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Abstract

We present PAT, a transformer-based network that learns
complex temporal co-occurrence action dependencies in a
video by exploiting multi-scale temporal features. In exist-
ing methods, the self-attention mechanism in transformers
loses the temporal positional information, which is essential
for robust action detection. To address this issue, we (i) em-
bed relative positional encoding in the self-attention mech-
anism and (ii) exploit multi-scale temporal relationships by
designing a novel non-hierarchical network, in contrast to
the recent transformer-based approaches that use a hier-
archical structure. We argue that joining the self-attention
mechanism with multiple sub-sampling processes in the hi-
erarchical approaches results in increased loss of positional
information. We evaluate the performance of our proposed
approach on two challenging dense multi-label benchmark
datasets, and show that PAT improves the current state-of-
the-art result by 1.1% and 0.6% mAP on the Charades and
MultiTHUMOS datasets, respectively, thereby achieving the
new state-of-the-art mAP at 26.5% and 44.6%, respectively.
We also perform extensive ablation studies to examine the
impact of the different components of our proposed network.

1. Introduction
Action or event detection aims to determine the bound-

aries of different actions/events occurring in an untrimmed

video, and plays a crucial role in various important com-

puter vision applications, such as video summarization,

highlighting, and captioning. Despite the recent advances

in different areas of video understanding, dense multi-label

action detection is still an unsolved problem and considered

as one of the most challenging video analysis tasks since

the videos are untrimmed, and include several actions with

different time durations that can have overlap (See Fig. 1).

To carry out this task, we require to learn complex short and

long term temporal relationships amongst different actions

in a video which is a challenging problem [7, 15].

Figure 1: A sample video and its corresponding action an-

notations from the Charades dataset [31] where the video

includes several action types with different time spans, from

short to long, and in each time step, multiple actions can oc-

cur at the same time.

Most previous dense multi-label action detection ap-

proaches capture temporal dependencies through tempo-

ral convolutional networks [26, 12, 15]. However, with

the success of transformer networks over the convolutional

networks for modeling complex and sequential relation-

ships [35, 9, 10, 24, 36], recently, a few methods, such

as [33, 5, 7], leverage the self-attention mechanism and

propose transformer-based approaches where they achieve

state-of-the-art performance. Authors in [33, 5] design their

network by modeling explicitly temporal cross-class rela-

tions. In [33], there are two transformer modules such that

one of them investigates action relationships for each tem-

poral moment, and another one learns temporal dependen-

cies for each action type. However, these approaches are

not computationally efficient and their complexity grows

with the number of action classes. To overcome this, Dai

et al. [7] design a hierarchical network that learns temporal-

action dependencies from multi-scale temporal features.

Their network contains several transformer layers such that

the output of each layer is down-sampled and given as in-

put into its subsequent layer. As stated in [30, 18, 11],

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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the self-attention mechanism in the transformer is order-

invariant and loses positional information, and when the

self-attention is embedded in a hierarchical structure, the

issue becomes worse as using multiple down-sampling pro-

cesses results in increased loss of positional information,

especially in top layers. In this paper, we tackle these issues

by introducing PAT, a position-aware transformer network

for dense action detection. PAT consists of three main mod-

ules: fine detection, coarse detection, and classification.

The fine detection module learns fine-grained action depen-

dencies from the full temporal resolution of the video se-

quence for coarse detection and classification modules. The

coarse detection module captures various ranges of coarse

action dependencies from the fine-grained features using a

non-hierarchical structure, which preserves the positional

information. To further leverage the positional information,

PAT incorporates a learnable relative positional encoding

[29] in the transformer layers of both fine and coarse detec-

tion models. Finally, the classification module estimates the

probabilities of different action classes for every timestamp

in the input video using both fine and coarse-grained action

dependencies. Our key contributions can be summarized as

follows:

• For the first time, we introduce the idea of leveraging

positional information in transformers for action de-

tection

• We design a novel non-hierarchical transformer-based

network that preserves positional information when

learning multi-scale temporal action dependencies

• We evaluate the proposed method’s performance on

two challenging benchmark dense action detection

datasets where we outperform the current state-of-the-

art result by 1.1% and 0.6% per-frame mean average

precision (mAP) on Charades and MultiTHUMOS re-

spectively, thereby achieving the new state-of-the-art

mAP at 26.5% and 44.6%, respectively

• We perform extensive ablation studies to evaluate our

network design

2. Related Works
Although action detection [4, 22, 20, 22, 25, 40, 34, 38,

3] has been studied significantly in computer vision, few

works [27, 8, 26, 6, 15] have explored it in a dense multi-

labelled setup where instances of different actions or events

can overlap in different parts of a video. In this section,

we review the action detection approaches by focusing on a

dense-labelled setting.

To detect the boundaries of different actions, the authors

in [4, 21, 23, 19] propose anchor-based methods where they

first generate several proposals for each frame of video by

using multi-scale anchor boxes, and then refine them to

achieve the final action boundaries. However, these ap-

proaches are not usually applied for a dense multi-label

scenario, as to model effectively the dense action distribu-

tions, they need a large amount of anchors [7]. To over-

come this, some works, such as [27, 8, 26, 6, 15], design

anchor-free approaches for dense action detection. Piergio-

vanni and Ryoo [27] propose a network that represents an

untrimmed video into multi-activity events. They design

multiple temporal Gaussian filters which are applied sep-

arately on the video frame features while a soft-attention

mechanism is employed to combine the output of the filters

to generate a global representation. Later in [26], they im-

prove their work by proposing a temporal convolutional net-

work using Gaussian filters as kernels to perform the tem-

poral representation in a more efficient and effective way.

Although they design networks to address complex multi-

label action detection, the proposed models are not able to

encode long-term dependencies and mostly focus on local

relationships, while our proposed network is able to capture

different ranges of temporal features from short to long. Ka-

hatapitiya and Ryoo [15] propose a two-stream network to

capture long term information such that one of the streams

learns the most informative frame of a long video through a

dynamic sub-sampling with a ratio of 4, and the other one

learns the fine-grained contexts of the video from the full

resolution. Although their results are promising, it cannot

be adapted easily to use more temporal resolutions as it re-

quires a dedicated Convolutional Neural Network (CNN),

i.e. X3D [12], for each resolution, whereas in our proposed

method, a different resolution can be processed easily by

adding an extra branch containing a few transformer blocks

in the coarse detection module.

Transformer-based Approaches – With the success of

transformer networks in modeling complex relationships

and capturing short and long term dependencies [35, 9,

10, 24, 36], some works, such as [6, 33, 7], develop

transformer-based approaches for dense action detection

task. Tirupattur et al. [33] design a model with two trans-

former branches, one branch applies self-attention across all

action classes for each time step to learn the relationships

amongst actions, and another branch uses self-attention

across time frames to model the temporal dependencies, and

the output of two branches are combined for action classifi-

cation. Although this method outperforms state-of-the-art

results, the method’s computational complexity increases

with the number of action classes. Similar to [15] that ben-

efits different temporal resolutions, Dai et al. [7] extract

multi-scale features. They design a transformer-based hi-

erarchical structure and provide multi-resolution temporal

features through several sub-sampling processes. However,

as the self-attention mechanism does not preserve the tem-

poral position information [30, 18, 11], joining it with mul-
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tiple sub-sampling processes makes the network lose more

positional information while preserving this information is

essential for action detection. In contrast, our position-

aware transformer network PAT has been designed to retain

such temporal cues.

3. Position-Aware Transformer (PAT)
Problem Definition – Our aim is to detect different ac-

tions/events in a densely-labelled untrimmed video. We

define the action detection problem under this setting as

[15, 33, 7]. For an untrimmed video sequence with a length

of T , each timestamp t has a ground truth action label

Gt = {gt,c ∈ {0, 1}}Cc=1, where C is the maximum number

of action classes in the dataset, and the network requires to

estimate action class probabilities Yt = {yt,c ∈ [0, 1]}Cc=1

for each timestamp.

3.1. Proposed Network

Our proposed method PAT is a transformer-based net-

work designed to exploit different granularities of complex

temporal dependencies for action detection. The PAT net-

work includes a video encoder E that encodes an input

video sequence into a sequence of input tokens, and three

main components: fine detection module FDM, coarse de-

tection module CDM, and classification module CLASM

arranged as shown in Fig. 2. FDM processes an input se-

quence in its original temporal resolution to obtain a fine-

grained action representation for both CDM and CLASM

modules. The CDM module learns different ranges of tem-

poral action dependencies amongst the fine-grained features

through extracting and combining multi-scale temporal fea-

tures. CLASM estimates class probabilities from the output

of both FDM and CDM modules.

Video Encoder (E) – To process an input video, PAT needs

to convert it into a sequence of tokens. To perform this, sim-

ilar to the previous action detection approaches [33, 7, 40],

we first divide the L-frame input video V ∈ IRL×Ch×W×H

into T non-overlapped segments S = {St}Tt=1, where St ∈
IRZ×Ch×W×H, Z = L/T , and Ch, W , and H define num-

ber of channels, width, and height of each video frame re-

spectively. Then, the video encoder E that is a pre-trained

convolutional network is employed on each segment to gen-

erate its corresponding token It = E(St), where It ∈ IRD.

Relative Positional Transformer (RPT) Block – To de-

sign FDM, and CDM, we employ our proposed transformer

block RPT (see Fig. 3). The RPT block comprises a trans-

former layer with relative positional embedding followed

by a local relational LR component containing two linear

layers and one 1D temporal convolutional layer as in [7] to

enhance the output of the transformer layer.

As already pointed out in Section 1, the transformer self-

attention mechanism loses the order of temporal informa-

tion while preserving this information is essential for ac-

tion detection, where we need to localise events precisely

in a video sequence. To solve this issue, Vaswani et al.

[35] propose to add the absolute positional embedding to

the input tokens. However, in our experiments, we ob-

served that using the absolute positional embedding de-

creases the method’s performance significantly (see Section

4.1). This has also been observed in [7, 40]. The decrease in

performance may be attributed to breaking the translation-

invariant property of the method. In action detection, we

expect the proposed method to be translation-invariant, i.e.

the network learns the same representation for the same

video frames in two temporally shifted videos, regardless of

how much they are shifted, while the absolute encoding can

break this property as it adds different positional encodings

to the same frames in the shifted video inputs. To overcome

this, we propose to use relative positional encoding [29] in

the transformer layers of our RPT block. The relative po-

sitional encoding employs a relative pairwise distance be-

tween every two tokens and is translation-invariant. In ad-

dition, as the embedding is performed in each transformer

layer and is passed into the subsequent layer, the positional

information can flow to the classification module where the

final estimations are provided.

We briefly formulate the transformer layer in the RPT

block. In the H-head self-attention layer of RPT, for each

head h ∈ {1, 2, ..., H}, the input sequence X ∈ IRN×D�

is first transferred into query Qh, key Kh, and value Vh

through linear operations

Qh = XW q
h , Kh = XW k

h , Vh = XW v
h , (1)

where Qh, Kh, Vh ∈ IRN×Dh , W q
h , W

k
h , W

v
h ∈ IRD�×Dh

refer the weights of linear operations, and Dh = D�
H . Then,

the self-attention with relative positional embedding is com-

puted for each head as

Ah = softmax(
QhK

T
h + P �

h√
Dh

)Vh, (2)

P �
h (n,m) =

Dh∑

d=1

Qh(n, d)Ωd(n−m), (3)

where P �
h ∈ IRN×N, n,m ∈ {1, 2, ..., N}, and Ωd operates

as Dh different embeddings for time intervals based on the

queries [29]. To compute P �
h , we use the memory-efficient

method proposed by Huang et al. [13].

Finally, the self-attention of all heads are concatenated

and fed into a linear layer to output sequence O

A = concat(A1, A2, ..., Am), (4)

O = AW o +X, (5)
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Figure 2: The overall schema of the proposed network PAT including (i) video encoder E, (ii) fine detection module FDM,

(iii) Coarse detection module CDM, and (iv) classification module CLASM.

Figure 3: Architecture of the proposed RPT block. For

brevity, the computation of the heads are not shown sepa-

rately.

where A ∈ IRN×D�
and W o ∈ IRD�×D�

.

Fine Detection Module (FDM) – The FDM module aims

to obtain a fine-grained temporal action dependency repre-

sentation of the video from the input video sequence for the

CDM and CLASM modules. FDM includes a 1D temporal

convolutional layer followed by B RPT blocks. The convo-

lution layer Λ• has a kernel size of three and a stride of one

to map all the input tokens I ∈ IRT×D into a lower dimen-

sion D∗, and then the RPT blocks are applied to learn the

fine-grained dependencies I�.

I� = RPTFDM
1:B (Λ•(I)), (6)

where I� ∈ IRT×D∗
and D∗ < D.

Coarse Detection Module (CDM) – In the CMD module,

we aim to learn a coarse temporal action dependency rep-

resentation of the video. To achieve this, one solution is to

extract and combine multi-scale temporal features through

a hierarchical structure, such as the proposed method in

[7, 40] (see Fig. 4. a). However, as we already explained

in Section 1, using multiple sub-sampling processes in the

hierarchical structure results in losing more positional in-

formation in the top layers of the network. Our CMD mod-

ule has been designed to overcome this issue by extracting

different scales of features from the same full-scale fine-

grained information and through only one sub-sampling

process, (see Fig. 4. b). In Section 4.1, we show that our

novel non-hierarchical design to extract multi-scale features

outperforms significantly a hierarchical structure.

The CMD module has F granularity branches such that

each branch learns a different scale of temporal features. In

the ith branch, first a 1D temporal convolutional layer Λ◦
i

with a kernel size of three and a stride of 2i is applied on

the fine-grained inputs received from the preceding module

FCM as

Igi = Λ◦
i (I

�), (7)

where Igi ∈ IRTi×D∗
, i ∈ {1, 2, ..., F}, and T i = T

2i .

Then, the down-sampled features are given into B RPT

transformer blocks to exploit the temporal dependencies

amongst them

Īgi = RPTCDMi

1:B (Igi), (8)

where Īgi ∈ IRTi×D∗
. Note, to extract all the scales of

features, the striding process (sub-sampling) is used only
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Figure 4: The proposed hierarchical structure in [7, 40] vs.

our proposed non-hierarchical design in fine and coarse de-

tection modules to extract multi-scale features for action de-

tection.

once and as the relative positional information has been al-

ready embedded in the fine-grained information, after the

striding process, the sub-sample features keep the temporal

positional cues.

In the CLASM module, action class probabilities are es-

timated for each input token generated by the video encoder

E. Therefore, the CMD module requires obtaining a coarse

dependency representation at the original temporal length.

To do this, we up-sample and combine different scales of

coarse features to provide a final coarse representation I�

as

Îgi = UpSample(Īgi), (9)

I� =

F∑

i=1

Îgi , (10)

where Îgi , I� ∈ IRT×D∗
and linear interpolation is em-

ployed for up-sampling.

Classification Module (CLASM) – This module obtains

the action class probabilities for action detection from the

fine and coarse contexts. To this, two convolution blocks

CLAS� and CLAS� that include two 1D convolution fil-

ters with kernel size one and stride one are applied on the

fine and coarse features separately to predict C action class

probabilities for each temporal moment

Y φ = Sig(CLASφ(Iφ)), (11)

where Y φ ∈ IRT×C, φ ∈ {�,�}, and Sig refers to sigmoid

activation function. Then, at inference, the final estimation

is computed by combining them as

Ŷ =
∑

φ

αφY
φ, (12)

where Ŷ ∈ IRT×C and α� + α� = 1.

3.2. Network Optimization

To optimize action detection models, binary cross en-

tropy (BCE) is usually used as in [33, 7, 40, 34]. However,

in the multi-label setting, the number of positive labels may

become more than the number of negative ones. This unbal-

anced number of positive and negative labels can result in

poor performance in the action detection task if we employ

BCE for training, since it does not have any control on the

contribution of positive and negative samples. To overcome

this, we propose to adapt Asymmetric loss Lasl [28] for

multi-label action detection. Therfore, the total loss Ltotal

is computed as

Ltotal =
1

T

∑

φ

T∑

t=1

C∑

c=1

αφLasl(gt,c, y
φ
t,c), (13)

Lasl(gt,c, y
φ
t,c) = −gt,cL+ − (1− gt,c)L−, (14)

L+ = (1− yφt,c)
γ+ log(yφt,c), (15)

L− = (ýφt,c)
γ− log(1− ýt,c), (16)

ýφt,c = max(yφt,c − δ, 0), (17)

where gt,c indicates the ground truth label of action class c

in temporal step t, and yφt,c is its corresponding class prob-

ability estimated by Eq. 11. γ+ and γ− are focusing pa-

rameters for positive and negative labels respectively and

if we choose γ+ < γ−, we are able to increase the con-

tribution of positive samples. Furthermore, Eq. 17 applies

another asymmetric mechanism by discarding the very easy

negative samples through setting the threshold parameter δ.

In Section 4.1, we show that optimizing the proposed net-

work through Asymmetric loss instead of BCE improves

the method’s performance.

4. Experimental Results
Datasets – There are several benchmark datasets for action

detection, but only a few of them provide dense multi-label

annotations. For instance, videos in ActivityNet [1] have

only one action type per timestamp. We present the re-

sults of PAT on two challenging dense multi-label bench-

mark datasets, Charades [31] and MultiTHUMOS [39].

Charades [31] is a large dataset including 9, 848 videos

of daily activities of 267 persons. It contains 66, 500 tem-

poral interval annotations for 157 action classes while there

is a high overlap amongst the action instances of different
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action categories. To evaluate our method on Charades, we

follow previous methods [15, 33, 7] and use the same train-

ing and testing set as in [31].

MultiTHUMOS contains the same set of 413 videos as

in THUMOS’14 dataset [14]. However, MultiTHUMOS

is more challenging than THUMOS’14 since (i) the anno-

tations have been extended from 20 action classes to 65,

and (ii) in contrast to sparse-lable frame-level annotations

in THUMOS’14, MultiTHUMOS has dense multi-label ac-

tion annotations. To obtain the results on this dataset, we

use the same standard training and testing splits applied by

previous methods [33, 7]. Following state-of-the-art meth-

ods [27, 26, 15, 33, 7], we evaluate our method on these

datasets by standard per-frame mAP metric.

Implementation Details – Similar to the proposed method

in [7], during both training and inference, PAT uses a fixed

number of T = 256 input tokens. For training, we ran-

domly sample a clip containing T consecutive tokens from

a video sequence. At inference, we follow previous work

[33, 15] and make the predictions for a full video sequence.

Each input token is provided by applying the video encoder

E on an 8-frame segment to extract a feature vector with di-

mension D = 1024. The video encoder E is implemented

by using a pre-trained I3D [2]1 while its fully connected lay-

ers are replaced with a global average pooling layer and its

parameters are frozen. In the convolutional layer of FDM,

the input features are mapped into D∗ = 512 dimensional

feature vectors. Note, the feature dimension D∗ = 512 is

fixed for the rest of the network. FDM and each granular-

ity branch of CDM have B = 3 RPT blocks with H = 8
multi-head attention heads, and the number of granular-

ity branches in CMD is set to F = 3 as we found that

with these parameters, PAT obtains the best performance.

The contributing factors for fine-grained (α�) and coarse-

grained (α�) features in the CLASM module are set empiri-

cally to {α� = 0.1, α� = 0.9} and {α� = 0.7, α� = 0.3}
for Charades and MultiTHUMOS respectively. In Asym-

metric loss, we use factors of γ+ = 1 and γ− = 3 for the

impact of positive and negative samples respectively, and

threshold parameter δ = 0.1, which are determined through

trial and error.

Our experiments were performed under Pytorch on an

NVIDIA GeForce RTX 3090 GPU, and we trained our

model using the Adam optimiser [17] with an initial learn-

ing rate of 0.0001 and batch size 3 for 25 and 300 epochs for

Charades and MultiTHUMOS datasets respectively. The

learning rate was decreased by a factor of 10 every 7 and

130 epochs for Charades and MultiTHUMOS respectively.

Note, using different training settings for Charades and

MultiTHUMOS is due to their different size.

1Video encoder E is pre-trained on Kinetic-400 [16] and training set of

Charades for MultiTHUMOS and Charades respectively.

4.1. Ablation Studies

In this section, we examine our design decisions for the

proposed network and learning paradigm.

Effect of FDM and CDM Modules – Here, we aim to

evaluate the impact of the fine and coarse detection mod-

ules (FDM and CDM) in the final results of PAT. Table

1 shows per-frame mAP on the Charades and MultiTHU-

MOS datasets as we remove each or both of FDM and CDM

modules. To obtain the results of the network when both

modules are dropped, we use directly the sequence of in-

put tokens generated by the video encoder (I3D) for action

detection. Table 1 shows that using only input tokens gen-

erated by I3D network is not enough for effective action

detection and employing fine and coarse-grained temporal

features obtained by FDM and CDM improves the perfor-

mance by 9.7% and 7.9% per-frame mAP on Charades and

MultiTHUMOS respectively. It also shows that both FDM

and CDM modules have an important contribution to the

final results as by removing FDM and CDM, our results de-

teriorate by 2.4% and 3.4% per-frame mAP on average on

both datasets respectively. Table 1 also shows that for differ-

ent datasets that have different action types, the contribution

of fine and coarse features might be different which is the

reason we use the contribution factors {α�, α�} to com-

bine the prediction results of FDM and CDM in the CLASM

module at the inference.

Module
mAP(%)

Charades MultiTHUMOS

CLASM 16.8 36.7

FDM, CLASM 23.8 40.5

CDM, CLASM 26.2 40.1

FDM, CDM, CLASM 26.5 44.6

Table 1: Ablation studies on FDM and CDM modules of

PAT on the Charades and MultiTHUMOS dataset using

RGB videos in terms of per-frame mAP metric.

Effect of Structure Design to Extract Multi-Scale Fea-
tures – In this section, we examine the design of PAT

with two other variants to capture fine-grained and coarse-

grained features. In the first variant PAT-v1, the CDM mod-

ule uses the hierarchical structure to extract the multi-scale

features while the rest of its architecture is the same as PAT.

In the second variant PAT-v2, the CDM module has a non-

hierarchical structure, the same as PAT, but the FDM mod-

ule and all granularity branches in CDM learn their features

from input tokens.

Table 2 shows that when CMD applies a hierarchical

structure to learn the coarse-grained features, i.e. PAT-

v1, the method’s performance drops 1.4% and 0.6% on

Charades and MultiTHUMOS respectively. This proves
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Design
mAP(%)

Charades MultiTHUMOS

PAT-v1 (Hierarchical) 25.1 44.0

PAT-v2 26.1 44.2

PAT 26.5 44.6

Table 2: Ablation studies on structure design of the pro-

posed method on the Charades and MultiTHUMOS datasets

using RGB videos in terms of per-frame mAP metric.

the contribution of our novel non-hierarchical transformer-

based design which preserves positional information when

exploiting the multi-scale features. Furthermore, in case

we apply a non-hierarchical CMD, i.e. PAT and PAT-v2, if

the CMD module extracts the multi-scale features from the

fine-grained context instead of the input tokens as in PAT,

we achieve the best performance at 26.5% and 44.6% per-

frame mAP on Charades and MultiTHUMOS respectively.

Impact of Relative Positional Encoding – Table 3 shows

the performance of PAT when different positional encod-

ings are applied. It can be observed that employing the

relative positional encoding [29, 13] embedded in the RPT

block improves the method’s performance by 0.3% per-

frame mAP on both datasets, while adding absolute posi-

tional encoding [35] into the input tokens deteriorates the

method’s performance significantly.

Positional Encoding
mAP(%)

Charades MultiTHUMOS

No encoding 26.2 44.3
Absolute 25.3 43.5

Relative 26.5 44.6

Table 3: Ablation studies on positional encoding used in

PAT on the Charades and MultiTHUMOS dataset using

RGB videos in terms of per-frame mAP metric.

Impact of Loss Function – Here, we examine the effect of

BCE and Asymmetric [28] losses for training. As shown in

Table 4, applying the Asymmetric loss [28] to optimize PAT

improves the performance by 0.5% and 0.2% per-frame

mAP on Charades and MultiTHUMOS respectively.

Loss
mAP(%)

Charades MultiTHUMOS

BCE 26.0 44.4

Asymmetric [28] 26.5 44.6

Table 4: Ablation studies on the loss function applied for

training PAT on the Charades and MultiTHUMOS datasets

using RGB videos in terms of per-frame mAP metric.

Discussion and Analysis – The ablation studies show that

leveraging positional information in the transformer lay-

ers has an important contribution in the final results of the

network where extracting the multi-scale temporal features

through our proposed non-hierarchical design in CMD out-

performs a hierarchical structure by 1.0% mAP on average

on both datasets (PAT vs PAT-v1), and embedding the rel-

ative position encoding in the RPT block improves the per-

formance by 0.3% mAP on both datasets. Our further abla-

tions also reveal the effect of the Asymmetric loss in opti-

mizing of PAT where it increases the performance by 0.3%
mAP on average on both datasets.

4.2. State-of-the-Art Comparison

In this section, we compare the performance of the pro-

posed method with the state-of-the-art action detection ap-

proaches including both transformer-based methods and the

methods that do not use self-attention. Both quantitative

and qualitative results are obtained for this section.

Table 5 provides comparative results on the benchmark

datasets Charades and MultiTHUMOS based on the stan-

dard per-frame mAP metric. Table 5 shows that our pro-

posed method outperforms the current state-of-the-art re-

sult by 1.1% and 0.6% on Charades and MultiTHUMOS

respectively and achieves a new state-of-the-art per-frame

mAP results at 26.5% and 44.6% on Charades and Multi-

THUMOS respectively.

We also evaluate the performance of our proposed

method by action-conditional metrics including Action-

Conditional Precision PAC , Action-Conditional Recall

RAC , Action-Conditional F1-Score F1AC , and Action-

Conditional Mean Average Precision mAPAC , as intro-

duced in [33]. The aim of these metrics is to measure the

ability of the network to learn both co-occurrence and tem-

poral dependencies of different action classes. The metrics

are measured throughout a temporal window with a size of

τ . As shown by the results on Charades in Table 6, the

proposed method PAT achieves state-of-the-art results on

all action-conditional metrics, specifically, it improves the

state-of-the-art results significantly on RAC and F1AC by

10.6% and 7.7%, 10.8% and 7.5%, and 10.8% and 7.3%
where τ is 0, 20, and 40 respectively.

Fig. 5 displays qualitative results of PAT on a test video

sample of Charades and compares them with the outputs of

MS-TCT [7]. Amongst the state-of-the-art methods, we ap-

plied MS-TCT [7] and MLAD [33] on the video sample,

since their code is available, useable and compatible with

our hardware. However, as the MLAD could not predict

any of the actions, we reported only the results of MS-TCT.

The results in Fig. 5 show that our proposed method’s ac-

tion predictions have a better overlap with the ground-truth

labels, and our method detected more action instances in the

video than MS-TCT, i.e. PAT predicted all action types ex-
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Method GFLOPs Backbone
mAP(%)

Charades MultiTHUMOS

R-C3D [37] ICCV 2017 - C3D 12.7 -

SuperEvent [27] CVPR 2018 0.8 I3D 18.6 36.4

TGM [26] ICML 2019 1.2 I3D 20.6 37.2

PDAN [6]�∗ WACV 2021 3.2 I3D 23.7 40.2

CoarseFine [15] CVPR 2021 - X3D 25.1 -

MLAD [33]� CVPR 2021 44.8 I3D 18.4 42.2

CTRN [5]� BMVC 2021 - I3D 25.3 44.0

PointTAD [32] NeurIPS 2022 - I3D 21.0 39.8

MS-TCT [7]� CVPR 2022 6.6 I3D 25.4 43.1

PAT� 8.5 I3D 26.5 44.6

Table 5: Action detection results on Charades and MultiTHUMOS datasets using RGB videos in terms of per-frame mAP.

The � symbol highlights the transformer-based approaches, and ∗ indicates the results are taken from [7].

Method
τ = 0 τ = 20 τ = 40

PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC

I3D[2]∗ 14.3 1.3 2.1 15.2 12.7 1.9 2.9 21.4 14.9 2.0 3.1 20.3
CF [33]∗ 10.3 1.0 1.6 15.8 9.0 1.5 2.2 22.2 10.7 1.6 2.4 21.0
MLAD [33]� 19.3 7.2 8.9 28.9 18.9 8.9 10.5 35.7 19.6 9.0 10.8 34.8
MS-TCT [7]� 26.3 15.5 19.5 30.7 27.6 18.4 22.1 37.6 27.9 18.3 22.1 36.4

PAT� 28.3 26.1 27.2 32.0 30.0 29.2 29.6 37.8 30.0 29.1 29.4 36.7

Table 6: Action detection results on Charades dataset based on the action-conditional metrics [33], PAC , RAC , F1AC , and

mAPAC . τ refers the temporal window size. The same as [7, 33], both RGB and optical flow are used for obtaining the

results. The � symbol highlights the transformer-based approaches, and ∗ indicates the results are taken from [33].

cept “Taking a bag” while MS-TCT could not detect “Tak-
ing a picture”, “Taking a bag”, and “Walking”.

Figure 5: Visualization of action predictions by our pro-

posed method PAT and MS-TCT [7] on a test video sample

of Charades including 7 different action types.

5. Conclusion

In this work, we introduced a novel transformer-based

network PAT that exploits different ranges of temporal de-

pendencies for action detection. The proposed method has

been designed to benefit from preserving temporal posi-

tional information in learning multi-granularity features by

(i) embedding the relative positional encoding in its trans-

former layers and (ii) a non-hierarchical design. We eval-

uated PAT on two densely-labelled challenging benchmark

action detection datasets, on which we achieved new state-

of-the-art results, and our ablation studies demonstrated the

effectiveness of different components of our proposed net-

work. For future work, we will investigate adapting our net-

work to learn spatial and temporal dependencies from raw

pixels and also use audio information to improve the perfor-

mance of action detection.
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