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A. Overview

The outline of this document is as follows.

* Sec. Detailed steps on alignment in the pre-
processing stage

* Sec.[C} Discussion on the GAN inversion stage
* Sec.[D} Additional details on identity-latent selection

* Sec.[E} Illustrated explanations of noteworthy sections
of facial attribute encoding

* Sec. [} Further details and examples of experiments,
results, and limitations of the proposed framework

* Sec. |G Discussion on Potential Negative Societal Im-
pact

Additionally, please refer to the supplementary video, for
qualitative examples and a brief overview of the proposed
approach.

B. Video Pre-Processing: Alignment

The alignment carried out in the pre-processing stage
could be elaborated further using the three steps below.

1. Detect eye blinking and compensate for its effect
on landmark location of the eyes. This improves
StyleGAN2-based alignment by removing the sensitiv-
ity to eye shape change during blinking.

2. Registration of the face between a frame and a key
frame uses a parameterized affine optical-flow model
of the head [2], excluding the non-rigid face features
(eyebrows, eyes, and mouth). The over-constrained
optical-flow model is very effective at stabilizing the
face between consecutive frames unless there are
changes in the Yaw/Pitch of the head. We employ
the mean L2 distance to automatically determine the
quality of the inter-frame alignment over the non-rigid
parts of the face (i.e., compute the residual error in

RGB values of face stabilization). A mean distance
beyond a fixed threshold indicates that the affine mo-
tion model is not successful at stabilizing the rigid part
of the face, triggering step (3).

3. Key frame change that forces a new key frame to be
the basis for future frames’ face stabilization (aligned
according to step (1)).

For optical flow head registration, the threshold of the
mean RGB registration error over the face (excluding eyes,
mouth, and eyebrow areas) had to exceed 45.0 (if the inter-
frame Yaw and Pitch change is less than 2°), or 30.0 (if the
inter-frame Yaw or Pitch change exceeds 2°). The objective
is to avoid forcing face registration when the head is moving
out-of-plane. Instead, a change in the key frame is triggered,
allowing the StyleGAN?2 encoder to capture the new head-
pose. Fig. [I]depicts the key frames from a short sequence
when the head moves to near profile and then back.

C. GAN Inversion

Two factors were considered in choosing an appropriate
GAN inversion method: (1) faithful representation of the
given image (i.e., minimal reconstruction loss), (2) ability
to facilitate latent space edits. The authors of [14] suggested
that there exists a trade-off between these two factors, i.e.,
distortion and editability. Generally, inversion is done using
a trained encoder and/or an optimization framework. While
the former has better editability, it has a comparatively high
reconstruction loss and vice versa. We chose the e4e en-
coder [14], which was designed to facilitate the inversion
of real images in proximity to the regions StyleGAN2 was
trained on, thus mitigating the trade-off.

The ede encoder while producing state-of-the-art results
in GAN inversion of real images, has a few failing instances.
For certain subjects, (e.g., Fig.[2| (a)) the identity of the en-
coded image deviates considerably from the real frame. In
such cases, as we perform the inversion per-frame, there
is a tendency for the identity to change across the frames
of a single video clip as well. The identity change across



Figure 1. Key frames in a video sequence with head out-of-plane rotation
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Figure 2. Few examples of isolated instances where the ede
encoder fails. The examples depict: (a) poor identity, (b) incor-
rect gaze, (c) inability to capture extreme mouth movements, (d)
deformations caused due to occlusions, (e) visual artifacts, and (f)
flaws in facial features captured (open eyes while closed in real)

frames could be due to the poor convergence of the encoder
resulting from the existence of a higher per-frame loss due
to poor identity. Additionally, there exist cases where the
ede encoder fails to capture certain facial attributes success-
fully (e.g., Fig.[2](b) and (c)) which could be due to the low
representation of complex features in the StyleGAN?2 train-
ing dataset (FFHQ [8])). Further, certain visual artifacts and
deformations tend to appear in certain cases similar to the
examples shown in Fig. [2] (d), (e), and (f), which could be
caused due to occlusions (d) and the noisiness in the neigh-
borhood of the inverted W +.

However, the impact of most of these issues on the re-
synthesis is mitigated as (1) we anchor our deformations
with respect to a single ID-frame that has the highest iden-
tity match with the real and (2) utilize PTT [13] to minimize
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Figure 3. Identifying L;p is based on identity matching using
ArcFace [3]]. (a) depicts the identity similarity scores computed
between the encoded and real frames. In this case, (b) the best
identity is at frame 21 while (c) the worst is at frame 172

the disparity between the real and synthesized frames.

D. Identity-Latent Selection

The per-frame inversion creates a series of latents. De-
pending on the extent of head motion, deformation in Style-
GAN?2 space is likely. Therefore, the choice of the ID-frame
is of great significance as it serves as the base identity for the
face and head-pose deformations across the entire sequence
of frames. Hence, we first use ArcFace [3]] to compute the
similarity between the source and the reconstructed images
of the face and then the (1) closest of the face-matches that
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Mouth {6: 113,202, 214, 259, 378, 501},
{11: 6, 41,78, 86, 313, 361, 365},
{8: 17,387}, {14: 12}.{15: 45}

Chin/ Jaw {5: 50, 505}, {6: 131}, {8: 390}

Eyes 9: 63}, {11: 257}, {12: 82, 414},
14: 2391, {17: 28}

Eyebrows {8: 6,28}, {9: 30}, {11: 320}

Gaze {9: 409}

Table 1. StyleSpace indices corresponding to the deformation
of facial attributes. The indices take the form of {I: c1,ca, ...
}, where [ and ¢ denote the layer index and channel index of the
StyleSpace

is also (2) near frontal view of the person, and (3) has no
blink is chosen as the representative L;p, the basis for re-
synthesis. An example plot depicting the variation of the
identity similarity (computed based on ArcFace) is given in
Fig. 3] (a) and the corresponding best and worst ID-frame
candidates based on our criteria are shown in Fig. [3|(b).

E. Facial Attribute Encoding
E.1. Head-Pose Encoding

The flow of the head-pose encoding is illustrated in
Fig. 4l Moreover, to evaluate the significance of our opti-
mization based head-pose encoding approach, we compare
our results post head-pose adjustment against the straight-
forward use of StyleFlow with the {Y;, P;} parameters
computed using [1]. While quantitative results on 5 sample
videos were provided in Tab. 3 of the main paper, please
refer to the supplementary video for qualitative compar-
isons. It could be seen that our approach captures the head-
pose well and has a significantly low jitter compared to the
straightforward approach with StyleFlow.

E.2. Choice of StyleSpace Indices

We illustrate the facial deformations corresponding to
the manipulation of each of the 32 StyleSpace indices tabu-
lated in Tab. [1]in Fig.[8] A pair of images marked as (I, c) :
+/— is included for each StyleSpace index, (I,c) € V de-
noting the sign of the perturbation added to the respective
StyleSpace index.

E.3. Index Specific Learning Rate

The variation of index sensitivity computed over the in-
dices corresponding to the {mouth + chin/jaw} is shown in
Fig. 5| (a). The significant variations seen in the plot make
it evident that the index sensitivities cannot be simply ig-
nored and hence, the indices cannot be treated the same
during optimization. In order to alleviate the dominance
of indices with a higher index sensitivity, we compute an
index specific learning rate, 77 ;, I'y; specified in Eq. (5)
in the main-paper. The I'y ; corresponding to the indices in

Fig.[5](a) are depicted in Fig.[5| (b). It could be seen that the
7y, of indices having a higher Iy ; is comparatively lower
than the indices of lower I'f ;, thus effectively alleviating
the dominance.

E.4. Details on Optimization

The AdamW [10] optimizer with AMSGrad [[L1] was uti-
lized with an initial learning rate of n = {ny;; Vf € F,i €
V}, (B1, B2) = (0.9, 0.999), and ¢ = le=8. The opti-
mization was over 100 epochs (N = 100) and the learning
rate was decayed every 10 epochs with a decaying factor
of 0.8 using a learning rate scheduler for improved conver-
gence. The optimization takes approximately 1 min./frame
on a single GTX1080Ti GPU. Additional details on the loss
terms defined in equations (9) - (12) of the main-paper are
given below.

L prps: The LPIPS loss [20], which is known to learn
perceptual similarities well [, [12], was used to capture the
structural details of the facial attributes between S; and S’t.
Nevertheless, L1 p;ps was not used in solving for the gaze
(L) as it is invariant to subtle spatial changes and hence
introduces a slight jitter when used.

L 12: This denotes the L2 norm between the S; and S;,
and enables precise reconstruction (e.g., the case of gaze).

Lip: To mitigate the risk of changing the identity of
the subject across frames while optimizing over the latent
space, the identity loss [12] is in place as a regularization
term. This is computed between Sl and S’t.

Lrp: As we optimize over 32 indices in parallel, we
noted occasional nose, mouth, and chin/jaw deformations.
To discourage unwarranted deformations, the Face-Parsing
loss, which is the L2 norm of the difference between the
masked face-parsing scores [18] of the rendered and target
frames, is used instead of facial-landmark coordinates loss
(e.g., [1). Face-parsing scores facilitate the gradient flow
through the optimization and are more precise and stable
across the frames.

Lrp = ||[FP(S;) + M — FP(S;) * M||2 (1

where function F'P(+) yields face-parsing scores and M de-
notes the binary mask of the face.

Lr: The inter-frame loss is a derivation of the Frame
Difference-Based (FDB) loss proposed in [17]], to enforce
temporal coherence between frames. We minimize this loss
along with the other spatial losses to avoid enforcing tem-
poral continuity posteriori. Provided the target video is tem-
porally coherent, this loss is based on the concept that the
image space and feature space differences between consec-
utive frames embed the temporal coherence. We use LPIPS
and L2 losses to compute differences in the feature and im-
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Figure 4. The per-frame head-pose optimization flow using StyleFlow Yaw/Pitch. We re-formulate the head-motion as a head-pose
matching problem between a rendered image of the real-frame’s encoded latent, L, and the rendered image of a rotated L;p which is
solved as a minimization problem employing L2 and LPIPS losses (computed over a masked area of the face excluding non-rigid areas) to

search the Yaw-Pitch space using gradient descent.
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Figure 5. (a) Index sensitivity and the corresponding (b) index
specific learning rate. This figure represents values computed for
an example subject over the {mouth+chin/jaw} indices. It could
be seen that the 7y ; of indices having a higher Iy ; is compara-
tively lower than the indices of lower I ;, thus effectively allevi-

ating the dominance during the optimization.

age spaces, respectively.

Lir=Lirrprips +Lir.L2 (2)
Lrp.= LS Si1} — L{Sr, S-1} 3)

where * denotes either LPIPS or L2.

F. Experiments and Results
F.1. Dataset

As stated in Section 4.1 of the main-paper, we compose
a dataset consisting of video clips of 4K resolution sourced
from the site www.pexels.com. The videos were cho-
sen such that diverse subjects belonging to various ethnici-
ties, age groups, and having different facial geometries, per-
forming significant head-pose movements and facial defor-
mations (both expressions and speech) were included. The
results were computed based on 150 videos chosen from
the dataset, with a mean of 304 frames, a minimum of 100
frames, and a maximum of 1000 frames.

F.2. Evaluation Metrics

The following metrics were used for the quantitative
evaluation of our re-enactment videos in comparison with
baselines, which are tabulated in Tables 1 and 2 of the main-
paper.

Mean L1-distance, L1: The per-pixel L1-distance was
averaged across pixels, channels, and frames to obtain the
score. The pixel values of the input images were in the
range of [0,255].

Learned Perceptual Image Patch Similarity Loss,
LPIPS: The metric was computed per-frame using the orig-
inal implementation of [20] computed using the feature
space of AlexNet [9].

Identity Loss, £;p: The identity loss was computed us-
ing,

Lip =1~ (6(S:),d(5:)) )

where ¢ represents the pretrained ArcFace network [3]] and
(+,+) denotes the cosine similarity. While in re-synthesis
(Table 1 in the main-paper) the loss was computed between
the synthesized frame and the real frame, for puppeteering
(Table 2 in the main-paper) the loss was computed between
each frame and the puppet’s ID-frame.
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Figure 6. Additional examples demonstrating the versatility of our algorithm in video re-synthesis

Peak Signal to Noise Ratio, PSNR: This was computed
using the built-in function of python’s scikit-image package
using images having pixel values in the range [0,255].

Fréchet Inception Distance, FID: This metric, which
is used to measure the photo-realism between two datasets,
was computed based on the original implementation of [6]
with a batch size of 100. Note: The input images are
rescaled to 299 x 299 at the input of the inception network.

Fréchet Video Distance, FVD: The spatio-temporal
perceptual score measured through FVD was computed us-

ing the original implementation of [15]]. Video fragments of
length 120 frames were scored with a batch size of 8 and
averaged to obtain the final FVD score due to resource lim-
itations. Note: The frames are rescaled to 224 x 224 by the
algorithm.

Fréchet Video Distance - Mouth, FVD,,: Similar to
FVD, with the exception of the metric being scored over
the masked area of the mouth region.

Action Unit, Gaze, Pose Correlations, p.,, pczs Ppose
These metrics measure the time-series correlation be-
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Figure 7. Example puppeteering results generated by applying
the encoded parameters computed for the puppeteer through our
encoding algorithm onto the ID-latent of the puppet

tween the Action Unit activations, Gaze angles, and Yaw
and Pitch angles respectively, which are computed using
OpenFace 2.0 [1]] of the synthesized and the reference se-
quences. These provide an insight into how well the facial
deformations (p.,), eye motion (ps,), and pose (p,,..) are
captured by the algorithm in a spatio-temporal sense.

Note: All metrics except FVD, were computed per frame
and averaged across all the frames. Further, except for iden-
tity loss and correlation metrics, all other metrics were com-
puted over a masked-out region of the reference face of each
frame.

F.3. Video Results

The additional examples of video re-synthesis and pup-
peteering depicted in Fig. [6|and Fig.[7]respectively reaffirm
the versatility of our approach. Video examples comparing
the existing state-of-the-art approaches could be viewed in
the supplementary video. In comparison to our results, vi-
sual artifacts, lack of sharpness, and incorrect pose and fa-
cial deformations could be observed in the re-synthesis and
puppeteering examples of the baselines.

F.4. Limitations

There are multiple scenarios where latent-based video
encoding may fail: (1) due to limitations inherited from
StyleGAN2 (e.g., fixed resolution, entanglements, align-
ment requirements, texture sticking, etc.), (2) during pre-
processing if the face is misaligned with respect to Style-
GAN?2 expectations, (3) extreme facial deformations and
profile views, stemming from the low representation in the
FFHQ dataset used in training StyleGAN2, (4) possible
identity drift in editing StyleFlow or StyleSpace, (5) wear-
ables such as eyeglasses can be challenging in some cases
due to remaining latent space entanglement, (6) both latent
space inversion and editing are sensitive to occlusions.

G. Potential Negative Societal Impact

Since the proposed pipeline successfully captures the
fine, detailed, and expressive facial attributes, it improves
the realism of face re-enactment. Thus, our model could
be misused to create re-enactments with ill-intent (e.g.,
defamation) and we strongly oppose such malicious use.
The research on detection of DeepFakes have progressively
advanced as well [4}[7,[16}[19], and the data from our model
could be used to improve such methods, thus reducing the
potential negative societal impact.
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