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Abstract

We demonstrate how to design and apply domain-
specific modifications to convolutional neural networks
(CNNs) to improve model performance on hyperspectral
images of grain kernels. We use hyperspectral images
of grain kernels captured in the near-infrared wavelength
range of 900 to 1700 nm as a case for supporting our ar-
gumentation. This part of the electromagnetic spectrum
contains convoluted signals with chemical and physical in-
formation relevant to grain quality. For standard chemo-
metric models, domain knowledge is used to select from a
plethora of combinations of preprocessing techniques help-
ful in extracting relevant chemical and physical features for
a given task. By incorporating domain-specific design mod-
ifications in the preexisting architectures of ResNet-18 and
a simple CNN, we show that model performance can be in-
creased significantly and that applying domain knowledge
to CNNs is much more important than complexity is to their
performance.

1. Introduction
General deep learning models for image analysis achieve

good results across diverse domains [34, 37] including agri-

cultural domains [8, 21, 26, 29, 38]. However, we argue

that incorporating domain knowledge into the model design

leads to significantly better results than those achievable by

general deep learning models. We use grain quality analysis

as an example to support our argument.

Grain quality analysis is a multi-parameter problem class

consisting of physical and chemical properties [28, 31].

Historically, chemometricians have approached this prob-

lem class by combining physical and chemical knowledge

with machine learning algorithms to predict quality parame-

ters from near-infrared (NIR) spectra of grain [27, 28]. Ap-

plication of chemometrics and NIR spectroscopy to grain

quality analysis is an active field of research and contin-

ues as a primary analytical tool for grain quality analysis

[9, 13, 28]. While research for grain quality analysis has

been conducted within various subfields of computer vi-

sion [35, 45], NIR hyperspectral imaging (NIR-HSI) [20] is

perhaps the most promising, as it combines spatial features

with spectra containing chemical information regarding the

biological quality of the grain [32] enabling analysis of both

physical and chemical properties [9, 15].

Deep learning algorithms, specifically convolutional

neural networks (CNNs), have seen widespread application

within HSI for agricultural domains [21, 22, 46]. We know

from chemometrics that the choice of spectral preprocess-

ing is essential for downstream model performance [13], yet

hard to choose before model validation [39, 42]. Likewise,

this paper shows that spectral preprocessing is crucial for

CNNs applied to hyperspectral images. However, while ex-

haustively searching the space of preprocessing techniques

is possible for chemometric methods, the computation re-

quired for CNNs makes such a search infeasible. Therefore,

guided by domain-specific knowledge from chemometrics

and the physics of the imaging process, we design an ex-

tension to any pre-existing CNN that allows it to learn the

optimal spectral preprocessing and, consequently, achieve

significantly better performance than its plain counterpart.

To assess the importance of our extensions relative to

employing sophisticated CNNs, we design a simple, shal-

low CNN and compare it to the well-known ResNet-18 from

the high-performant ResNet-family [18]. We compare these

models’ performances to that of Partial Least Squares (PLS)

[49], a standard method in chemometrics that we use as a

baseline. We explain the models in detail in Sec. 3.

We use two datasets with hyperspectral images of grain
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kernels from Engstrøm et al. [14] and Dreier et al. [12],

respectively. The first dataset contains reference values for

the protein content in the grain kernels, while the second

dataset contains class labels for the grain type of the kernels.

We explain the datasets in detail in Sec. 2. For both datasets,

it holds that the problems are in a low sample size scenario

since obtaining this type of labeled data for model training

is particularly costly. Problems like these can particularly

benefit from adding constraints and prior knowledge into

the model design [16, 30].

To summarise, our contributions are: (1) The design

of simple extensions to any pre-existing CNN, facilitating

end-to-end training on hyperspectral images of grain with

no requirements for the application of advanced prepro-

cessing techniques. (2) Unifying chemometrics and deep

learning with an analysis of the CNN extensions’ effects

on both chemical and physical prediction tasks using do-

main knowledge from chemometrics. (3) Exemplifying that

incorporating domain knowledge in the CNN design for

agricultural image analysis is more critical than increasing

model complexity.

In this article, we begin with a presentation of the grain

quality analysis datasets in Sec. 2 followed by details of

model designs in Sec. 3 and experimental designs in Sec. 4.

We analyze and discuss the results in Sec. 5, which we con-

clude upon in Sec. 6.

2. Datasets
In this paper, we use two NIR-HSI datasets from En-

gstrøm et al. [14] and Dreier et al. [12], respectively. Both

datasets consist of hyperspectral images with 224 uniformly

distributed wavelength channels in the 900 nm - 1700 nm

NIR range of the electromagnetic spectrum taken with a

Specim FX17 camera [43]. This spectral range contains

chemical information relevant for grain quality assessment

[32]. Dataset #1 consists of images of bulk wheat grain

kernels with reference values for mean protein contents on

a physical sample scale with values between 8.66% and

17.78% [14]. The grain in Dataset #1 is from the FOSS [4]

European and World Grain Networks. Dataset #2 consists

of images of different types of bulk rye and wheat kernels

and contains class labels for the grain variety on an image

level where each image has precisely a single grain variety

[12]. The dataset includes one rye variety and seven wheat

varieties. Thus, the tasks on the datasets are mean protein

content regression and grain variety classification, respec-

tively. For Dataset #1, we reuse the data split as provided

by [14], who divided it into six splits; five for 5-fold cross-

validation (CV) and one for testing. Similarly, for Dataset

#2, we reuse the dataset split as provided by [12], who pro-

vide a training, validation, and testing split.

The hyperspectral images in both datasets have a spa-

tial size that varies slightly due to the line scan nature

of the camera. A typical size, however, is approximately

800× 500 pixels. Both datasets contain images of sparsely

and densely packed grain with varying grain density across

the images. The authors of [14] and [12] use a similar but

slightly different strategy for cropping the hyperspectral im-

ages into a collection of crops of 128×128 pixels. Both use

the grain density ratio to decide whether a hyperspectral im-

age crop should be retained or discarded in the final dataset.

The grain density ratio of a hyperspectral image crop is de-

fined as the number of pixels containing grain to the total

amount of pixels. The computation of this ratio is based on

a binary semantic segmentation mask produced by thresh-

olding based on Otsu [33] threshold selection provided with

both datasets. Where Engstrøm et al. [14] use a grain den-

sity ratio of 0.1, Dreier et al. [12] use one of 0.5. In our

work, we opt to use 0.1 for both datasets. Both Engstrøm et
al. [14] and Dreier et al. [12] crop with 50% overlap in both

spatial dimensions. However, whereas Engstrøm et al. [14]

start cropping at the first row and column containing grain,

as determined by the segmentation mask, Dreier et al. [12]

start cropping at the center of the image. In our work, we

opt for a third approach, where we start cropping at the top

left corner. For Dataset #1, our approach yields 69, 630 hy-

perspectral image crops to be used in the 5-fold CV and

17, 783 hyperspectral image crops for testing. For Dataset

#2, our approach yields 15, 376 hyperspectral image crops

for training, 7, 967 hyperspectral image crops for valida-

tion, and 3, 274 hyperspectral image crops for testing. We

summarize the datasets in Table 1.

Engstrøm et al. [14] and Dreier et al. [12] use a different

approach for reducing the raw 224 channels. In this work,

we opt for the method used by Engstrøm et al. [14] con-

sisting of removing the first and last 10 channels, which are

noisy due to low camera sensitivity, and binning the remain-

ing 204 channels by averaging neighboring pairs, reducing

the number of channels to 102. Engstrøm et al. [14] and

Dreier et al. [12] transform the reflectance images to ab-

sorbance images and mask the resulting absorbance, zero-

ing, any non-grain pixels. We apply the same transforma-

tion.

Additionally, for each hyperspectral image crop, a mean

grain spectrum is computed for use by chemometric mod-

els that take a spectrum as input. We derive the mean grain

spectrum by averaging the spectrum of each grain pixel in

the hyperspectral image crop, determined by the segmenta-

tion mask. Figure 1 shows a masked hyperspectral image

crop, a spectrum at a single grain pixel, and a mean grain

spectrum over the hyperspectral image crop.

3. Models
As a chemometric baseline model to determine if

the comparatively large CNNs utilizing the entire spatio-

spectral image yield increased performance over chemo-
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Dataset # image crops Task

#1

5-fold CV:

69, 630.

Test: 17, 783.

Protein content

regression. Range:

8.66%− 17.78%.

#2

Train: 15, 376.

Val: 7, 967.

Test: 3, 274.

Grain variety

classification. 1

rye variety and 7

wheat varieties.

Table 1. The number of image crops and the associated task for the

two datasets.

metric methods using only a mean spectrum, we implement

PLS [49]. On Dataset #1, we apply PLS regression (PLS-R)

[50, 51]. On Dataset #2, we apply PLS discriminant anal-

ysis (PLS-DA) [6]. PLS-DA is a method that uses a binary

encoding of the categorical variables and performs PLS-R

from the input to the binary-encoded categorical variables.

For multiple target variables, as in multiclass classification,

we can choose between two PLS-DA methods [25]. We can

train an ensemble of PLS-DA algorithms in a one-versus-

all manner for each class or train a single multiclass classi-

fier for all classes using one-hot encoding of the categorical

variables, commonly referred to as a PLS2-DA model. Our

experiments showed that PLS2-DA was consistently better

than an equivalent PLS-DA ensemble. Thus, from now on,

we will focus on PLS2-DA regarding chemometric methods

for classification on Dataset #2.

We implement two plain CNN-based models to which

we apply and assess our extensions. The first plain CNN is

a ResNet-18 [18] as used by Engstrøm et al. [14] where they

swap the ordering of rectified linear unit (ReLU) and batch

normalization (BN) [19]. The second is a much simpler

5-layer CNN, which we name SimpleNet, where each con-

volution layer has the number of filters with the same kernel

size as those within the corresponding ResNet block. Fol-

lowing the structure of ResNet-18, each convolution layer

uses a ReLU activation followed by a BN layer. Figure 2

shows the architecture of SimpleNet. Both networks have a

fully connected linear output layer with one neuron for the

protein regression task on Dataset #1 and a fully connected

layer with eight neurons and a softmax activation for the

grain variety classification task of Dataset #2.

Inspired by Engstrøm et al. [14], we experiment with two

types of extensions and combinations of these extensions.

The first extension consists of adding a 3-dimensional con-

volution (Conv3D) layer as the first layer in the network.

A Conv3D layer facilitates learning spectral smoothing

and derivative filters, commonly used in NIR spectroscopy

[13, 39]. We denote such a layer by Conv3Dn,(h×w×d)

where n is the number of filters and h, w, and d are the ker-

nel’s height, width, and depth, respectively. The second ex-

tension, which we name a Downsampler (Dsm), consists of

Figure 1. A masked hyperspectral image crop of spatial size 128 ×
128 pixels along with the spectrum at one of the pixels and the

mean spectrum of the crop computed over all the grain pixels, both

containing 102 wavelength channels.

adding an initial 2-dimensional convolution (Conv2D) layer

that applies dimensionality reduction to the spectral dimen-

sion with m number of filters, each applying a 1× 1 kernel

for every spectral channel. The number of filters, m, in Ds m

resembles the number of components chosen by PLS. We

denote a PLS model using m components by Am. While

Engstrøm et al. [14] experiment with two combinations of

these extensions, a Conv3D layer followed by a Ds3 layer

and a Ds3 without a prior Conv3D layer, we extend this also

to include a Conv3D layer without a subsequent Ds layer.

Figure 2 shows the combinations of extensions we employ.

Both Engstrøm et al. [14] and Dreier et al. [12] employ

grayscale variants of the plain ResNet-18 with the latter

also using a 3-dimensional variant of the plain ResNet-18

where each 2-dimensional convolution and pooling layer is

replaced with an equivalent 3-dimensional layer. We follow

this practice and employ grayscale and 3-dimensional vari-

ants of plain ResNet-18 and plain SimpleNet. The grayscale

variant determines if the problems can be solved using a

purely spatial approach by averaging the spectral dimen-

sion and feeding the resulting grayscale image to the CNN.

In contrast, the 3-dimensional variant lends itself naturally

to the hyperspectral image, accounting for spatio-spectral

features.

3.1. Implementation Details

The CNN and PLS models are implemented using Ten-

sorFlow [1], and Keras [10]. While 32 bits of floating point

precision is sufficient for the CNNs, the PLS models require

64 bits of floating point precision to converge with increas-

ing values of Am. Unlike CNNs, PLS does not compute a

bias coefficient, which is necessary as it assumes a propor-

tionality between the input spectrum and the target variable.

To account for this, we can either augment the input spec-

trum with a constant extra channel or center the target vari-

able. We opt for the latter approach and center the protein

content around the mean of each training split in Dataset #1

before training PLS-R. For PLS-DA, the issue is nullified by
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applying sigmoid, ensuring that a PLS output of zero yields

an equiprobable class prediction when combined with the

binary encoding of target variables. For PLS2-DA, using

one-hot encoding nullifies the issue altogether.

For the CNNs, we initialize all weights with the Kaiming

He Normal Distribution [17] and initialize all biases to zero.

Unless explicitly stated otherwise, convolution and pooling

layers apply zero-padding. For CNN regressors on Dataset

#1, we use the root mean squared error (RMSE) as the loss

function. For CNN classifiers on Dataset #2, the loss func-

tion is the weighted categorical cross entropy (CCE) with

balanced class weights from scikit-learn [36]. In practice,

the class weights are close to 1 as Dataset #2 is very bal-

anced. In both cases, we apply L2-regularization (L2) with

a regularization parameter of 10−3. For SimpleNet, L2 is

applied to all weights. For ResNet-18, we follow the guide-

lines by Kim et al. [23] regarding when to apply L2 to BN

weights, termed γ, by Ioffe and Szegedy [19]. Addition-

ally, for all other layers in ResNet-18, we apply L2 to their

weights. We use stochastic gradient descent (SGD) opti-

mization with a batch size of 32, a momentum of 0.9, and an

initial learning rate of 0.1. We multiply the learning rate by

0.1 if the validation RMSE or CCE plateaus for 10 epochs.

When reducing the learning rate, we restore the current best

weights and continue the training from that point on. If the

validation RMSE or validation CCE plateaus for 50 epochs

or reaches a total of 1000 epochs, training is halted and the

best weights restored. In practice, all CNNs were halted by

the 50 epochs plateau criterion. While training CNNs, we

apply data augmentation to the hyperspectral image crops

by uniformly randomly flipping them vertically and hori-

zontally.

PLS can be implemented with several different algo-

rithms. We choose to implement PLS using Improved Ker-

nel PLS Algorithm #1 [11] as it is both fast [2] and nu-

merically stable [3]. For PLS-R on Dataset #1, we choose

Am for each of the CV splits as the number of PLS com-

ponents that yields the lowest validation RMSE. Although

previously attempted [44], computing CCE on the output of

PLS2-DA is not a good metric of its performance. PLS2-

DA outputs a vector that does not necessarily encode a dis-

crete probability distribution. While applying the softmax

function to the output of a PLS2-DA model does not change

its categorical prediction, when interpreted as an arg max of

the prediction vector, it does not encode a probability dis-

tribution that allows for meaningful application of CCE. A

perfect PLS2-DA model will predict the ground truth be-

fore any softmax application. Thus, any subsequent appli-

cation of softmax would yield a non-zero CCE. Therefore,

for PLS2-DA on Dataset #2, we choose Am based on the

highest weighted validation categorical accuracy, which is

unaffected by the softmax application.

Figure 2. Top left: Conv3Dn,({1,7}×7×7). Middle left: Dsm. Bot-

tom left: Conv3Dn,({1,7}×7×7) followed by Dsm. Right: The ar-

chitecture of SimpleNet. The notation is kernel h× w, number of

filters, /stride.

4. Experiments
We wish to analyze whether we can use domain-specific

knowledge regarding preprocessing of NIR spectra to de-

sign end-to-end trained CNNs. Preprocessing of NIR spec-

tra can significantly increase the performance of subsequent

linear models such as PLS [39]. However, training CNNs is

several orders of magnitude slower than training PLS mod-

els, rendering it impossible to test a wide range of spectral

preprocessing techniques for CNNs.

Our experiments with preprocessing techniques for

CNNs are two-fold. First, we apply only simple preprocess-

ing, such as channel-wise centering and scaling, and allow

the CNNs to learn their own more advanced spectral pre-

processing by applying different types of Conv3D layers.

We compare this approach with optimizing the spectral pre-

processing technique on PLS. Optimizing the spectral pre-

processing technique on PLS allows us to test a wide range

of combinations and apply the best one to the CNNs to as-

sess if the optimal preprocessing technique for PLS is also

beneficial to CNNs.

4.1. Spectral Preprocessing Optimization

Preprocessing techniques within NIR spectroscopy gen-

erally fall within the two categories of scatter correction and

spectral derivatives, aiming to reduce the effects of physi-

cal phenomena on the spectrum, such as scattering, thus re-

vealing the chemical information in the spectra [39, 42]. In

our experiments, the scatter correction techniques are repre-

sented by Standard Normal Variate (SNV) [7], and detrend-

ing (Detrend) [7], while a wide range of Savitzky-Golay fil-

ters (SG) represents the spectral derivative techniques [40].

SNV standardizes each spectrum by subtracting its mean

and dividing by its standard deviation. Detrend subtracts

from each spectrum a polynomial that has been fitted to that
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spectrum. We use a second-order polynomial as is standard

for Detrend [39]. When used in unison, it is recommended

to apply SNV before Detrend [7, 39].

SG applies convolution in the spectral dimension with a

pre-defined filter that is determined by a window length w,

polynomial order p, and derivative order d. The specific fil-

ter is denoted SGw,p,d. Simply computing the derivative

using finite differences would be infeasible due to noise

inflation. SG tackles this issue by combining smoothing

and spectral derivatives in a single filter by fitting a poly-

nomial within a given window, thus getting a more accept-

able signal-to-noise ratio [39]. We do not use padding when

convolving with SG as this will introduce spectral artifacts

[39]. We denote the lack of padding in SG and Conv3D by

prepending a † to the name. When combining scatter cor-

rection (SNV) with differentiation (SG), scatter correction

should always be applied first as the scatter correction tech-

niques were designed for correction on raw spectra [39]. We

test SGw,p,d with all unique combinations of w ∈ �3, 23�,

p ∈ �0, 3�, d ∈ �0, 2�, using only odd w. For each value of

d, two subsequent values of p will yield the same filter co-

efficients. We remove any redundant filter coefficients and

end with a total of 54 uniquely different SGw,p,d filters.

We also experiment with spectral centering (Center)

and scaling (Scale) by computing for each training split

the mean spectrum and standard deviation spectrum for

channel-wise subtraction and subsequent channel-wise di-

vision, respectively. This preprocessing technique is com-

monly applied to PLS-R [51] and is beneficial to the con-

vergence of neural networks [24, 41, 48]. Indeed, confirm-

ing that the literature also applies to our hyperspectral set-

ting, we initially trained CNNs with and without Center →
Scale and witnessed increased performance when applying

Center → Scale. Thus, from now on, we focus on CNNs

with Center → Scale. The mean spectrum and standard

deviation spectrum are computed over all grain pixels us-

ing a two-pass version of the robust Welford’s algorithm

[47]. When we apply the spectral preprocessing techniques

in sequence, the ordering is first-to-last, SNV → Detrend →
†SG → Center → Scale. This ordering entails that the mean

and standard deviation spectra used in the Center and Scale

operations are computed after any previous preprocessing

application as they depend on any prior preprocessing ap-

plications. When used on hyperspectral images, spectral

preprocessing is applied only to the grain pixels, and the

background is masked out.

4.2. Comparative Studies

For PLS on both datasets, we experiment with applying

SNV, SNV → Detrend, SNV → †SG and neither scatter

correction nor spectral derivatives. For each of these, we

experiment with applying Center, Center → Scale, and nei-

ther Center nor Scale. For the CNNs, we initially exper-

iment with the commonly used Center → Scale. After-

ward, we extend this to include the preprocessing meth-

ods found optimal for PLS on Dataset #1 and Dataset #2,

respectively. The best preprocessing technique for CV of

PLS-R on Dataset #1 was SNV → †SG7,2,2 and for PLS2-

DA validation on Dataset #2 Center was best. Using the op-

timal preprocessing techniques, the average optimal num-

ber of components for the CV of the best PLS-R model is

A15, and for validation of the best PLS2-DA, the optimum

is A17. In Figure 3, we show how the different combinations

of SNV, Detrend, and †SG with their optimal combination

of Center and Scale affect the performance of PLS in both

datasets.

Based on the results of the preprocessing experiments

with PLS, we design modifications of ResNet-18 and Sim-

pleNet to understand if and how these results transfer

to CNNs. These modifications include adding Ds15 for

CNNs on Dataset #1 and Ds17 for Dataset #2. Addi-

tionally, as †SG7,2,2 is part of the optimal preprocessing

for PLS-R on Dataset #1, we include †Conv3D1,(1×1×7)

as it shares the same window length and, as such, can

learn the same filter if necessary. Engstrøm et al. [14]

showed that †Conv3D1,(1×1×7) can cause instability dur-

ing training. Therefore, we experiment with adding addi-

tional spectral †Conv3D filters and a spatio-spectral version

†Conv3D3,(1×1×7) and †Conv3D1,(7×7×7), both having the

same spectral window length, to see if this can alleviate the

instability during training, which seemingly is the case.

All CNN results, and the best PLS results, laying the

foundation for the dataset-specific CNN modifications, are

shown in Table 2. Additionally, for each dataset, we com-

pare our best CNN and best PLS model with those of En-

gstrøm et al. [14] and Dreier et al. [12], respectively, in Ta-

ble 3. We show confusion matrices and training and valida-

tion loss curves in the supplementary material. Engstrøm

et al. [14] report better performance for PLS-R than for

CNN models. While closing this performance gap, our best

CNN and PLS-R models achieve lower RMSE than the best

from Engstrøm et al. [14]. Furthermore, by constructing

an ensemble CNN, we outperform PLS-R and the equiv-

alent ensemble PLS-R. We create the ensemble by taking

a uniform average of the predictions from each of the five

cross-validated models. On Dataset #2, our best PLS2-DA

model significantly outperforms the equivalent from Dreier

et al. [12]. Our best CNN does not beat the best CNN from

Dreier et al. [12]. However, they use a grain density of

≥ 50%, whereas ours is ≥ 10%. When we evaluate our

model on test images with at least 50% grain density, we

close much of the performance gap, indicating that lower

grain density makes the classification task more difficult.

The study by Dreier et al. [12] support this indication by

showing that their classification accuracy diminishes greatly

when grain density is < 50%.
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Mod. # Conv3Dn,(h×w×d)
Dsm (CNN)

Am (PLS)
Preprocessing

# param.

(×106)
ResNet-18 /

SimpleNet

RMSE (%) ±
SEM (%) on

Dataset #1

ResNet-18 /

SimpleNet

Accuracy on

Dataset #2

ResNet-18 /

SimpleNet

Dataset #1 and Dataset #2

1 None None Center → Scale 11.5 / 1.87
0.93± 0.06 /

0.92± 0.06
0.96 / 0.95

2 None None
Center → Scale

→ Grayscale
11.2 / 1.56

1.43± 0.07 /

1.55± 0.05
0.91 / 0.82

3 Fully Conv3D None Center → Scale 33.2 / 4.67
0.92± 0.04 /

0.86± 0.03
0.96 / 0.91

4 Conv3D1,(1×1×7) None Center → Scale 11.5 / 1.87
0.74± 0.05 /

0.76± 0.05
0.90 / 0.95

5 Conv3D3,(1×1×7) None Center → Scale 12.1 / 2.51
0.72± 0.03 /

0.73± 0.04
0.95 / 0.92

6 Conv3D1,(7×7×7) None Center → Scale 11.5 / 1.87
0.74± 0.04 /

0.81± 0.04
0.86 / 0.91

7 Conv3D3,(7×7×7) None Center → Scale 12.1 / 2.51
0.68± 0.03 /

0.71± 0.03
0.86 / 0.86

8 None Ds3 Center → Scale 11.2 / 1.56
1.18± 0.08 /

1.25± 0.13
0.97 / 0.93

9 Conv3D1,(1×1×7) Ds3 Center → Scale 11.2 / 1.56
0.82± 0.13 /

0.71± 0.02
0.91 / 0.94

10 Conv3D3,(1×1×7) Ds3 Center → Scale 11.2 / 1.56
0.66± 0.01 /

0.71± 0.01
0.94 / 0.92

11 Conv3D1,(7×7×7) Ds3 Center → Scale 11.2 / 1.56
0.69± 0.01 /

0.71± 0.03
0.88 / 0.93

12 Conv3D3,(7×7×7) Ds3 Center → Scale 11.2 / 1.56
0.67± 0.02 /

0.71± 0.02
0.92 / 0.93

Dataset #1
PLS-R - A15 SNV → †SG7,2,2 - 0.67± 0.01 -

13 None Ds15 SNV → †SG7,2,2 11.2 / 1.60
0.67± 0.02 /

0.72± 0.02
-

14 †Conv3D1,(1×1×7) Ds15 SNV 11.2 / 1.60
1.61± 0.20 /

1.36± 0.28
-

15 †Conv3D3,(1×1×7) Ds15 SNV 11.2 / 1.61
0.90± 0.23 /

0.71± 0.02
-

16 †Conv3D1,(7×7×7) Ds15 SNV 11.2 / 1.60
0.89± 0.23 /

0.92± 0.22
-

Dataset #2
PLS2-

DA
- A17 Center - - 0.93

17 None Ds17 Center 11.24 / 1.61 - 0.94 / 0.93

Table 2. Performance, number of parameters, and preprocessing of all CNN modifications and the best PLS-R and PLS2-DA models. The

first 12 modifications are inspired or developed by Engstrøm et al. [14] and Dreier et al. [12] and are applied to Dataset #1 and Dataset

#2. Modifications 13 − 16 are designed based on the best preprocessing methods for PLS-R on Dataset #1 and are used only on Dataset

#1. Modification 17 is designed based on the best preprocessing methods for PLS2-DA on Dataset #2 and is used only on Dataset #2. All

results shown are computed on the test splits of the respective datasets.

5. Discussion
The spectral dimension is critical to protein content re-

gression, as evident by the high RMSE of the gray-scale
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Figure 3. PLS-R and PLS2-DA performance (± SEM) on the test

sets of Dataset #1 (vertical axis) and Dataset #2 (horizontal axis).

The models shown here share Center and Scale applications with

the model that achieves the lowest validation RMSE and the high-

est validation accuracy, respectively. For PLS2-DA, Center has

been applied, whereas this has not been applied for PLS-R. The

red markers correspond to models that have applied SNV → †SG

preprocessing. Here, we choose the red shade based on the deriva-

tive order of the †SG filter. Similar plots for the window length

and polynomial order are provided in the supplementary material.

The outlier with a high RMSE is likely due to the combination of

a very large †SG window length, a low derivative order, and a low

polynomial order.

Best model CNN PLS

RMSE (%) on Dataset #1
Ours 0.66± 0.01 0.67± 0.01

Ensemble (ours) 0.59 0.67
Engstøm et al. [14] 0.90± 0.05 0.75± 0.01

Acc. (%) on Dataset #2
Ours 96.7 (98.9) 93.0 (96.2)

Dreier et al. [12] (99.8) (79.9)

Table 3. Comparison of the best CNNs and PLS models with prior

work on both datasets using their respective test splits. The num-

bers in parentheses indicate performances on a grain density of

≥ 50%. We use bold to highlight the best model on each dataset.

variant, modification #2, shown in Table 2 and supported by

the results of Engstrøm et al. [14]. To achieve optimal per-

formance, however, the spectral dimension requires delicate

treatment. Removing physical phenomena in the spectra by

preprocessing them with a combination of SNV, Detrend,

and †SG increases the downstream model’s ability to per-

form the chemometric regression analysis of determining

protein content. While PLS can obtain decently low RMSE

without this preprocessing, as seen in Figure 3, the impor-

tance of removing physical phenomena in the spectra is pro-

found for CNNs. Inspecting Table 2 we see a vast decrease

in RMSE for modification #13 applying SNV → †SG7,2,2

when compared with the plain modification #1 applying the

classical Center → Scale preprocessing.

Instead of trying different †SG filters for CNNs, it is pos-

sible to have them learn their own spectral preprocessing fil-

ters using †Conv3D. These learned filters converge towards

†SG for protein content regression. An example of this is

shown for the model with the lowest RMSE on the protein

regression, ResNet-18 modification #10, in Figure 4. This

phenomenon of Conv3D learning to approximate some vari-

ation of †SG, usually a higher-order polynomial and deriva-

tive, is a tendency for every CNN trained on Dataset #1 with

an initial Conv3D, spectral and spatio-spectral alike. Plots

showing this tendency for our other models are provided in

the supplementary material.

As shown, applying SNV → †SG7,2,2, found optimal

by PLS-R, to the CNNs yields sublime results. However,

by applying only SNV and allowing the CNNs to subse-

quently learn the remaining spectral preprocessing by train-

ing †Conv3D1,(1×1×7) as done in modification #14, results

worsen significantly. We hypothesize that applying a lo-

cal centering and scaling of the spectra, e.g., as done by

SNV, leads to instability during training. However, this is-

sue seems to be somewhat relieved by increasing the num-

ber of spectral filters either directly as done in modification

#15 or indirectly by extending †Conv3D across the spatial

dimensions as done in modification #16. This hypothesis

is supported by the studies done by Engstrøm et al. [14]

whom experience the same instability for their model us-

ing Conv3D1,(1×1×7) and significantly better stability for

Conv3D3,(1×1×7) and Conv3D1,(7×7×7) alike. They apply

Center → Scale with mean and standard deviation spectra

being computed locally on an image crop basis. While this

is not as local as SNV, it is significantly more local than our

global strategy.

These effects can lead to a hypothesis that increasing the

number of Conv3D filters will lead to even better results.

However, inspecting the Conv3D3,(1×1×7) layer learned by

ResNet-18 modifications #10 as shown in Figure 4, two

of the filters learn zero-responses and contribute nothing

to its downstream responses. Indeed, inspecting the same

model’s Ds3, shown in Figure 5, where all three filters learn

zero responses for the parts of the input signal’s spectral di-

mension that correspond to the zero-response filters of the

prior Conv3D3,(1×1×7) layer. This tendency is prevalent

for all our models employing Conv3D3,(1×1×7). Similar

plots for the remaining models are provided in the supple-

mentary material. Additionally, the fact that modification

#2, the Fully Conv3D CNNs, the first layers of which em-

ploy Conv3D64,(7×7×7), do not provide any benefit over the

standard 2D CNNs, further supports that applying as many

Conv3D filters as possible is not beneficial.

Grain variety classification can be solved reasonably

well using only spatial or only spectral information, as

evident in Table 2 by the grayscale modification #2 and

PLS2-DA. These results are supported by those of Dreier

et al. [12]. However, simultaneously utilizing spectral and
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spatial information enables better performance than utiliz-

ing either alone, as evident by the plain CNNs with mod-

ification #1. For this task, the treatment of the spectral

dimension is also essential, as evident for the PLS2-DA

experiments shown in Figure 3. Here removing physical

phenomena of the spectral dimension is detrimental to the

classification accuracy. Not removing the physical phenom-

ena of the spectra allows the PLS2-DA model to achieve

much better accuracy than applying any combination of

SNV, Detrend, or †SG. The results correspond with pre-

vious studies of grain classification using spectral analysis.

They indicate that grain classification relies on the grains’

physical characteristics and that spectral preprocessing has

a detrimental effect on accuracy [5]. While less critical to

the performance than for PLS2-DA, adding a single ini-

tial Conv3D layer to the CNNs offers no increase in clas-

sification accuracy. Inspecting the responses learned by

the filters of Conv3D for the classification CNNs reveals

that they do learn responses approximating those of †SG

but always of derivative order 0 or 1, performing smooth-

ing and removal of only additive effects, while maintain-

ing the multiplicative effects. These results indicate that

even when offered the opportunity as a trainable Conv3D

layer, the CNNs learn to maintain the physical phenom-

ena of the spectra to a higher degree than filters learned by

the protein content regression CNNs. Further, inspecting

Figure 3 shows a tendency towards high-order derivatives

yielding better protein content regression performance. At

the same time, this is not the case for grain variety classifica-

tion, where the best physical-phenomena-removing prepro-

cessing technique uses a 0 order derivative. Interestingly,

when learning multiple Conv3D, the classification CNNs

share the tendency of having one filter learning a domi-

nant response. Furthermore, inspecting their subsequent

Ds, it is evident that only the part of the input correspond-

ing to the dominant Conv3D filter learns a non-minuscule

response. These results indicate that employing multiple

spectral filters only stabilizes the model during training but

is not needed to learn multiple responses for any single-task

prediction. While choosing the optimal value of A for PLS

is essential to reduce the risk of overfitting, the role of Ds

in CNNs is less profound. Engstrøm et al. [14], witness

increased regression performance by employing Ds3 to the

plain ResNet-18 while in our studies, we notice an adverse

effect for the same modification. However, it is usually ben-

eficial when combined with a prior Conv3D layer. For grain

variety classification, the effect seems to be minuscule.

The proper choice of spectral preprocessing method is

challenging to assess before model validation for chemo-

metric models [39, 42], yet it is required for achieving op-

timal performance [13]. Our CNN modifications can learn

this spectral preprocessing autonomously. In this study, we

have devised a blueprint for CNN design that aids in bridg-

Figure 4. The three filters of Conv3D3,(1×1×7) from ResNet-18

modification #10 validated on validation split 1 of Dataset #1.

Conv3D filter 1 and Conv3D filter 2 lie on top of each other at

the line Response = 0.

Figure 5. The three filters of Ds3 from ResNet-18 modification #10
validated on validation split 1 of Dataset #1. The background area

is colored with respect to the previous Conv3D filter responsible

for producing this part of the input to the DS3.

ing the gap between generic deep learning for image analy-

sis and domain-specific problems within chemometrics.

6. Conclusion
In this study, we have shown that by applying knowl-

edge about the relationship between physical and chemical

properties to the task at hand, we can design a modification

to a standard CNN that significantly improves its predic-

tive performance on hyperspectral images of grain. Adding

an initial Conv3D layer allows the CNN to learn to remove

irrelevant physical effects from the spectrum, thereby per-

forming significantly better than its plain counterpart for

regression analysis on the chemical parameter of protein

content. However, when physical properties contain infor-

mation valuable to the task, Conv3D filters offer no ben-

efit over plain CNNs. Indeed, the study shows that using

the proper modification is much more critical to the CNN’s

performance than the complexity of the network, as demon-

strated by our SimpleNet modifications with a single initial

Conv3D layer outperforming the plain ResNet-18 on pro-

tein content regression.
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