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Abstract

Fusarium head blight, caused by Fusarium spp., is a de-
structive disease of wheat worldwide. Fusarium damaged
kernels (FDKs) significantly reduce grain yield and quality.
Thus, FDK detection is a priority for wheat breeders seek-
ing to develop high-grain quality and FDK-resistant wheat
cultivars. However, traditional FDK measurement methods
are time-consuming, labor-intensive, and of variable accu-
racy. Image-based phenotyping methods have the poten-
tial to efficiently detect FDK, but are challenging to develop
due to the lack of large-scale damage-annotated wheat ker-
nel datasets. Addressing this issue, we introduced Wheat-
SeedBelt, a high-resolution large-scale dataset including
40, 420 close-up top- and side-view single-kernel images of
268 wheat varieties with kernel damage annotations. Utiliz-
ing this dataset, we developed an image-processing pipeline
to efficiently process images and extract the representa-
tive features for machine and deep-learning purposes. We
also conducted three experiments on the dataset using pre-
training and semi-supervised fine-tuning phases to classify
wheat kernels into healthy, unhealthy but non-FDK, and
FDK affected. Our best models achieved an F1-score of
84.29% for the Healthy-Unhealthy (including FDKs) task,
56.35% for the binary FDK-nonFDK, and 68.30% for the
3-class task (Healthy, Unhealthy, and FDK). We also con-
ducted an inter-rater reliability study, which indicated that
human experts do not outperform our model in FDK predic-
tion, providing evidence that visual classification of FDK
from RGB images is a challenging task.

1. Introduction
Wheat is a staple food crop that provides a significant

portion of the world’s caloric intake, especially in devel-

oping countries. Wheat kernels are nutritious and contain

essential vitamins, minerals, and dietary fiber. The ease of

cultivation and relatively high yield make it an efficient and

cost-effective crop for farmers across the globe [19, 15, 39].

Wheat kernels can be damaged by both abiotic stress,

such as excess heat [43], and biotic stress, such as fungal

pathogens [4] and insects [16]. For example, exposure to

high temperatures results in germ- or heat-damaged kernels

with distorted colors, fungi can cause damage such as dis-

coloration and light, and insects usually damage the wheat

kernels by chewing them.

Fusarium head blight (FHB) is a globally prevalent and

destructive wheat disease caused by Fusarium spp. It ad-

versely affects the development of wheat kernels, leading

to the formation of lightweight, chalky white, and shrunken

kernels. These affected kernels are commonly referred to

as Fusarium damaged kernels (FDKs) [25, 37]. Infected

kernels are usually contaminated with Fusarium-produced

mycotoxins, especially deoxynivalenol (DON). FDK and

DON contamination reduce grain quality, which limits mar-

keting opportunities, adds to cleaning costs, and results in

discounted prices. Further, FDK and DON can cause poor-

quality food products, immunological and teratogenic prob-

lems in humans, and reduced livestock productivity due to

toxicity or feed refusal. Achieving low FDK and DON in

cereal germplasm is thus crucial to cereal breeders, cereal

growers, and food producers.

The current tools to score or monitor FDK and DON are

highly inefficient. For instance, FDK assessment is usu-

ally carried out by visual inspection, which requires exten-

sive human labor, and the assessment accuracy can be dra-

matically reduced by fatigue and external distractions. Re-

cently, machine learning and deep learning algorithms have

been applied to inform precision agriculture [9, 17]. The ef-

fectiveness of these methods depends on the availability of

large-scale annotated crop, plant, and seed datasets that are
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precisely organized [20, 45].

In this study, we collected images of wheat kernels af-

ter harvest in a controlled environment utilizing a conveyor

imaging system called BELT developed by [11]. We or-

ganized these images into the WheatSeedBelt dataset, con-

sisting of 40, 420 high-resolution images depicting wheat

kernels from a diverse selection of wheat varieties from

two locations. Kernel images were manually labeled by ex-

pert wheat pathologists into three classes: Healthy (kernels

that appear healthy), FDK (kernels that appear unhealthy

due to FHB infection), and Unhealthy (kernels that appear

unhealthy due to reasons other than FHB, e.g. damage

from other biotic and abiotic stress). This dataset can assist

agronomists in several wheat kernel-related analyses, such

as kernel size/shape and kernel damage estimation.

There are two key contributions to our analyses. First,

we developed a pipeline to automatically process the raw

image data and extract important features from the Wheat-

SeedBelt, preparing it for the development of machine

and deep learning models. Second, we conducted semi-

supervised [48, 27] deep-learning analyses with the goal of

separating FDKs from healthy kernels and from unhealthy

non-FHB kernels. In order to achieve this goal, we evalu-

ated two binary tasks, Healthy versus Unhealthy (including

FDK and non-FDK) and FDK versus non-FDK, as well as a

3-class recognition task for classifying Healthy, Unhealthy

(unhealthy but non-FDK), and FDK. From 268 wheat va-

rieties/packets in the WheatSeedDataset, we selected 36
packets for model development and evaluation. We divided

these packets into training, validation, and test sets, includ-

ing 11, 5, and 20 packets, respectively. We chose a packet-

wise split strategy to avoid any information leaks among the

split sets. Our optimal deep models were designed based on

the EfficientNet [41] architecture and achieved F1 scores of

84.29, 53.62, and 68.30 for the three tasks, respectively.

We also conducted an inter-rater reliability study to eval-

uate the difficulty of assessing damage in wheat kernel im-

ages. A panel of three raters (LW, MO, and SP) indepen-

dently assessed the wheat kernels in a subset of the Wheat-

SeedBelt dataset. We then assessed the level of consensus

among multiple raters in assigning labels to the data sam-

ples. This study shows that distinguishing FDK, healthy,

and unhealthy kernels from each other is a difficult task for

human experts, leading to a large proportion of disagree-

ments in labels. This suggests the presence of labeling bias,

which could impact model performance. Additionally, this

enabled us to identify biases or variations in ratings, thereby

augmenting the reliability and validity of our findings.

In summary, the main contributions of this work include

(1) generating a large-scale and diverse dataset that cap-

tures 40,420 RGB images of wheat kernels from 268 wheat

varieties; (2) developing and evaluating an image process-

ing pipeline that automatically extracts image features and

Regions of Interest (ROIs) from conveyor-belt images of

wheat kernels; (3) developing and evaluating deep learning

models to automatically detect wheat kernels’ health condi-

tions, including healthy, unhealthy, and FDK; (4) conduct-

ing an inter-rater reliability study to judge the effectiveness

and consistency of expert annotations of wheat kernel dam-

age from wheat kernel images.

1.1. Related Work

Spectral imaging has been used in various studies [32,

47, 38] to capture wheat grain. Zhou et al. [47] conducted

a comprehensive investigation by assembling a large-scale

dataset that included 147, 096 low-resolution images, each

with a channel size of 200, in 30 varieties. They uti-

lized a Near-infrared (NIR) hyperspectral imaging system

to capture patches of wheat kernels on a plate with low

reflection and dark background, which facilitated the ker-

nel segmentation process. Additionally, they developed a

convolutional neural network (CNN)-based feature selector

equipped with an attention mechanism to extract informa-

tive spectral channels for a fully supervised classification

task of classifying images into 30 categories, and achieved

an accuracy of 93% on the prediction set, which is consid-

ered an internal evaluation of the model. Polder et al. [32]

studied the identification of Fusarium in individual wheat

kernels by analyzing a dataset of 96 spectral images taken

from a range of kernels that varied from heavily damaged to

healthy. In this work, hyperspectral imaging was employed

to collect spectral data from both healthy and Fusarium-

inoculated wheat kernels. The images were analyzed us-

ing fuzzy c-means clustering and supervised partial least

squares regression to describe the image information with

quantitative information of Fusarium DNA concentrations.

Aside from the high cost of image collection and analysis

with spectral imaging systems, the advances in deep learn-

ing models and the availability of cameras has increased

interest in gathering massive RGB image datasets [36, 29,

46, 6, 28, 23] to support scholars and breeders to advance

their theories and research in various fields of study includ-

ing precision agriculture. Zheng et al. [46] introduced the

CropDeep dataset, which consisted of 31, 147 greenhouse

images, cropped to a maximum size of 1000 × 1000, of

vegetables, fruits, and people in greenhouses, to be used

in classification and detection tasks. The dataset contains

over 49, 000 object-level annotated specimens belonging to

31 special classes. Rauf et al. [33] constructed the Citrus

dataset, which consists of citrus fruits, leaves, and stems

obtained at the point of fruit ripening and disease peak. The

dataset encloses healthy and diseased citrus plant images af-

fected by pathologies that include black spot, canker, scab,

greening, and melanose.

Leaves and flowers are the plant parts most prone to dis-

ease damage. The 102 Flower Category Dataset, as de-
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scribed by Nilsback et al. [29], is comprised of 8, 189 im-

ages representing 102 flower varieties each including 40
to 258 samples chosen from flowers with various colors,

shapes, and textures, and used for classification purposes.

The PlantVillage dataset [14] also possesses 54, 303 healthy

and unhealthy leaf images divided into 38 categories by

species and diseases. The images depict 14 different crop

species, such as apple and blueberry. Plant pathologists

determined the stages of different diseases observed from

the leaf images. The soybean dataset [24] holds 6, 410
500 × 500 JPEG images of healthy and insect-damaged

soybean leaves, captured with an Unmanned aerial vehi-

cle (UAV) and phones. It includes three categories of data:

healthy plants, caterpillar-damaged plants, and Diabrotica
Speciosa-damaged plants.

Large-scale RGB datasets for wheat kernels are scarce.

Halcro et al. [11] developed an imaging system that utilizes

statistical image analysis software, designed specifically for

small-seed optical analysis of a dataset of only 40 low-

resolution RGB images captured on a black background.

Ropelewska et al. [35] presented a study on single-seed im-

age dataset to recognize healthy and FDKs of wheat. The

author utilized machine learning models on approximately

200 selected textural features per color channel of 5 kg of

kernels of two wheat varieties, a total of 240 hyperspectral

images, and 4, 490 colored images of size 500 by 700 pixels

captured by a flatbed scanner to train several models. The

Global Wheat Head Detection (GWHD) dataset [6] was de-

veloped to provide RGB images of wheat spikes captured

under field conditions for object detection purposes. The

dataset contains 275, 187 wheat spikes in 6, 422 images de-

veloped by 16 institutions distributed across 12 countries.

The dataset was evaluated under different applications such

as wheat spike detection [27, 10], wheat spike segmenta-

tion [34, 26], and wheat spike counting [22, 18].

The datasets mentioned above are suitable for training

deep models and performing extensive evaluations. Never-

theless, the WheatSeedBelt dataset we developed is unique.

It includes high-resolution images depicting single kernels

of wheat as shown in Figure 1. This dataset has the poten-

tial to provide researchers with a rich source of genetically

diverse wheat kernels with varying phenotypic characteris-

tics to develop their ideas using novel machine and deep

learning approaches.

2. Materials and Methods
In this section, we provide a description of the data ac-

quisition process and highlight the distinctive characteris-

tics of the curated dataset. We deliver a detailed report on

the pre-processing methodology developed for data prepro-

cessing, cleaning, splitting, and enlargement, which were

necessary to meet our model development requirements.

Additionally, we discuss the development of deep learning

Figure 1: A few examples of the WheatSeedBelt images

in different health conditions. Healthy, Unhealthy but non-

FDK, and FDKs of wheat are shown in columns left to right.

models to detect the health status of wheat kernels.

2.1. Data Acquisition

A population of 300 spring wheat (T. aestivum) ac-

cessions were obtained from the Plant Gene Resources

of Canada (PGRC) and inoculated in mist-irrigated FHB

nurseries at the University of Saskatchewan (Saskatoon,

SK), University of Manitoba (Carman, MB), and Univer-

sity of Guelph (Elora, ON) in 2021. Nurseries were arti-

ficially inoculated with a liquid inoculum of F. graminear-
ium macrospores prepared at each location. FHB incidence,

severity, plant height, and heading date were recorded. Ac-

cessions were harvested at all locations and were threshed

with fans set low to maintain all damaged kernels.

Wheat kernels from the same variety were organized

into the same packets. To capture kernel images, we em-

ployed an automatic and portable conveyor imaging sys-

tem, equipped with Chameleon3 CM3-U3-50S5C-C5 USB
cameras, devised in [11]. Wheat kernels from each packet

were loaded into an imaging chamber and each kernel was

individually imaged to acquire its top and side view (via

an oblique mirror). We refer to the original, unprocessed

images as the WheatSeedBelt dataset, which is comprised

of 44, 710 images organized into 293 genetically distinct

breeding packets, each packet contains wheat kernels rang-

ing in number from 2 to 294 with an average of 150.8. Ad-

ditionally, the image intensities across all packets demon-

strated an average range of 314, 53.89 to 366, 94.49, with

an overall mean of 346, 59.62. Figure 1 displays examples

of original images capturing wheat kernels in the three con-

ditions: healthy, unhealthy (non-FDK), and FDK.

2.2. Data Preprocessing

The original high-resolution images in the WheatSeed-

Belt dataset pose challenges such as higher computational

costs, more complexity, and longer processing time. There-

fore, optimizing the resolution of images for deep learn-

ing algorithms is important. To accomplish this goal, we
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Figure 2: An overview of the pre-processing pipeline devel-

oped for wheat kernel images. First, we used a center crop

to remove boundary noise or artifacts that may adversely

affect segmentation accuracy. This was followed by color

conversion, segmentation, mask cleaning, then the extrac-

tion of regions of interest and relevant texture-level features

recorded as feature vectors.

developed a strategic image processing pipeline specifi-

cally to optimize the high-resolution images of the Wheat-

SeedBelt dataset and extract the most informative texture-

level features and regions of interest (ROI) and texture-level

features that are efficient in developing machine or deep

learning models. Figure 2 showcases the pipeline we de-

veloped for processing the WheatSeedBelt images. The

source code for the data processing pipeline is publicly ac-

cessible at https://github.com/USask-BINFO/
WheatSeedBelt.

During the initial stage of data processing, we aimed to

convert the image intensities into a conventional range to

avoid potential information loss in the rest of the prepro-

cessing steps. As a result of this transformation, the dataset

was reduced to 40, 420 high-resolution color images of size

1500 × 2200 (height and width, respectively), which were

categorized into 268 packets. It is worth noting that the

intensity of the images was converted into a conventional

range of 0 to 255 that is well supported by Python pack-

ages, such as Sikit-image [42], Albumentations [2], and Py-

Torch [31], whereas prior to conversion, the intensity range

was approximately 3, 583 to 65, 535.

In the next steps, we used traditional image processing

techniques such as color space conversion, thresholding,

and morphological operations, to segment and accurately

extract the wheat kernels. We first cropped the central re-

gion of the images to a fixed size of 1200× 1800 to remove

the dark boundaries, which add extra noise to the final seg-

mentation. We only extracted the top-view kernels that best

fit our goals. Note that breeders and scientists who are in-

terested in evaluating the visual statistical information of

genetically diverse wheat species could benefit from the in-

formation in the side view of the kernels and therefore it is

included in the WheatSeedBelt dataset.

The segmentation phase includes a few steps. We con-

verted the RGB images into CIELAB color space and used

the B channel, which more precisely differentiated the

wheat kernels from the background. After that, we used

Otsu thresholding [30] to segment the image, then improved

the segmentation by removing clutter or undesirable ele-

ments operating morphological Opening [8, 40], eliminat-

ing small objects, and removing small holes in order. Hav-

ing the accurate mask for the image, we extracted the top-

view wheat kernel object by overlaying the segmentation

mask on top of the image. The newly processed dataset is

referred to as SS (Figure 3) in which each image contains

a single kernel. The SS dataset was used for model devel-

opment, which only includes highly compressed and con-

centrated samples. It reduces the demand for more VRAM,

and the processing costs of high-resolution images and ac-

celerates the learning procedure of deep models.

Finally, we extracted texture-level features from the top-

view instance. By doing so, we minimized the amount of

noise introduced into our extracted texture-level features

by obtaining only the regions of interest (rather than the

whole image). Particularly, we obtained histogram [3], Lo-

cal Binary Patterns [1], and Gray-Level Co-occurrence fea-

tures [12, 7] of the top-view instances within the SS. Us-

ing texture-level features allows more computationally ef-

ficient, robust to noise, and interpretive descriptions of the

images for model training. We refer to the texture-level fea-

tures data set as FS, which is of the same size as SS.

2.3. Dataset Split

Annotating a large-scale dataset, such as the SS dataset

with more than forty thousand images, can be impractical

and costly. In order to develop deep models with reason-

able annotation efforts, we only annotated a small propor-

tion of the samples (approximately 10%) that were selected

from a limited number of packets (36 packets). The anno-

tated dataset contains 3, 923 images, representing a useful

subset of the SS dataset for deep model development. In or-

der to maximize the annotation accuracy, two raters labeled

each image as Healthy, Unhealthy, and FDK with mutual

agreement. This ensured that the labeling process, which

has a significant impact on the entire model development
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Figure 3: Examples of single kernel images for each kernel

damage category that were extracted by our pre-processing

pipeline.

Table 1: The number of images in the training (tr), vali-

dation (va), and testing (te) splits of our dataset for each

category. The dataset split for the SS and FS series is

identical, where SS includes images and the FS includes

texture-level feature vectors extracted from SS images.

Dataset Health Condition Number of Images

SStr (FStr)

Healthy 302

Unhealthy 637

FDK 392

SSva (FSva)

Healthy 164

Unhealthy 194

FDK 127

SSte (FSte)

Healthy 976

Unhealthy 883

FDK 248

process, is accurate and reliable.

We then categorized the images in each annotated packet

into three categories: Healthy, Unhealthy, and FDK. To

avoid information leaks, we devised a packet-wise division

strategy to split the labeled packets into training, validation,

and test sets. We selected images from 11 packets to serve

as our training set denoted as SStr, picked 5 packets for

validation called SSva, and the remaining 20 packets for

testing purposes named SSte. We also reserved the un-

labeled samples from the SS dataset as SSun for further

pseudo-label refinement modeling. Table 1 provides more

information on the number of samples annotated and split

for model development. SStr, SSva, and SSte can be ac-

cessed at https://binfo.usask.ca/Projects/
WheatSeedBelt/WHEATSEEDBELT.zip.

We designed a rater reliability study to evaluate the con-

sistency of classifying the wheat seeds into Healthy, Un-

healthy, and FDK categories by three raters. In the inter-

rater reliability study, we randomly chose 10% of the SSte

to be labeled by three experts, independently. This dataset

was named SSra.

2.4. Data Augmentation

We utilized a relatively limited number of examples for

model development (Table 1). Given the large-scale data,

which included a broad range of genetically distinct varia-

tions, it was critical to develop a model that was general-

izable across domains and resistant to overfitting on small

sets of packets. To achieve this, we employed augmentation

techniques to enhance the diversity of the training data.

To mitigate the effect of data imbalance, we expanded

the SStr set using the rotation operation to expose the

model with more computationally generated samples for

each class. We employed a rotation augmentation technique

to rotate each image in the SStr set at specific intervals in

degrees between 0 and 360, as outlined in [26]. The degrees

were obtained from
{
t×n | t ∈ {0, 1, · · · , ⌊ 360

n

⌋}
}

, where

n = 15 for Healthy and FDK categories, and n = 30 for

the Unhealthy class.

Despite utilizing a camera with established settings and

within a controlled environment, the SS dataset still con-

tains wheat kernels of varying sizes and shapes, both hori-

zontally and vertically oriented. This was caused by the dif-

ferences in kernel size and position in the conveyor imaging

system and their distance from the camera. However, deep

learning models require input images of consistent size.

Considering the potentially large difference between the

height and width of wheat kernel images, we used padding

instead of resizing to ensure that all images were of the same

size. This was because resizing can distort the aspect ratio

of rectangular kernel images when converted to a square

shape, while padding simply adds extra pixels to the image

boundaries, thus enlarging the image without altering the

aspect ratio. Additionally, padding preserves the spatial in-

formation that can be lost through the resize process, which

sacrifices the informative fine-grained features.

In addition to padding, we applied normalization in

model development phases, including training, validation,

and testing. To further increase the variability in the train-

ing set, we employed spatial transformations, such as Ran-

dom Rotation, Flip, a list of Random Crops with sizes be-

tween 256 to 512, and pixel-level augmentations such as

Color Jitter, Channel Shuffle, Random Noise, and Blurring.

We leveraged the Albumentations library [2] to implement

the above-mentioned augmentation transformations.

3. Model Development and Training
In this study, we conducted three semi-supervised ex-

periments using EfficientNet-B0 [41] and ResNet18 [13],

two of the best-performing architectures pretrained on Ima-
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geNet [36]. The first experiment involved training the mod-

els on a binary classification task of Healthy vs. Unhealthy

using the split datasets SStr and SSva. The second experi-

ment involved training the models for a binary task to detect

FDKs on wheat, again using the SStr and SSva datasets.

Finally, we conducted a 3-class classification experiment in-

volving all Healthy, Unhealthy, and FDK categories.

For all deep learning experiments, we fine-tuned the

models’ backbones and trained newly replaced classifiers

from scratch. We used the same classifier consisting of a

batch normalization, a dropout, and a linear layer for both

models in all experiments. We trained the models for 10
epochs by deploying the Adam optimizer [44] with a cou-

pled learning rate and weight decay of (1e− 3, 1e− 3) and

(1e− 4, 1e− 5), the batch size of 32, and loss functions of

BinaryCrossEntropy for the binary tasks and CrossEntropy

for the multi-class one. In each epoch, we assessed model

performance on the validation set using the F1 metric and

saved the best-performing model with the highest score. In

section 4, we evaluated the chosen best-performing mod-

els using the Accuracy, Precision, Recall, and F1 metrics,

calculated on the SSte set.

To enhance our models’ generalizability, we adopted a

semi-supervised learning approach, where we utilized the

pre-trained models to predict pseudo-labels for the unla-

beled portion of the dataset, SSun, comprised of wheat

kernels with a broader spectrum of genotypic and pheno-

typic characteristics. We then fine-tuned the models on the

pseudo-labeled datasets. Similar to the pre-training stage,

we preserved the models with the highest F1 score on the

validation set, SSva as the best-performing model.

The trained models are denoted by a shorthand notation,

which consists of the model name, initials of the task name,

and the training phase. For instance, EffB0-HU-A repre-

sents the EfficientNet-B0 model trained for the binary task

of Healthy vs Unhealthy, where letters A and B correspond

to the pre-training and semi-supervised fine-tuning stages,

respectively. The letter S is used to refer to models that have

been trained from scratch; the keyword None indicates that

no pretraining was performed.

For computation, we used a system with an NVIDIA

Tesla V100S PCIe GPU, featuring 32 GB of RAM, and an

Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz. We im-

plemented both image-processing and model development

pipelines in Python “3.8” along with the Scikit-image ver-

sion “0.18.3” and PyTorch “1.10.1+CU102” as the main

packages.

4. Results
The results obtained from all the deep-learning experi-

ments in this research are presented in Table 2, which shows

the performance of each model in terms of accuracy, preci-

sion, recall, and F1 score.

We conducted three deep-learning experiments, namely

Healthy vs Unhealthy (including FDKs), FDK vs non-FDK,

and a 3-class classification task including Healthy, FDK,

and Unhealthy (neither healthy nor FDK) categories. For

these tasks, we employed two state-of-the-art deep-learning

models, EfficientNet-B0 [41] and ResNet18 [13].

Figure 4 illustrates the confusion matrices of all three

tasks for the fine-tuned models. These matrices provide a

detailed representation of the model’s performance for each

class in the defined task. The confusion matrices allow us to

evaluate the model’s classification performance by showing

true positive, true negative, false positive, and false negative

percentages for each class.

Table 2 presents a comprehensive comparison between

the developed models. Particularly, the fine-tuned Effi-

cientNet model EffB0-HU-B achieved a high level of per-

formance on the Healthy vs Unhealthy classification task,

attaining an F1 score of 84.29, as evidenced by the other

three evaluation metrics. Notably, this model demonstrated

an outstanding ability to accurately differentiate healthy

kernels from unhealthy and FDKs.

However, when comparing the performance of the model

trained from scratch to that of the pretrained models, the lat-

ter exhibited a significant performance improvement. Simi-

larly, the model EffB0-HUF-A achieved better performance

on the Healthy-Unhealthy-FDK task. Notably, the precision

and recall scores demonstrated comparable values. On the

other hand, the model trained from scratch performed best

compared to the other models on the FDK vs nonFDK clas-

sification task. This was mainly due to the high number of

False Positives, leading to a low precision score, indicating

the model predicts many of the nonFDK samples as FDK.

Compared to the 3-class classification task, binary tasks

achieved higher accuracy in detecting positive and nega-

tive class samples, as shown in the confusion matrices (Fig-

ure 4). The confusion matrix (4a) for model EffB0-HU-B
obtained the highest accuracy rates of 86.9% and 86.1% for

the positive and negative classes, respectively, and a total

F1 score of 84.29% (Table 2). The EffB0-FN-S model (4b)

also exhibited high performance in detecting a high percent-

age of FDKs and non-FDKs. Note that the low F1 score

for the FN models (Table 2), was due to the low number of

FDK images in the SSte set, which only numbered 248 im-

ages compared to the high number of non-FDKs. Moreover,

the performance differences between pretrained and unpre-

trained EfficientNet models, EffB0-FN-S and EffB0-FN-A,

are insignificant. However, the developed 3-class classifica-

tion task models encountered challenges in distinguishing

unhealthy kernels from healthy and FDKs while categoriz-

ing healthy and FDK samples with high accuracy (4c).

In addition to measuring model performance, we aimed

to evaluate the inter-rater reliability of the SSra dataset,

which was annotated by three raters (Table 3). We em-
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Table 2: The performance measure of the developed models on the test set, SSte, for all three experiments, Healthy vs

Unhealthy, FDK vs non-FDK, and 3-class Healthy-Unhealthy-FDK. Performance measured by Accuracy (Acc), Precision

(Pre), Recall (Rec), and F1 score (F1) weighted metrics for all experiments. Model abbreviations are as follows: using

EfficientNet (EffB0), using ResNet18 (Res18), HU stands for Healthy-Unhealthy, FN stands for FDK-nonFDK, HUF stands

for Healthy-Unhealthy-FDK, A stands for the models trained in the pre-training phase, B represents the fine-tuned models in

the semi-supervised pseudo-label stage, and S highlights the models trained from scratch. The top-performing models and

their corresponding metrics in each experiment are highlighted in bold.

Experiment Model Pretraining Acc Pre Rec F1

Healthy

vs

Unhealthy

EffB0-HU-S None 58.71 51.35 27.97 36.22

EffB0-HU-A ImageNet 84.86 80.59 84.14 82.33

EffB0-HU-B EffB0-HU-A 86.43 81.86 86.86 84.29
Res18-HU-A ImageNet 83.20 86.79 70.67 77.90

Res18-HU-B Res18-HU-A 82.68 86.89 69.08 76.97

FDK

vs

nonFDK

EffB0-FN-S None 85.81 44.16 77.82 56.35
EffB0-FN-A ImageNet 83.58 40.16 80.65 53.62

EffB0-FN-B EffB0-FN-A 83.20 39.53 80.65 53.05

Res18-FN-A ImageNet 81.92 37.62 81.45 51.46

Res18-FN-B Res18-FN-A 80.78 36.25 83.45 50.55

Healthy

Unhealthy

FDK

EffB0-HUF-S None 41.53 62.32 41.53 34.34

EffB0-HUF-A ImageNet 67.11 72.58 67.11 68.30
EffB0-HUF-B EffB0-HUF-A 66.35 72.55 66.16 67.45

Res18-HUF-A ImageNet 65.21 71.63 65.21 66.51

Res18-HUF-B Res18-HUF-A 60.70 70.64 60.70 62.11

(a) EffB0-HU-B (b) EffB0-FN-S (c) EffB0-HUF-A

Figure 4: Confusion matrices for the best-performing models on the SSte dataset for our three distinct tasks.

ployed Cohen’s Kappa [5] score as a statistical assessment

to quantify the inter-annotator agreement. Cohen’s Kappa

score is formally defined as K = Po−Pe

1−Pe
where Po is the

observed agreement ratio and Pe represents the expected

agreement when both annotators assign labels randomly.

We calculated the Cohen’s Kappa score for every pair of

raters for each experiment.

5. Discussion

Fusarium-damaged kernels (FDKs) are detrimental to

wheat quality and productivity, resulting from Fusarium

head blight infection. Given their significant impact on

crop productivity and quality, FDK content is of great in-

terest to wheat breeders and agronomists. In this study,

we developed a high-throughput single-kernel screening

tool for FDK assessment using automated image acquisi-

tion and analysis. Our approach utilizes a semi-supervised

learning method on the WheatSeedBelt dataset, which con-

sists of over 40,000 high-resolution RGB images capturing

top and side views of individual wheat kernels from 268

genetically-distinct varieties. This dataset is unique in its

scale and composition and potentially provides a unique re-
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Table 3: Cohen’s Kappa scores of the binary Healthy-Unhealthy (left), the binary FDK-nonFDK (middle), and of the 3-class

Healthy-Unhealthy-FDK (right) tasks performed on the SSra dataset.

MO LW SP
MO 1.0 0.669 0.453

LW 1.0 0.455

SP 1.0

MO LW SP
MO 1.0 0.669 0.591

LW 1.0 0.633

SP 1.0

MO LW SP
MO 1.0 0.643 0.393

LW 1.0 0.390

SP 1.0

source for deep model development and benchmarking.

We implemented an image-processing pipeline to ef-

ficiently extract the WheatSeedBelt informative features

for analysis and modeling. Additionally, we conducted

three deep-learning experiments that leveraged the dataset

to distinguish healthy, unhealthy but non-FDK, and FDK

of wheat. For each experiment, we conducted pretrain-

ing and semi-supervised fine-tuning phases to develop

EfficientNet-B0 [41] and ResNet18 [13] models on the top-

view wheat kernels, SS, extracted operating the image-

processing pipeline. Our approach is considered semi-

supervised [48] as it uses only a few wheat kernel packets,

which includes 63% of our test set, SSte, and only 3% of

the whole dataset, SS. We fine-tuned the pretrained models

on the pseudo-labeled unannotated subset SSun, which is

considered a semi-supervised refinement approach [21].

EfficientNet outperformed ResNet in general, but both

models demonstrate promising performance during train-

ing, delivering the WheatSeedBelt’s practical efficacy for

deep learning model development. Fine-tuning the pre-

trained models did not improve performance, except for the

EffB0-HU-B model, which exhibited a 2% increase in F1

score compared to the EffB0-HU-A model. This highlights

that the accuracy of the labels assigned to each sample is

critical for the success of deep models on pseudo-labeled

datasets, therefore inaccurate labeling can mislead a model

that already performs well on the test set. In addition to

the substantial model accuracies (Table 2), we observed

promising performance levels for both binary tasks (Fig-

ures 4a and 4b). Further, the F1 score of 68.30 achieved by

the model EffB0-HUF-A, as illustrated in Figure 4c, indi-

cates the difficulty of the 3-class classification task of iden-

tifying Unhealthy samples from Healthy and FDK images,

which is supported by the rater reliability study (Table 3).

Given the extensively discussed challenges in achieving

high-performance models using a limited expert-annotated

dataset for FDK detection, and considering the complex-

ity of the task, we believe further experiments with a larger

number of wheat kernel packets, a balanced distribution of

samples across classes in the training set, and the explo-

ration of alternative deep learning models might improve

model performance in the 3-class classification task. Addi-

tionally, the large-scale unannotated WheatSeedBelt dataset

could be useful for self-supervised learning, with generative

and contrastive learning models potentially improving FDK

detection. Machine-learning models could also be devel-

oped using the FS dataset to detect kernel health.

We also conducted an inter-rater reliability study to as-

sess the labeling process difficulty of the WheatSeedBelt

dataset. To do so, we recruited three experts as raters to

label a portion of the SSte set, specifically SSra, which

constituted approximately 10% of the set. To determine the

agreement between the raters, we calculated Cohen’s Kappa

score for all three labeling tasks. Overall, the results indi-

cate a low level of agreement among the raters, illustrating

the difficulty of the labeling task, even for human experts

in the field (Tables 3). Nevertheless, the findings of the

rater reliability study indicated that the differentiation be-

tween FDK and non-FDK kernels was reasonably straight-

forward compared to discrimination between Healthy and

Unhealthy samples. Meanwhile, in terms of model perfor-

mance comparison, it can be inferred that discrimination be-

tween Healthy and Unhealthy (with FDK) samples is char-

acterized by a more pronounced disparity in ease, as com-

pared to the performance of models attempting to classify

FDK and nonFDKs.

6. Conclusion

In this study, we created a novel and comprehensive

dataset consisting of a diverse range of wheat varieties and

devised an image processing pipeline to clean and process

the raw images and extract informative features that could

be utilized for machine and deep learning models. Through

this dataset, we developed several semi-supervised mod-

els to recognize Healthy, non-FDK unhealthy, and Fusar-

ium damaged wheat kernels. While our models demon-

strated promising results for binary classification tasks such

as Healthy-Unhealthy and FDK-nonFDK, our 3-class clas-

sification task exposed the complexity of distinguishing

non-FDK unhealthy samples from healthy and FDK sam-

ples. Furthermore, the difficulty of the labeling process was

confirmed by our inter-rater reliability analysis, highlight-

ing the difficulty of this classification task, even for human

experts. This will require future work to improve classifi-

cation models using our publicly-available WheatSeedBelt

dataset and investigating alternative imaging modalities for

FDK classification such as X-ray and multi-spectral imag-

ing.
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