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Abstract

As deep learning predictive models become an integral
part of a large spectrum of precision agricultural systems,
a barrier to the adoption of such automated solutions is
the lack of user trust in these highly complex, opaque and
uncertain models. Indeed, deep neural networks are not
equipped with any explicit guarantees that can be used to
certify the system’s performance, especially in highly vary-
ing uncontrolled environments such as the ones typically
faced in computer vision for agriculture.

Fortunately, certain methods developed in other commu-
nities can prove to be important for agricultural applica-
tions. This article presents the conformal prediction frame-
work that provides valid statistical guarantees on the pre-
dictive performance of any black box prediction machine,
with almost no assumptions, applied to the problem of deep
visual classification of weeds and crops in real-world con-
ditions. The framework is exposed with a focus on its prac-
tical aspects and special attention accorded to the Adap-
tive Prediction Sets (APS) approach that delivers marginal
guarantees on the model’s coverage. Marginal results are
then shown to be insufficient to guarantee performance on
all groups of individuals in the population as characterized
by their environmental and pedo-climatic auxiliary data
gathered during image acquisition.

To tackle this shortcoming, group-conditional confor-
mal approaches are presented: the “classical” method that
consists of iteratively applying the APS procedure on all
groups, and a proposed elegant reformulation and imple-
mentation of the procedure using quantile regression on
group membership indicators. Empirical results showing

the validity of the proposed approach are presented and
compared to the marginal APS then discussed.

1. Introduction
Artificial intelligence has become an integral component

of precision agriculture systems. It provides the “analyt-

ical” machinery that has allowed precision agriculture to

adapt to the ever-increasing flow of data characterized by a

high diversity of modalities (such as RGB images, LiDAR,

text and GNSS) from multiple sources influenced by a large

spectrum of natural and technical conditions. From this

growing pool of raw data, machine learning algorithms, and

particularly deep neural networks, have proven themselves

to be the approach par excellence to extract useful infor-

mation. This information will either be directly turned into

useful insight and decisions by human actors, or will flow

through fully-automated robotic pipelines in autonomous

agricultural systems [30].

Complex machine learning models have replaced classi-

cal “handcrafted” models that were characterized by their

well-defined interpretable features and their direct inspira-

tion from agricultural and bio-environmental factors. Both

practitioners and scientists in precision agriculture were

comfortable with these classical approaches [20]. Deep

learning models, on the other hand, with their complex

components and architectures are not only relatively opaque

to the agricultural community, but also, to a certain extent,

to their own designers and developers [31, 24]. While their

performance prowess has been and still is being proven in

the lab and in the field, some important issues such as inter-

pretability [31, 21, 7], generalization to new observations
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and domains [28, 29, 27], robustness to noise and out-of-

distribution observations [15, 17, 4], and uncertainty quan-

tification [1, 10, 11] are yet to be solved or even understood

properly. Indeed, while neural networks may be highly ac-

curate on benchmark and test datasets, no formal guarantees

on their behaviour “in the wild” can be provided to the end-

user.

These shortcomings stand in the way of wider scale

adoption of deep neural networks in industrialized precision

agriculture solutions. The typical user, who does not fully

understand the models nor is provided with guarantees on

them, has difficulty in trusting the systems [7, 20].

To tackle one angle of this multi-dimensional problem,

we propose to focus in this article on the problem of uncer-

tainty quantification and control. Can we quantify the un-

certainty of neural networks predictions? Can we provide

valid guarantees on the performance of neural networks un-

der real-world conditions so as to cultivate trust in systems

that include these predictive models?

Conformal prediction [26, 22] offers an interesting

framework for producing predictions with valid statistical

guarantees, and quantifying a black box model’s uncertainty

[23, 5]. In a context of classification, this framework allows

a predictive model to produce prediction sets for a given

observation X , instead of point predictions, with guaran-

tees that the true value Y is included in the prediction set

with high probability. Concretely, given a specified error

tolerance level α ∈ [0, 1], conformal prediction produces

prediction sets C1−α ∈ Y that satisfy the marginal coverage

property

P
(
Y ∈ C1−α(X)

) ≥ 1− α (1)

For example, if the user sets α to 10%, then the conformal

model will produce prediction sets that guarantee that the

true value is predicted 90% of the times.

Although useful and intuitive in its basic form, the

original conformal approach only guarantees the results

marginally; that is, on average over all observations. It does

not provide any guarantees on specific subsets of observa-

tions: a property that would be quite useful in agricultural

applications. Indeed, it is more important to provide per-

formance guarantees for a given species or on the user’s

specific parcel and conditions rather than on average every-

where.

For this reason, “group-conditional conformal predic-

tion” has been developed, with the aim of providing equal-

ized coverage guarantees for all groups of individuals [25,

18]. Formally, let every individual be defined by the triplet

(X,Y,G) ∈ X × Y × G where G is the group, then group

conditional conformal prediction aims at producing predic-

tion sets C1−α,g with the following group-conditional cov-

erage guarantee:

P
(
Y ∈ C1−α,g(X)|G = g

) ≥ 1− α ∀g ∈ G (2)

The current article explores the application of group-

conditional conformal prediction in an agricultural context;

specifically, on the problem of crop and weed image clas-

sification using neural networks with the existence of aux-

iliary metadata describing various environmental and cli-

matic characteristics of the image’s content and context.

The article’s contributions can be summarized as being:

• introduction and presentation of conformal predic-

tion methods to the agricultural community concerned

by uncertainty in machine learning-based decision-

making;

• application of the marginal adaptive prediction sets

(APS) [19, 3] method to our classification use case,

providing marginal coverage guarantees that will be

shown empirically;

• simple description of the “classical” group-conditional

APS approach via iterative group-specific calibration

and prediction [19, 2];

• proposal of a simple and elegant alternative for a more

efficient group-conditional calibration via quantile re-

gression.

The article is structured as follows: Section 2 sets up

the mathematical framework for the rest of the article then

presents conformal prediction in its general form, with a

focus on Adaptive Prediction Sets, a method that guaran-

tees marginal coverage. Section 3 presents the experimen-

tal setup and the results of marginal APS on the problem of

image classification into weed and multiple crops on a large

dataset. The results are presented in the light of environ-

mental auxiliary variables thus showing the insufficiency of

marginal coverage for the agricultural applications of in-

terest. Section 4 explores the group-conditional extension

to conformal prediction and presents the group-conditional

APS approach. A reformulation of the group quantile esti-

mation procedure as quantile regression on group member-

ship is then developed. The results of the classical iterative

and quantile regression approaches are shown on a number

of auxiliary variables chosen to form groups. Section 5 con-

cludes with a discussion of the results and a future vision of

conformal prediction, particularly for agricultural applica-

tions.

2. Conformal Prediction
2.1. Notation & Setup

Before we dive into the details of the conformal ap-

proach, we define the mathematical setup that will be used

in the rest of the article. We are in a supervised learning con-

text, whereby for each input (image) X ∈ X is associated a

ground-truth class Y ∈ {1, ...,K}. As in a typical learning
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framework, we observe a sample of N observations which

we split into training and validation sets. Let I1 be the set

of training observations. In the split-conformal framework

[16], we further divide the validation set into two datasets;

namely, the calibration set I2 and the proper test set I3.

Note that I1, I2 and I3 are mutually exclusive.

We train on I1 a neural network classifier B that pro-

duces for each input X ∈ X a predicted output ŷ ∈
{1, ...,K}. We also have access to the softmax output for

each class at the last layer of the neural network; we call

them p[1], ..., p[K].

2.2. General Presentation

First formulated by Vovk et al. [26], conformal predic-

tion is an uncertainty quantification and control technique

based on frequentist statistics. Broadly speaking, it can be

understood as a method that allows the prediction of “confi-

dence intervals”, instead of point predictions, at a specified

level of significance 1 − α. These prediction sets are guar-

anteed to contain the true value at least 1 − α of the times.

This is the marginal coverage guarantee presented in Equa-

tion 1. The only condition required for the validity of these

methods is the exchangeability of observations, which is a

slightly weaker condition than the i.i.d. assumption com-

monly considered in statistical frameworks [22].

Figure 1. Representation of conformal prediction sets for three

points, A, B and C, with different levels of uncertainty.

For a new input Xn+1 ∈ I3, a conformal algorithm com-

pares this input, using a measure of conformity (that will be

defined later), to the calibration set I2 of observations that

the conformal model has previously seen. Based on the con-

formity of Xn+1, the conformal model will be more or less

confident in its prediction, as such predicting a conformal

set that is more or less large in such a way as to guarantee

the existence of the true value inside.

Consider the representation space shown in Figure 1

where we wish to predict conformal sets at the 90% level

of confidence. If a new input Xn+1 falls in position A, it

is clearly in the domain of Class 1. The conformal model

can predict with high confidence only one class while guar-

anteeing a high coverage at 90%. If the new input appears

in the more ambiguous region at position B, then the con-

formal model, will produce a bigger prediction set with two

classes in order to maintain the coverage guarantee at the

desired 90% level. Finally, if the new input is a difficult ex-

ample and falls in the region with high uncertainty at point

C, then the model will predict all the classes in such a way

as to guarantee predicting the true value.

2.3. Adaptive Prediction Sets (APS)

First proposed by [19] then improved and adapted to neu-

ral network classifiers in [3], the APS method not only prov-

ably achieves the marginal coverage guarantee but is also

designed so that the size of the prediction sets adapts to the

“difficulty” (think, uncertainty) of each example. As such,

it provides both a global measure of model uncertainty and

also an individual-level measure of uncertainty where big-

ger predicted sets indicate higher model uncertainty. The

approach follows the typical split-conformal procedure of

calibration and prediction:

1. CALIBRATION STEP

After training the neural network on xj , j ∈ I1, we

now pass every individual xi, i ∈ I2 into the network

and compute its “conformity score” defined as:

Ei =
T∑

t=1

p
(t)
i (3)

where the softmax scores are ordered in decreasing

order, t being the rank of the tth class with highest

softmax output, and T the rank of the ground-truth

class. Accordingly, the conformity score is the cu-

mulative softmax score of individual i until reaching

its true class yi ∈ {1, ...,K}. Ei is thus the cumula-

tive pseudo-probability mass assigned to the true class

by the neural network (see Figure 2(a)). In general,

the bigger the probability mass, the more difficulty the

neural network is having in finding the true class. For

the specific case where the true class is predicted with

a softmax score close to 1, see [3] for a regularized

version that allows such a class not to be rejected.

After obtaining the scores on the calibration set, we

estimate Q̂1−α, the 1−α quantile of the empirical dis-

tribution of these scores, as can be seen in Figure 2(b).

This quantile is the maximum score among the 1 − α
lowest scores assigned to the true class by the neural

network. It will be used to construct the prediction sets

in the next step of the procedure.

2. PREDICTION STEP

For the previously unseen inputs from the prediction

set I3, we can now construct conformal sets by passing

each individual in the neural network and comparing

the score p(k) of each class k to the estimated quantile
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Figure 2. APS calibration: (a) Computation of the E score for a given input; (b) Estimation of the decision quantile on the empirical

distribution of scores.

Q̂1−α. The classes that will form the prediction set are

those classes whose cumulative softmax scores do not

exceed Q̂1−α (Figure 3)1. These are the classes that

are considered “probable” enough to be predicted. The

notion of “conformity score” discussed in Section 2.2

appears here: indeed, scores that are higher than Q̂1−α

are considered non-conformal (think, “too extreme”,

or “too improbable”), and as such are not considered

to be valid predictions.

Figure 3. APS prediction.

3. Experimental Setup
3.1. Data

To demonstrate the conformal approaches on an agricul-

tural use case, we work on a specialized proprietary dataset

gathered in multiple locations around the world, under real-

world uncontrolled conditions, for the problem of visual

identification of crop and weed via image classification.

The dataset consists of 218 thousands RGB images of size

224 × 224 annotated internally. Associated to each image

is one of six classes specifying the crop type of the largest

“object” in the image: corn, rapeseed, sugar beet, sunflower
or weed. A final class background is assigned to the images

1This is a slight simplification of the procedure, refer to [3, 19] on the

importance of randomizing the inclusion of the classes around the decision

quantile.

where there is no plant. The distribution of the images over

the different classes can be seen in Figure 4.

Figure 4. Distribution of images over the 6 classes.

3.2. Auxiliary Data

To each image is associated a number of auxiliary vari-

ables (“metadata”) that describe different factors related to

the image. Some of these factors can be considered “in-

trinsic” to the visual scene – that is, visible – such as some

pedoclimatic characteristics like the color, texture and hu-

midity of the soil. Other variables describe the broader en-

vironmental characteristics that may have direct or indirect

influence on the image such as the conditions of the sky

and the wind or the geographical location of the acquisition.

These metadata are entered at the moment of image capture

by the data acquirers based on their qualitative evaluation of

the conditions following well-defined criteria. The visually-

verifiable metadata are also reviewed during the annotation

process. Other metadata such as geo-location, time and sen-

sor conditions are automatically captured and saved.
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Figure 5. Locations of data acquisition in Europe.

For the purpose of the current article, with the aim of

keeping the presentation as concise and clear as possible,

we focus on only two auxiliary variables that are particu-

larly interesting for practical use cases:

• Location: it is the location of the acquisitions as de-

fined using GPS coordinates. From a broad perspec-

tive, our data can be divided into eight different loca-

tions across Europe denoted A to H. High-level po-

sitioning of these locations can be seen in Figure 5.

Given that each location is characterized by largely

different environmental and pedo-climatic conditions,

this auxiliary variable can be considered a proxy for

multiple other characteristics and holds high practical

interest: it is important to guarantee acceptable levels

of detection in all locations where the system is to be

deployed.

• Sky: this variable represents the “perceived” condition

of the sky at the moment of data acquisition. It can

take one of two values, of each an example is shown in

Figure 6: overcast (a) and sunny (b). The condi-

tion of the sky has an interesting impact on the visual

characteristics of the image, such as luminosity, color

temperature and shadows. Since the system is to be de-

ployed in uncontrolled environments, detection results

should be guaranteed regardless of the sky and ambient

light.

3.3. Base Model

As mentioned previously, conformal prediction requires

a base predictor that produces point predictions, which will

be “transformed” via the conformal procedure into a con-

formal predictor producing sets of prediction points. For the

purpose of this study and without loss of generality, the base

classifier used is a classic ResNet18 network [9] pre-trained

on ImageNet [8] and fine-tuned on our training data. It is

Figure 6. Examples of images taken in different sky conditions in

the same location: (a) overcast, (b) sunny.

important to note that the proposed conformal approaches

are independent of the chosen base classifier. It can be any

neural network architecture or other model such as random

forests or support vector machines [19].

3.4. Experimental Results: Marginal APS

Method Coverage Set Size

Base (Top-1 Accuracy) 0.680 1.000

Marginal APS Classifier 0.896 2.566

Table 1. Comparison of Base & Conformal ResNet18 classifier.

We finetune the ResNet18 network on the training set

I1 (50% of the database), then calibrate and predict respec-

tively on I2 and I3 (45% and 55% of the remaining indi-

viduals) respectively following the APS procedure with an

error tolerance level fixed at α = 0.1.

Table 1 shows a comparison between the coverage ob-

tained for the base classifier with its conformal version. The

coverage of the base point predictor (which corresponds to

its Top-1 overall accuracy) is 68%, with a unique set size of

1, since we only predict the top class. The APS procedure

maintains the coverage exactly at the required 1− α = 0.9
level, with an average prediction set size of 2.6. That is, by

calibrating the predictive system on a dataset that resembles

the population on which we want to predict and permitting

the network to predict, on average, between 2 and 3 classes,

we guarantee finding the true class 90% of the time.

Although the coverage is perfectly maintained

marginally, the picture changes when we look at the

conditional coverage per group. What if we like to guaran-

tee the 1−α coverage for each possible agro-environmental

condition in our data?

As Table 2 shows, the coverage is not maintained at the

desired level but is highly varying among the groups (Note

that the group H,overcast is not included in the table

because this combination does not exist in the data). Al-

though the group-conditional coverage criterion defined in

Equation 2 does not seem, empirically, to be violated for a

number of groups, we cannot say that the condition is guar-

anteed since there are no explicit constraints on the estima-
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Group Location Sky Coverage Set Size

1 A overcast 0.935 2.823

2 A sunny 0.872 2.614

3 B overcast 0.926 1.560

4 B sunny 0.914 1.953

5 C overcast 0.966 2.625

6 C sunny 0.877 2.412

7 D overcast 0.891 2.476

8 D sunny 0.901 2.437

9 E overcast 0.944 2.105

10 E sunny 0.908 2.450

11 F overcast 0.959 2.454

12 F sunny 0.937 2.741

13 G overcast 0.990 2.728

14 G sunny 0.943 2.348

15 H sunny 0.943 2.477

Marginal APS Classifier 0.896 2.566

Table 2. Results of the Marginal APS classifier, per group.

tion of the quantile or the construction of the prediction sets

in such a way as to provide such a guarantee. Indeed, for

such groups as Group 2 and Group 6, the coverage is far

from being maintained; while for other groups we see that

the coverage is overly conservative leading to bigger pre-

diction sets (in size) that may be required.

4. Group-conditional Conformal Prediction

The marginal coverage guarantee may not be useful in a

number of use cases since it does not imply validity on all

individuals; that is, conditional on their idiosyncratic char-

acteristics. While the coverage is maintained on average, it

is not guaranteed on certain groups of individuals; usually

those that are not represented enough in the data [18]. In

a number of use cases, such as the deployment of an au-

tonomous weed detection system in new environments or

the detection of diseases in plants, it is required to provide

guarantees on all groups of individuals so that the system

may be deemed reliable. Group-conditional conformal pre-

diction has been developed for this purpose, providing the

conditional coverage guarantee defined in Equation 2.

Now that we have defined the notion of auxiliary vari-

ables in Section 3.2, we can refine the definition of a

“group.” Assume that for each individual we observe an

image X to which we associate a ground-truth label Y ,

and a number of auxiliary variables {ML ∈ ML,MS ∈
MS , ...}. An individual’s group is thus defined as being its

observed combination of auxiliary data: G ∈ G, where G =
ML×MS×... . For the sake of simplicity and without loss

of generality, we assume that we only observe the two aux-

iliary variables location and sky. For example, one group

can be defined as G1 = {ML = A,MS = overcast}.

We can thus provide the coverage guarantee:

P
(
Y ∈ C1−α,G1(X)|ML = A,MS = overcast

)

≥ 1− α
(4)

4.1. Iterative Group-conditional APS

The “classical” approach to produce prediction sets that

satisfy the group coverage guarantee consists of iteratively

conducting the APS Calibration procedure described in

Section 2.3 and Figure 2 on each group g ∈ G separately

[2]. A conformal decision quantile Q̂
(g)
1−α is estimated sep-

arately for each group g on the individuals in I2 that satisfy

the conditions of group g.

Then, for a new individual whose auxiliary variables are

observed, we simply produce a prediction set following the

APS Prediction procedure using the group-specific Q̂
(g)
1−α

quantile. Although quite simple to implement and under-

stand, such a method may prove to be time inefficient, es-

pecially for a large number of groups, since it requires an

iterative traversing and quantile estimation on each group

separately.

4.2. Calibration by Quantile Regression

We propose a simple and more elegant reformulation of

the group-conditional conformal calibration procedure via

quantile regression. Quantile regression [13, 6] is a method

that allows the estimation of a desired τ ∈ [0, 1] quantile of

a dependent variable Y based on a set of explanatory vari-

ables X 2. It can be understood as the counterpart of linear

regression – that estimates the mean of the output variable

– for the estimation of the quantiles, a special case of which

is the median for τ = 0.5. For an output variable Y and ex-

planatory variables X , a generic formulation of the quantile

regression is given by:

QY |X(τ) = Xβτ (5)

where QY |X(τ) is the τ quantile of the conditional distribu-

tion of Y given X , assuming a linear relationship between

the conditional quantile and the explanatory variables. The

estimated coefficient β̂τ is solution to the following opti-

mization problem:

β̂τ = argmin
β∈Rd

[
(τ − 1)

∑

Yi<Xiβ

(Yi −Xiβ) +

τ
∑

Yi>Xiβ

(Yi −Xiβ)
] (6)

where d is the dimension of the vector X . This minimiza-

tion problem can be efficiently solved using linear program-

ming approaches [14, 12].

2Note that X and Y here are not as defined previously but are generic

variable names in keeping with common definitions of regression models.
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4.2.1 Calibration

We can thus estimate the group-conditional 1 − α quan-

tiles of the scores by regressing them on group-membership

indicator variables. This constitutes the calibration of the

conformal procedure.
To illustrate how the approach works, we consider the

two previously described auxiliary variables, location and
sky. To simplify the presentation, we consider that the vari-
able location has only two levels: ML ∈ {A,B}, and sky:
MS ∈ {sunny,overcast}. The regression model

QE|{ML,MS}(1− α) = β0 +

βA�{ML=A} +

βsunny�{MS=sunny} +

βA,sunny�{ML=A}�{MS=sunny}

(7)

where �{ } is the indicator function, thus allows us to es-

timate the 1 − α quantile of the scores for all the possible

groups defined by these two auxiliary variables. Notice that

all the groups are identified in this model: β̂0, the estimated

intercept, is the estimated 1 − α quantile of the score for

the baseline group, defined by the conditions that are not

explicitly specified in the regression equation; in this case

{ML = B,MS = overcast}. The other estimated co-

efficients β̂A, β̂sunny and β̂A,sunny are to be interpreted as

the difference in quantiles from the baseline β̂0. Hence, the

estimated quantile for the group {ML = B,MS = sunny}
is β̂0 + β̂sunny, just as the estimated quantile of the group

{ML = A,MS = sunny} is β̂0+ β̂A+ β̂sunny+ β̂A,sunny.

This methodology can be simply expanded for the case

where more auxiliary variables are considered or where the

auxiliary variables have more than two levels, or are contin-

uous [13] – unlike the classical approach.

4.2.2 Prediction

For a new observation for which we observe the auxiliary

data, we can easily plug-in its values in the regression model

and obtain its corresponding quantile estimation. It is the

estimated quantile of the group to which the observation

belongs. The obtained Q̂
(g)
1−α will then be used following

the APS prediction procedure previously described in Sec-

tion 2.3 and Figure 3 to produce prediction sets for this new

observation.

4.2.3 Experimental Results

The proposed approach is compared to the Marginal APS.

The validation set is split into a calibration set I2 (45%)

and prediction set I3 (55%) following a stratified proportion

sampling scheme where each group is sampled according

to its proportion in the validation set. The two methods are

calibrated and tested on the same data. In order to validate

the results, we implement a resampling scheme over 100

iterations leading to a different split of the validation set at

each iteration.

Figure 7 shows the boxplots of the obtained coverage per

group for the 100 resamplings for the two methods, with the

groups sorted by decreasing order of number of individuals.

While the Marginal APS shows, generally, a smaller vari-

ance per group, its group-specific coverages are highly bi-

ased. We observe a high variability in the group coverages,

echoing the results previously presented in Section 3.4. On

the other hand, our proposed group-conditional method sta-

bly maintains the group coverage at the required 0.9 level,

on average, for all groups. Even though the variance of the

observed coverage is naturally higher for less-represented

groups, it is still acceptably maintained over the 100 itera-

tions.

Table 3 shows the average empirical coverage and set

size for each group over the 100 resamplings. The pro-

posed approach by quantile regression leads, on average,

to smaller prediction sets without compromising on cover-

age. The importance of such a result may not be obvious in

use cases with few classes like the current one. However,

on datasets with a large number of classes, valid prediction

sets with smaller size are largely preferred for use cases of

automated decision making based on the predicted sets, and

applications requiring a study of the prediction sets by a hu-

man agent [3].

5. Conclusion
In this article, we introduced and presented the confor-

mal prediction framework from a practical perspective with

a special focus on its importance to the agricultural com-

munity. Indeed, as deep learning black box methods be-

come the go-to approaches in a large spectrum of automated

agricultural tasks, methods that provide valid guarantees on

their performance – or, at least, quantify the uncertainty as-

sociated to their predictions – are important to certify their

quality. Here, the work was demonstrated on the task of

weed and crop classification in real-world conditions. Spe-

cial attention has been accorded to the recently developed

Adaptive Prediction Sets (APS) method which was shown

to empirically maintain the marginal coverage guarantee as

defined in Equation 1. However, the marginal guarantee is

not enough to ensure the required coverage is maintained

on all possible individuals or groups of individuals (in our

case defined by auxiliary data acquired during image acqui-

sition): it is thus not enough for multiple agricultural use

cases.

This motivated our presentation of group-conditional

conformal prediction; first, via the classical approach that

consists of iteratively applying the APS procedure on each

group separately; then using our proposed “elegant” ap-

proach via quantile regression of calibrated softmax scores
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Figure 7. Boxplot of the empirical coverage per group over 100 different splits of the validation set: (a) Marginal APS. (b) Quantile

Regression Calibration (ours). Groups are sorted in decreasing order of number of individuals.

Marginal APS Quantile Regression
Group Location Sky Coverage Set Size Coverage Set Size

1 A overcast 0.935 2.838 0.899 2.415

2 A sunny 0.876 2.627 0.900 2.893

3 B overcast 0.936 1.566 0.887 1.354

4 B sunny 0.909 1.985 0.904 1.939

5 C overcast 0.959 2.615 0.900 1.929

6 C sunny 0.886 2.431 0.899 2.560

7 D overcast 0.886 2.482 0.901 2.683

8 D sunny 0.918 2.439 0.901 2.286

9 E overcast 0.936 2.157 0.892 1.735

10 E sunny 0.911 2.480 0.899 2.364

11 F overcast 0.970 2.494 0.892 1.699

12 F sunny 0.938 2.788 0.897 2.295

13 G overcast 0.989 2.707 0.891 1.682

14 G sunny 0.945 2.358 0.918 2.150

15 H sunny 0.943 2.493 0.903 2.066

Marginal Results 0.900 2.570 0.898 2.137

Table 3. Comparison of average empirical coverage and prediction set size over 100 different splits.

on group membership indicators. The proposed approach

allows for the joint estimation of the 1 − α decision quan-

tiles of all groups. Quantile regression calibration has been

shown empirically to maintain the 1− α coverage level for

all groups, even those that are not largely represented in

the dataset. This approach also provided smaller prediction

sets, on average, per group being thus more useful from a

decisional perspective – simply because it is easier to take a

decision when fewer classes are predicted.

This article is the first work, to the authors’ knowledge,

to introduce these notions and methods to the agri-tech com-

munity. It constitutes a first step in a research direction aim-

ing at developing reliable and trustworthy machine learning

systems on which the farmers can rely and have confidence

in, even without fully understanding all their intricacies. Fu-

ture work aims at extending the current methods to the more

realistic scenario in which the auxiliary data are not, or only

partially, observed on prediction images; at developing the-

oretical guarantees of the maintenance of group coverage

by quantile regression; and finally at adapting and present-

ing the conformal methodology on other computer vision

tasks such as object detection and image segmentation.
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