the spatial location l of the relevant detector on the sensor plane as inputs,
an MLP learns a mapping to sensor responses (CT measurement) in order to represent the measurement field
of the organ of interest.

[9]

BS-ISR (x, y) Spline Coefficient ReLU CT Used a combination of INR and CNNs to model the segmentation boundary by mapping CT slice coordinates
to spline coefficients.

[1]

NeRD (dt, dr, db, dl) (µ,Σ) ReLU MRI
Addressed the spatial invariance challenge caused by pooling and padding operations by using a pixel-wise 4D
position vector (distance from the top, right, bottom, and left) as input to train an MLP representing pixel-wise
distribution in order to generate the mean and covariance matrix of that pixel.

[17]
Segmentation

Retinal INR (x, y) RGB Value ✗
Fundus

Photography
An INR model enhances the retinal image resolution, while a Vision Transformer (ViT) conducts self-
distillation on the original image to extract the key features. These features are utilized for the segmentation
of retinal vessels, therefore aiding in the detection of ocular diseases.

[4]

MedNeRF (x, y, z, θ, ϕ) (RGB, σ) ReLU CT
Combines NeRF and a CNN (inspired by GRAF [6]) to generate CT projections from X-rays by training NeRF
as the generator to output image patches and a CNN as the discriminator to refine NeRF outputs, enhancing
image quality and addressing NeRF’s struggles with complex scenes.

[2]

Surgical
Neural

Rendering
(x, y, z, θ, ϕ) (RGB, σ) ReLU

Endoscopic
imaging

NeRF-based rendering in robotic surgery that captures non-rigid deformations and reconstructs the 3D struc-
tures of the surgical scenes. from single-viewpoint stereo endoscopes. It handles occlusion caused by surgical
instruments by utilizing a canonical radiance field and a time-dependent displacement field. The canonical
field maps coordinates and viewing directions to colors and space occupancy, while the displacement field
maps input space-time coordinates to displacement vectors.

[10]

Neural Rendering

SNAF (x, y, z)
Attenuation
Coefficient

ReLU CBCT

• Neural rendering is utilized as part of the CBCT reconstruction process to enhance the quality of the rendered
CBCT images by learning neural attenuation fields using a multi-resolution hash table and employing volume
rendering, high-quality CBCT images are generated from sparse 2D projections.
• The deblurring network takes as input a rendered novel view from the learned neural attenuation field, along
with its neighboring views to mitigate the blurring effect resulting from limited input projections.

[3]

SCI (x, y, z)
Compressed

Representation
Sine CT

• Mitigates INR’s limitations on broad-spectrum data by introducing adaptive partitioning, which divides
the data into blocks within INR’s spectrum envelop and compresses each block using a funnel-shaped neural
network architecture (wider beginning and narrower end) to capture its spectrum and characteristics, resulting
in compressed data obtained through parameter optimization and serialization.
• Their findings demonstrate that INR struggles to accurately represent data with a wide range of frequencies,
impacting its fidelity in capturing diverse spectral components.

[16]

Compression

TINC (x, y, z)
Compressed

Representation
Sine Phase-Contrast CT

Uses octree partitioning to enable visually similar blocks to share parameters within a tree-shaped neural
network structure, enhancing representation compactness and resulting in a more efficient and concise archi-
tecture, achieved through an MLP-based implicit neural function representation of each equal-sized block of
target data.

[15]

IDIR (x, y, z) Deformation Vector Sine CT

Leverages insights from differentiable rendering to demonstrate how an implicit deformable image registration
model can be combined with regularization terms using automatic differentiation techniques. The use of pe-
riodic activation functions allows for higher-order derivatives, which facilitates more advanced regularization
techniques and leads to improved control over deformations and enhanced accuracy in image registration.

[12]

Registration

mirnf (x, y, z)
Displacement Vector

Velocity Vector
Sine MRI

A novel framework that combines optimization with deep neural networks for image registration. It utilizes
neural fields to represent the transformation between pair of images, offering two methods for generating de-
formation fields. The optimal registration is achieved through parameters of neural field update via stochastic
gradient descent. The paper also discusses ways to enhance model optimization.

[8]


