
A. VQ-VAE Implementation

The VQ-VAE model trained used the same model param-
eters across each category on the MVTec Dataset. Several
different codebook sizes were experimented with, with the
codebook that resulted in the lowest average reconstruction
error as the final codebook to be used (note this may not be
optimal for anomaly detection performance). The VQ-VAE
model was trained using a jukebox loss that is given as:

LV QV AE = ∥(x− x̂)∥22 + ∥|STFT (x)| − |STFT (x̂)|∥22 + β ∥ze(x)− sg[e]]∥22 + ∥sg[ze(x)]− e∥22 (7)

where sg stands for a stop gradient operator to stop gradi-
ents from flowing back into their argument. The loss used
from [10] uses a spectral loss component that is based on
the magnitude of the Fourier Transformer of the original and
reconstruction image. From equation 7 the first term seen
is the L2 pixel loss, whilst the second term represents the
spectral loss between the original and reconstruction. Here
SFTF stands for the short-time Fourier transform. The third
term is the commitment cost to ensure the encoder commits
to the codebook. The final term is to move the codebook
embedding vectors towards the output from the encoder. In
the implementation we replace this final term with an expo-
nential moving average update for the codebook as imple-
mented in [27]. During training, a β of 0.25 was used.

The architecture used for the VQ-VAE model for the
MVTec Dataset used an encoder consisting of three down-
sampling layers that contain a convolution with stride 2 and
kernel size 4 followed by a ReLU activation and 3 resid-
ual blocks. Each residual block consists of a kernel of size
3, followed by a RelU activation, a convolution of kernel
size 1 and another ReLU activation. Similar to the encoder,
the decoder has 3 layers of 3 residual blocks, each followed
by a transposed convolutional layer with stride 2 and ker-
nel size 4. Finally, before the last transposed convolutional
layer, a Dropout layer with a probability of 0.05 is added.
The VQ-VAE codebook with optimal reconstruction was
found to have 256 atomic elements (vocabulary size), each
of length 32. To train the VQ-VAE network, we used an
ADAM optimiser with a learning rate of 1e-4 and an expo-
nential learning rate decay with a gamma of 0.9999. Train-
ing was run for 20,000 epochs with a batch size of 16. Dur-
ing training, the data was augmented with Gaussian noise,
contrast adjustment, intensity shifts, translations, rotations
and scaling. The VQ-VAE model used for the 3D PET data
consisted of the same architecture with 3D kernels. Ad-
ditionally the codebook has a 256 vocabulary size each of
length 128. This model was trained for 1000 epochs with
a batch size of 3. In addition to the augmentations used for
the MVTec dataset, elastic deformations were also carried
out during training.

B. Transformer Implementation
Once the VQ-VAE model was trained, and training data

could be encoded, a Transformer could then be trained on
the encoded images, using their discrete latent representa-
tions. The self-attention mechanism is best described as a
mapping of intermediate representations of three position-
wise linear layers onto three representations denoted by the
Value (V), Key (K) and Query (Q) [28]. With dk denot-
ing the dimension of the key, query and value vectors, the
attention mechanism is calculated as follows:

Attn(Q,K, V) = softmax

(
QKT

√
dk

)
V (8)

The Transformer success relies on the self-attention mech-
anisms employed to capture the interactions between inputs
in the sequence regardless of their relative position to one
another. This relies on the inner product between elements
of the sequence and as such the network scales quadratically
with sequence length. This is a key limitation when applied
to image data. In this work, we use the Performer variant
that proposed a linear generalized attention offering a more
scalable approach [7]. The performer makes use of multi-
headed self-attention. This aspect in the network is several
attention layers run in parallel with their outputs concate-
nated and fed through a linear layer.

The performer used in this work for the MVTec dataset
corresponds to a decoder Transformer architecture with 16
layers, each with 8 heads, and an embedding size of 32. For
PET data, the performer had 14 layers, each with 8 heads
and an embedding size of 256. To train the network, we
used an ADAM optimiser with a learning rate of 1e-3, an
exponential learning rate decay with a gamma of 0.9999
and cross-entry loss. Furthermore the embedding, feed-
forward and attention mechanisms within the network all
had a dropout probability of 0.1.

Given the nature of the recursive training, and required
inference on training to generate the latent code masks, to
avoid extra overfitting to the original training data result-
ing in poor anomaly detection performance on the training
data, the data fed in to the Transformer during training was
augmented data, using the same data augmentations used
in VQ-VAE training, i.e. Gaussian noise, contrast adjust-
ment, intensity shifts, vertical and horizontal translations,
rotations, scaling (and elastic deformations in the case of
the PET data). The training was then performed over 80
epochs with a batch size of 1.

C. MVTec Anomaly Detection Performance

Table 2. Anomaly detection results of the proposed method in comparison to state-of-the-art comparisons. For each dataset category,
AUROC (top row) and AUPRO (bottom row) are given along with the respective standard deviation. The best-performing method is
highlighted in boldface.

Category AE [1] VAE [1] CutPaste [16] NSA [24] VQ-VAE + Transformer [19] ILTM

bottle 45.9 ± 11.5 65.5 ± 12.2 82.0 ± 6.3 91.1 ± 3.9 87.2 ± 5.3 95.1 ± 1.4
2.8 ± 19.6 39.3 ± 14.1 65.7 ± 12.2 81.0 ± 6.7 81.9 ± 6.7 91.0 ± 3.4

pill 79.6 ± 10.0 83.1 ± 8.9 74.8 ± 8.2 87.0 ± 5.3 84.5 ± 4.8 92.6 ± 2.8
49.0 ± 19.2 55.4 ± 19.4 69.5 ± 11.1 79.3 ± 8.6 78.5 ± 9.6 88.5 ± 6.9

screw 54.0 ± 17.0 75.2 ± 17.5 80.8 ± 6.2 81.2 ± 7.5 81.2 ± 8.0 89.9 ± 4.9
22.2 ± 22.9 36.0 ± 21.4 73.1 ± 11.0 76.1 ± 11.8 71.4 ± 13.1 82.7 ± 8.7

cable 46.0 ± 13.1 59.3 ± 15.4 69.4 ± 7.4 84.3 ± 6.5 85.2 ± 6.7 87.9 ± 6.1
15.2 ± 13.6 23.9 ± 13.6 34.6 ± 13.6 68.5 ± 13.2 73.9 ± 13.2 78.3 ± 16.4

hazelnut 82.1 ± 12.8 68.7 ± 12.0 78.9 ± 9.5 82.5 ± 6.8 89.5 ± 10.6 97.5 ± 1.1
72.1 ± 12.7 45.5 ± 19.8 58.6 ± 12.7 63.7 ± 10.6 82.1 ± 6.1 93.1 ± 3.6

zipper 62.3 ± 9.5 66.9 ± 8.3 86.1 ± 8.1 82.9 ± 8.0 80.4 ± 7.6 89.1 ± 5.1
41.1 ± 12.4 52.4 ± 10.2 77.5 ± 11.8 74.1 ± 9.3 73.6 ± 14.9 81.1 ± 6.2

metal nut 78.3 ± 6.2 77.2 ± 8.1 75.1 ± 9.1 84.1 ± 4.7 82.1 ± 6.1 90.1 ± 3.4
61.2 ± 12.4 59.1 ± 14.1 59.1 ± 15.1 70.1 ± 9.1 75.1 ± 9.8 83.5 ± 51.2

tile 53.6 ± 9.2 46.0 ± 14.5 68.6 ± 13.8 79.2 ± 9.3 72.1 ± 12.0 72.2 ± 14.1
21.3 ± 15.8 15.2 ± 18.7 48.5 ± 18.4 62.5 ± 15.2 56.9 ± 18.2 57.9 ± 21.4

wood 49.5 ± 15.7 59.2 ± 7.6 69.0 ± 7.0 74.7 ± 7.7 81.7 ± 6.1 88.2 ± 4.1
18.9 ± 22.4 34.1 ± 7.5 46.3 ± 17.5 55.1 ± 9.7 75.7 ± 7.0 90.2 ± 4.9

leather 51.8 ± 9.0 72.5 ± 20.5 53.3 ± 15.2 64.0 ± 7.5 90.8 ± 3.0 97.1 ± 1.6
25.4 ± 13.0 48.5 ± 25.2 35.3 ± 21.6 51.4 ± 14.4 83.7 ± 6.4 93.8 ± 1.9

carpet 52.5 ± 7.8 51.3 ± 3.3 54.6 ± 14.2 61.4 ± 14.9 76.8 ± 15.0 80.4 ± 8.5
18.6 ± 9.8 16.7 ± 3.9 24.7 ± 19.0 45.1 ± 19.4 65.8 ± 21.5 71.3 ± 14.7

grid 55.9 ± 10.7 59.4 ± 8.6 73.6 ± 11.7 82.5 ± 7.1 81.5 ± 12.1 89.0 ± 4.1
22.8 ± 15.1 20.9 ± 8.9 65.3 ± 14.8 75.2 ± 8.6 72.5 ± 6.2 82.0 ± 4.7

Figure 6. Rows from top to bottom display (1st) the input image; (2nd) the ground truth segmentation; (3rd) the abnormality map as a KDE
using our self-supervised training approach. Results are provided for five categories with three randomly selected images from the testing
data.

