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Abstract

Quantifying the uncertainty of machine learning mod-
els is a promising way to make better-informed decisions in
digital agriculture. Efforts have been made to address this,
ranging from understanding and segregating sources of un-
certainty to utilizing diverse approaches for quantifying the
cumulative amount. However, in order to fully realize the
potential of uncertainty quantification in digital agriculture,
more research is needed to compare and contrast different
methods and determine which are most effective in differ-
ent contexts. In this paper, we investigate inductive confor-
mal prediction as another family of machine learning meth-
ods besides the commonly used softmax outputs and Monte
Carlo dropout. Inductive conformal prediction constructs
valid prediction sets by selecting a pre-defined level of pre-
dictive confidence in the system. In our experiments, we
analyze this method for an image-based harvest-readiness
classification task of cauliflower plants, and compare the
results to softmax outputs and uncertainties derived from
Monte Carlo dropout. Inductive conformal prediction turns
out as a complementary tool offering distinct advantages
and providing another level of information for decision sup-
port.

1. Introduction

Digital agriculture has gained popularity by utilizing

data-driven models that rely on sensor observations and ma-

chine learning (ML)-based monitoring strategies. These

models can improve current agricultural management or

provide new insights into promising future management

strategies. Deep learning (DL), in particular, has achieved

significant success in analyzing vast amounts of complex

data from various sensors, extracting meaningful patterns

and representations [17]. This has enabled a wide range of

applications, such as multi-model crop classification [19],

generation and detection of plant growth stages [2, 18], and

plant disease detection [3] [15].

The increased use of machine learning models in digi-

tal agriculture often comes with a need to assess the con-

fidence in their predictions. For this, uncertainty quantifi-

cation plays a crucial role in augmenting models by sup-

plementary information about the outputs to increase confi-

dence. Machine learning with supervision, in which labeled

data is used to train a model for generating outputs on un-

seen data, is considered learning by induction. As such,

models approximate the real world, creating a source of un-

certainty, denoted as epistemic (model uncertainty). Addi-

tionally, noisy and imprecise data serve as another source

of uncertainty, denoted as aleatoric (data uncertainty). In a

nutshell, data uncertainty relates to the inherent randomness

in the data-generating process, while model uncertainty rep-

resents the lack of knowledge about the best model. [10] of-

fers a detailed explanation of uncertainty sources in super-

vised learning settings and provides a classification of vari-

ous ML-based methods for dealing with uncertainty. How-

ever, it is essential to note that the definition of uncertainty,

its causes, and the traditional separation of sources into the

aforementioned types in ML remain somewhat ambiguous,

as pointed out by [6]. They demonstrate the presence of

additional sources of uncertainty, such as missing data and

the deployment of ML-based approaches in a changing en-

vironment. [5] presents a comprehensive overview of un-

certainty in DL, further pointing out that epistemic uncer-

tainty is reducible, while aleatoric is generally irreducible.

They demonstrate metrics to measure uncertainty and pro-

vide various approaches to address uncertainty in the con-

text of real-world applications.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: The general framework of Inductive Conformal Prediction (ICP). After training the model, we initiate the

calibration phase with new i.i.d samples. We choose a predefined confidence level of 1 − α and a scoring function S(X ) to

measure conformity of future samples. Then, we calculate the empirical quantile q̂ and compare the conformity score of the

testing sample to the quantile during testing. This process generates a prediction set Ttest(.).

Several techniques have been developed for estimat-

ing uncertainty and its types. Bayesian Neural Networks

(BNN) are the most common method for estimating epis-

temic uncertainty [23]. The goal is to obtain the distribution

of posterior weights and sample from it multiple times to

obtain a probabilistic output. However, this method comes

with high computational complexity. Monte Carlo Dropout

(MC-Dropout) [4] is another widely adopted alternative for

approximating BNNs. By applying random dropout masks

during several forward runs, we can find the predictive pos-

terior distribution. However, this method is relatively slow

during inference. Ensemble learning [13] is another way to

approximate BNNs [9]. It involves training models with dif-

ferent hyperparameters and datasets. However, the compu-

tational complexity of this method is generally high. Soft-

max outputs can be used to assess uncertainty quickly, but

as stated in Section 2.3, it is prone to miscalibration, over-

confidence, and the fact that it estimates only the aleatoric

part of the uncertainty.

[10] explores set-valued prediction approaches, a further

class of methods to estimate the uncertainty. One of the

most prominent algorithms for this class is Conformal Pre-

diction (CP) [20, 16, 14]. While it has had theoretical foun-

dations since 2005, CP has recently gained attention in deep

learning [1]. The fundamental concept of inductive confor-

mal prediction (ICP) is to transform a single point predic-

tion model into a set predictive algorithm that generates pre-

diction sets for unseen samples. A prediction set is defined

as a set of labels that guarantees to include the correct label

with a pre-defined confidence level in a classification prob-

lem. In other words, the prediction set ensures coverage of

the true reference value with an upper bound for errors will

be created by the framework.

In this paper, we compare ICP, softmax outputs, and

MC-Dropout, and discuss these approaches regarding their

ability and efficacy to provide information about the pre-

diction’s uncertainty. Three experiments are conducted to

highlight the characteristics of each method while putting

a specific focus on ICP, a so far only rarely used method

in digital agriculture. For our experiments, we use the

GrowliFlower dataset [12], an image-based dataset for

cauliflower harvest-readiness classification. Our main con-

tributions are as follows:
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1. We highlight and discuss the differences between ICP,

softmax outputs, and MC-Dropout by evaluating the

three methods on unseen data.

2. The interaction between the different components is

highlighted showing the independence between ICP

and softmax, in addition to analyzing ICP’s sensitiv-

ity to the pre-defined confidence level.

3. We analyze the ability of each method to handle Out-

of-Distribution (OOD) data in order to illustrate their

level of informativeness.

4. We conduct a quantitative and qualitative comparison

to analyze the usability of each method, and discuss

their drawbacks, as well as the potential of hybrid

tools.

2. Machine Learning Uncertainty Quantifica-
tion Tools

In this section, we present the details of our em-

ployed methods. A dataset is defined as {Xn,yn} ∈ D,

n = 1, ..., N , with Xn ∈ R
H×W×B representing a B-

dimensional image and yn ∈ R = [1, ..., C] denoting the

class labels with C being the total number of classes.

2.1. Inductive Conformal Prediction (ICP)

One of the most commonly used types of conformal pre-

diction is ICP, which is well-known for its computational

efficiency. ICP transforms a conventional predictive algo-

rithm into a so-called conformalized model by generating a

prediction set that is guaranteed to include the correct label

with a pre-defined confidence level for a new test sample

X test (see also Section 3.4). The dataset D is divided into

four subsets: the training set I, the validation set G, the

model calibration set C, and the testing set E . Although

some works use identical sets G and C, we use separate sets

to avoid model exposure to data seen previously during val-

idation in case of hyper-parameter tuning.

The ICP transformation framework goes as follows:

1. A proper notion of uncertainty such as softmax out-

puts in classification is selected; in the binary case, we

have two classes represented by probability p for the

positive class, and 1− p for the negative class:

σ(F(Xn)) = [pn, 1− pn], (1)

where σ(F(Xn)) is the probabilistic output for image

Xn after feature extraction by the DL model F.

2. We calibrate the model outputs using new unseen i.i.d
samples {Xm,ym} ∈ C,m = 1, ...,M by getting the

softmax outputs for each sample and applying the scor-

ing function S(Xm,ym) that needs to be selected as

hyperparameter. The scoring function is defined in the

range [0, 1] as:

S(Xm,ym) = 1− σ(F(Xm))y ∈ R . (2)

Where σ(F(Xm))y is the probability component cor-

responding to the true label. A suitable choice is im-

portant and careful design characteristics such as rank-

ing the prediction errors when the model is applied to

inputs should be considered [1]. The so-called confor-

mal scores represent the predictive uncertainty, where

a large score means less confidence because the origi-

nal softmax value is low and vice versa.

3. The empirical quantile of the conformal scores, de-

noted as q̂, is calculated based on a pre-defined con-

fidence level 1−α and the number of calibration sam-

ples M :

q̂ =
�(M + 1)(1− α)�

M
(3)

4. Finally, for a new test sample X test, we apply the scor-

ing function as a measure of the similarity, typicalness,

or conformality to the calibration subset. We include

the labels ytest that fall below q̂ to generate the predic-

tion sets T:

T(X test) = {(ytest : S(σ(F(X test))) ≤ q̂}. (4)

5. The prediction set T is guaranteed to encompass the

true label y by following the probability constraints be-

low:

1− α ≤ P(ytest ∈ T(X test)) ≤ 1− α+
1

M + 1
. (5)

The probability highlighted in Eq 5 indicates that there

is a chance of obtaining a set that includes the correct

label, with a probability of 1 − α. However, it is not

possible to ensure adaptivity for every sample. known

as conditional coverage, which is a stronger property

compared to the marginal coverage in Eq 5, defined

as:

P(ytest ∈ T(X test)|X test) ≥ 1− α (6)

In most cases, marginal coverage in Eq 5 is achieved

[1], while Eq 6 can only be approximated [21].

2.2. Monte Carlo Dropout (MC-Dropout)

Dropout is a regularization approach utilized in DL to

reduce over-fitting [8]. During training at each forward

pass j, dropout randomly deactivates some of the neurons

controlled by a hyper-parameter wdrop which represents the
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fraction of neurons to drop. During inference, the dropout

layer is switched off to avoid getting stochastic outputs.

MC-Dropout exploits the previous idea to estimate the

epistemic uncertainty by allowing the model to get a

stochastic output during multiple forward runs j = 1, ..., J
at the inference phase. The mean prediction U(X test) for a

single test sample X test is obtained as

U(X test) =
1

J

J∑
j=1

F(X test)j . (7)

Furthermore, the standard deviation SDO(X test) can be

analyzed to check the distribution of the predictions

SDO(X test) =

√√√√ 1

J

J∑
j=1

(F(X test)j − U(X test))2 , (8)

while a wide distribution reveals uncertainty and more pre-

cise distributions induce model confidence.

2.3. Softmax Outputs

The most commonly used method for assessing uncer-

tainty is through the probabilistic output of the softmax

function. However, as pointed out by [7], this measure can

be misleading due to miscalibration. It occurs when the pre-

dicted probabilities do not align with the true likelihoods.

In addition, softmax outputs often exhibit overconfidence

[13], assigning high probabilities to incoming samples even

if they are misclassified. This makes it challenging to de-

tect and accurately quantify uncertainty. Furthermore, raw

softmax outputs are unable to capture epistemic uncertainty

[4], which relates to the model’s lack of knowledge or lim-

ited data.

3. Experiments and Results
3.1. Dataset

GrowliFlower is an open-source dataset acquired in 2020

and 2021 [12]. It contains 14K samples of cauliflower

plants with multiple modalities available, including RGB

and multi-spectral images. The dataset also includes a com-

prehensive range of annotations, making it useful for com-

puter vision tasks such as classification and segmentation.

This paper considers harvest readiness as a binary classifi-

cation problem, where class 0 indicates non-readiness for

harvesting. Four time steps are obtained to form the train-

ing, validation, and testing subsets. The model is trained

on 6224 samples, using 196 samples as a validation set G
and 194 samples for the testing set E , with an image size of

(256×256×3). Random rotation is applied as an augmen-

tation technique to enrich the variability of the data and to

avoid over-fitting.

3.2. Settings

3.2.1 Model and Training Settings

The model consists of three blocks, each with output chan-

nels set to 64, 128, and 256, respectively. Each block con-

tains three convolutional layers with a kernel size of (3, 3),
and padding is used to maintain the same dimensions. We

apply the ReLU function as a non-linear transformation af-

ter each convolutional layer, followed by a max pooling

layer. Additionally, we add Batch Normalization (BN) [11]

after the 64 and 128 convolutional blocks. Dropout layers,

set to a probability of wdrop = 0.1, are added before each

convolutional layer to prepare the model for MC-Dropout

runs. A classification head is used, which includes a final

dropout layer with a probability wdrop = 0.25 of randomly

deactivating a neuron. Finally, a softmax layer is applied.

For training, we use 500 epochs and early stopping.

Adam optimizer is used with a learning rate of 0.001. To

address class imbalance, the Weighted Cross Entropy Loss

(WCLE) to penalize the model more when predicting the

minor class and vice versa is utilized, and NVIDIA RTX

A4500 GPU is our hardware accelerator.

3.2.2 Uncertainty Estimation Tools Settings

In our model, we use ICP as a post-hoc technique. The

size of the calibration set is an important factor that affects

performance. While [1] suggests using 1000 samples, [22]

recommends using (10/α) samples to ensure good perfor-

mance, where α represents the desired error percentage in

the system.

To evaluate the performance of ICP, we first split the

original validation set G into two subsets A and B where

G = A∪B. A allocates 100 samples for calibration and 96
samples to evaluate ICP’s performance are included in B.

Because of the lack of data, the entire validation set G that

encompasses 196 samples is utilized as a final calibration

set C and we evaluate the approach on the entire testing set

E which has 194 samples. The confidence level 1 − α is

selected to be 80%, and the scoring function is the same as

mentioned in Section 2.1.

We conduct 1000 forward runs for MC-Dropout, keeping

all architecture layers frozen except for the dropout layers.

Finally, we set the threshold γ at which a sample is classi-

fied as class 1 to be 0.5 if the probability p is greater than

it.

3.3. Experiment 1: Quantitative Evaluation

3.3.1 Results

Our aim is to evaluate the informativeness of our ap-

proaches based on the generated predictions. The model

achieves a testing accuracy of 66.5%.
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- Singleton sets {0}, {1} Double sets {0, 1}
Total 160 34

Correct 112 17
Incorrect 48 (y �= ŷ) and (y /∈ T ) 17 (y �= ŷ)

Table 1: ICP outcomes evaluated on the test set E .

Figure 2: Accuracy distribution after 1000 MC-Dropout
runs applied to the testing set E . The distribution demon-

strates uncertainty present in the model as it is wide, which

could be interpreted as the model’s lack of knowledge.

Prediction sets are generated based on a predefined con-

fidence level of 1 − α = 80%. Four different outputs are

expected: {φ}, {0}, {1}, and {0, 1}. Singleton sets indicate

confidence, while a double-element set implies uncertainty

and difficulty of the sample. The empty sets will be ex-

plained later in Section 3.4.

As illustrated in Table 1, there are 160 singleton sets and

34 double-element sets obtained. Consequently, the DL sys-

tem exhibits caution with respect to 34 samples, requiring

further assistance to determine the correct label. Among

the singleton sets, 112 includes the correct label, while 48
reveals misclassifications and ICP fails to generate a predic-

tion set that includes the correct label.

Furthermore, out of the 34 double-element sets, 17 are

correctly classified by comparing the original output label

before applying ICP to the reference value. However, the

ICP framework remains uncertain, as indicated by the in-

clusion of both labels in the prediction set. This supple-

mentary information emphasizes on the need for external

supervision for the difficult samples where ICP hesitates.

For MC-Dropout, 1000 stochastic samples are acquired.

The resulting average testing accuracy μ is 65%, and the

standard deviation σ is 0.0180, as shown in Figure 2.

Figure 3: ICP’s empirical coverage distribution. ICP op-

erates properly according to [1] as for 1000 random splits

between calibration and testing set, the mean empirical cov-

erage is 0.806, and the theoretical limit 1− α is 0.8. More-

over, the distribution is almost centered around 1− α.

A flatter distribution indicates greater uncertainty about

the model’s overall performance on the testing dataset.

MC-Dropout augments predictions with an estimate of the

model’s knowledge, which can be used to make better deci-

sions about the model’s capacity for the given task.

3.3.2 Discussion

Softmax probabilities are a fast way to be used as an esti-

mate for uncertainty, but have known issues as mentioned in

Section 2.3. ICP provides more information about the same

outputs in addition to the ability to assess the total predic-

tive uncertainty. The prediction set itself and its size are

measures for the uncertainty, while the type of the set indi-

cates if the system is confident or not. The length |T(.)| is

equivalent to adaptivity which is governed by Eq 6, where

an increased length signifies sample difficulty revealing un-

certainty situation.

In addition, as stated in [22], ICP is considered “always

valid” as the frequency of errors occurs at a rate no higher

than α at a confidence level of 1−α on the long run. When

a ML model is well-calibrated, the probabilities it gener-

ates align with the actual probabilities or likelihood of the

predicted event. Conservative validity is one of two valid-

ity types that explains a part of the calibration term in CP.

This concept is similar to calibration because the measured

probability of errors (i.e., miscoverage of the true class) for

successive generations of prediction sets is roughly equal to

the theoretical error α (i.e., true likelihood).

The 48 singleton sets that do not include the correct label
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Figure 4: Sensitivity analysis of ICP to softmax threshold
γ. The sensitivity of softmax output is observed for the test-

ing accuracy when changing the threshold, ICP in contrast

offers a consistent performance.

elaborate and emphasize the previous idea, as for one run

only the error is 48
194 = 24.7% and the theoretical limit α is

20%. By applying the law of large numbers, 1000 runs of

splitting the calibration and testing sets randomly generate

an empirical mean coverage of 80.6% as demonstrated in

Figure 3, which shows that the long frequency of true labels

miscoverage is around 20%.

3.4. Experiment 2: The Effect of Hyperparameters
and Mutual Influence

We begin by observing the effect of changing the thresh-

old γ of the softmax as a hyperparameter and record ICP’s

sensitivity, as demonstrated in Figure 4. ICP offers an

overall accuracy of 66.5%, which is independent of the

threshold and signifies its consistent performance. ICP uses

the scoring function and calibration dataset to mitigate the

aforementioned deficiencies of softmax [1].

The reasons for generating empty sets are investigated

by varying α and observing the changes in the total number

of each set type as shown in Figure 5. To begin, we first ex-

plain the concept behind ICP. Being based on typicalness or

similarity, ICP assigns the possible labels that would make

a new unseen sample X test conforms to a bag of samples or

calibration dataset C. At the start, the calculated conformal

scores represent uncertainty, where higher scores show less

confidence and vice versa.

For a given number of samples M , we calculate the em-

pirical quantile q̂ based on the pre-defined α. The quantile

splits the range of the scoring function into two parts: the

conformal region, where the scores are low and the model is

Low
Precision

High
Coverage

High
Precision

Low
Coverage

Figure 5: Sensitivity analysis of ICP with respect to the
error rate α. A lower error rate leads to an increase in

double sets as ICP becomes more cautious to the left of the

vertical line. In the region to the right, single sets increase,

however, the model also has a higher rate of not including

the true class.

certain, and the non-conformal region, where the scores are

high and the model is uncertain. When α = 0.2, this means

that at least 80% of softmax outputs for the reference val-

ues (the true labels that should be predicted) fall below q̂. In

contrast, for the remaining 20%, ICP is unsure about them

because the scores are too high, implying high uncertainty,

as the model knows that there are 20% of the scores even

if they are for the reference values that should be predicted,

yet their values are too high and above the quantile.

For a new test sample, the framework assigns any label

that makes the new sample conforms to the calibration sam-

ples after checking the scores produced. If a score is higher

than the quantile, ICP’s process this, first as the score is

high, showing uncertainty, and second, being higher than

the quantile, forcing ICP to reject assigning this label to the

sample. The non-conformality is high and it would check

the second score if it allows for assigning a label that would

make the sample conforms to the calibration set.

Increasing α reduces the quantile value, meaning that

more calibration samples are added to the non-conformal

region (the percentage of the softmax values related to the

true class is reduced below the quantile) where the frame-

work is uncertain, which allows the model to deal with a

new sample that has both scores higher than the quantile

like an anomaly and produces an empty set {φ}. The higher

the value of α, the more similar the new test sample needs

to be compared to the calibration set in order to have a non-

empty prediction set (to be conformal), which explains the
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- ICP Softmax

Before {Harvest}

After {No Harvest}

- ICP Softmax

Before {No Harvest,

Harvest}

After {No Harvest}

- ICP Softmax

Before {No Harvest}

After {No Harvest}

Figure 6: A comparison of the outputs of each framework when applied to OOD. At each partition, we have a sample

modified by adding a black box at the center of the image. The blue distribution represents the conditional distribution P (y =
1|X test) which shows the probability of the sample to be predicted as class 1, and the orange distribution Pmodified(y = 1|X test)
illustrates the same distribution after applying the modification to the image. While ytesti is the reference value for sample i.

significant increase in the number of empty sets observed

when increasing α.

3.5. Experiment 3: Out of Distribution data (OOD)

We can evaluate the effectiveness and limitations of our

methods by testing them utilizing OOD samples. To ana-

lyze the role of the cauliflower’s head in the final decision,

we overlay a black box at the center of the images. Three

images are chosen from the testing set (indices i = 0, 30,

and 172) to showcase the different information that can be

provided by each framework for various scenarios.

As shown in Figure 6, the first sample has a refer-

ence value of 0. Before image modification, the soft-

max output generates [0.63, 0.37], while the model pro-

duces [0.995, 0.005] after modification. This severe change

in softmax probabilities emphasizes the importance of the

plant’s head in guiding the decision, yet we are not heavily

dependent on these values.

By comparing the conditional distribution P (y =
1|X test) to the distribution Pmodified(y = 1|X test), MC-

Dropout provides another piece of information through

sampling 1000 times. Due to the elimination of the features

of the plant’s head, the model produces a more confident

prediction, as shown by the orange histogram, in contrast to

the original one where the model is less confident. Finally,

ICP produces a correct prediction sets at both cases.

At index i = 30, the reference value is 0, but the model

initially predicted 1 based on the softmax outputs. Al-

though obtaining a confident prediction seems challenging,

the model’s misclassification of the sample is unavoidable.

MC-Dropout improves the information by introducing flat

distributions that display high output variability as a sign for

a problem. As a tool for total predictive uncertainty, ICP is

cautious and includes both labels requesting additional as-

sistance. Blocking the center of the image shows enhanced

model confidence from softmax perspective, indicating that

the image belongs to class 0. However, the distribution pro-

vided by MC-Dropout is skewed and not centered around

the mean, which again highlights an issue related to this

case. Finally, the prediction set generated by ICP includes

the true label, which shows limited information provided

compared to the MC-Dropout approach.

For the last image, the model’s prediction aligns with the

reference value. Softmax produces [0.33, 0.67], while MC-
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Dropout reinforces the decision by presenting a very sharp

distribution centered around the mean. This highlights the

model’s confidence in the prediction, and ICP includes the

correct class in the prediction set. The result from MC-

Dropout may provide insights into the model’s knowledge

regarding this specific sample, as it indicates that further in-

vestigation is needed since the model is too confident com-

pared to other cases. Image modification altered the soft-

max values and ICP set in favor of class 0. However, the

outcome from MC-Dropout demonstrates a distribution that

is not centered around the mean, being flat and skewed.

3.5.1 Discussion

In this experiment, MC-Dropout and ICP provide differ-

ent types of information. ICP provides prediction sets that

guarantee coverage of the true label, serving as a means

to assess total predictive uncertainty. On the other hand,

MC-Dropout generates distributions that convey informa-

tion about the model’s knowledge. When comparing us-

ability, ICP is better suited as a front-end tool for ensuring

that the model makes predictions, with less emphasis on un-

derstanding the sources and measuring the contribution of

each to the predictive uncertainty. In contrast, MC-Dropout

can be seen as a back-end method for checking the model’s

knowledge about different concepts and comparing models

based on their confidence levels.

ICP is a tool that deals with uncertainty in a distinct way

from MC-Dropout [10]. It sets up predetermined confi-

dence levels that we require at the system and creates pre-

diction sets based on these levels. ICP is agnostic to the

model and the data, and it is valid when dealing with limited

samples [1]. Furthermore, it has a low computational over-

head. In contrast, MC-Dropout can be viewed as an ensem-

ble learning or a BNN approximation that estimates epis-

temic uncertainty using the generated distribution of out-

puts.

The ICP method has a limitation in that it deals only with

total predictive uncertainty, which may not effectively re-

veal the sources present in the system. Its performance is

influenced by both the calibration dataset and the scoring

function, making the appropriateness of the scoring func-

tion questionable. Moreover, the quality and size of the cal-

ibration dataset could negatively impact its performance.

On the other hand, the MC-Dropout method concentrates

on epistemic uncertainty only, and has three factors that can

affect its performance: the dropout probability wdrop, the

layer position in the architecture, and the number of sam-

ples taken. For highly parametric networks, the number of

samples can influence the estimate and slow down infer-

ence. Hence, our objective is to merge different approaches

and create hybrid solutions that can overcome the limita-

tions inherited by each method.

4. Conclusion
This paper presents a comparison and discussion of three

approaches to uncertainty estimation for an image-based

prediction task of cauliflower harvest-readiness, both quali-

tatively and quantitatively. The three approaches are induc-

tive conformal prediction, Monte Carlo dropout, and soft-

max raw outputs, which are evaluated based on their effec-

tiveness in estimating predictive uncertainty.

ICP is a promising technique in the cluster of set predic-

tion approaches. It provides valuable insights into the con-

fidence of predictions by constructing prediction sets with a

predefined confidence level. ICP is a robust choice in com-

plex agricultural scenarios where the goal is to force the

model to generate a prediction, while the separation and es-

timation of uncertainty sources are less important. Its abil-

ity to offer validity, adaptivity, and capture total predictive

uncertainty is noteworthy.

On the other hand, MC-Dropout has demonstrated its

complementary nature by offering a computationally effi-

cient approach to estimating epistemic uncertainty or the

model’s lack of knowledge, as an approximation for BNNs.

MC Dropout can be used in contexts where the main goal

is to reduce uncertainty present in the system, such as in

Active Learning (AL) or investigating the concepts learned

by the model. In contrast, the softmax raw outputs exhibit

limitations in uncertainty estimation. Although they pro-

vide a fast estimate of uncertainty, the method captures only

aleatoric uncertainty, potentially leading to misinterpreta-

tions of model confidence.

Overall, the comparative analysis sheds light on the

strengths and weaknesses of each method. It highlights

the significance of accurate uncertainty estimation in dig-

ital agriculture, where critical decisions rely on confident

predictions. The findings emphasize the value of using both

ICP and MC-Dropout as they offer complementary insights

into uncertainty and model performance.

We recommend exploring hybrid approaches that com-

bine the strengths of different methods to further improve

decision support systems for digital agriculture. It’s also

crucial to fine-tune these methods for specific agricultural

tasks and datasets to ensure optimal performance and prac-

tical usability in the real world.
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