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Abstract

Three-dimensional (3D) image analysis represents the
state-of-the art for phenotyping in the fields of biology and
plant science including studies of root system architecture.
A widely used approach for capturing root architecture in
3D involves growth of roots in hydroponic media and cap-
ture of optical camera views via a stepper-motor-based ro-
tation system. However, the introduction of structures to
support 3D root growth system leads to significant occlu-
sion of the roots during image acquisition, thereby causing
the complexity and introducing inaccuracy of subsequent
operations such as 3D modeling and root traits calcula-
tion. Instead of using a traditional manual sketching meth-
ods, this project proposes an automatic root gaps detection
and inpainting method based on a Generative Adversar-
ial Networks (GAN). The model was trained and evaluated
using two distinct maize datasets, both of which were en-
riched with manually annotated segmentation and inpaint-
ing labels. The quantitative analysis of the inpainting re-
sults demonstrated variation in the performance of the GAN
model. However, promising outcomes were observed with
certain instances achieving Intersection of Union (IoU) and
Dice Similarity Coefficient (DSC) values surpassing 0.9
with specific images or patches exhibiting lower accuracy
and reproducibly. Despite this variability, the overall model
performance maintained an average range of 0.8-0.9. Our
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GAN model presents a robust, effective and automatic so-
lution for inpainting plant root gaps, leading to improved
accuracy within the phenotyping pipeline. Moreover, the
model demonstrates a great generality for inpainting other
root system of species or cultivars beyond those encoun-
tered during training. The performance of the model ex-
hibits superiority when confronted with less intricate root
structures, but it produces less accurate results when con-
fronted with complex root systems with large gaps or high
root density.

1. Introduction

1.1. Motivation

The term phenotype refers to an organism’s observable

characteristics through its development including the mor-

phological, biochemical or physiological properties. Plant

phenotyping has become one of the essential topics in the

context of biology, agriculture and plant science. Root sys-

tem architecture (RSA), the shape and spatial arrangement

of the root system, is one of the most significant parts sup-

port the plant’s above-ground structure, and are responsible

for uptake, storage and transportation of water and nutrients

[8].

Non-invasive techniques such as hydroponic root imag-

ing offers numerous advantages including rapid image ac-

quisition, high-resolution, and premium visual quality. The

introduction of supporting structure during root system de-

velopment better reflects their natural growth environment

in soil, and allows the root system to better maintain its spa-

tial orientation during image acquisition. An example of

such additional supporting structures can be observed in the

work of Clark [4] and Piñeros et al. [8], wherein tower-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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(a) Sample image 1 (b) Sample image 2 (c) Segmentation label (d) Inpainting label

Figure 1: Sample images from training and testing datasets. (a) and (b) are sample hydroponic maize root images from the

dataset. (c) is the segmentation result of (b) with manual annotation. (d) is the inpainting ground truth label of (b)

like structure was developed by weaving fishing net around

hexagonal disks and employing plastic posts to support the

multiple disks to aid in root support and stability. How-

ever, when capturing images, supporting structure occlude

certain parts of the root system. As illustrated in Figure

1a, 1b and 1c this occlusion results in multiple horizontal

and vertical gaps that fragment the root structure. Conse-

quently, these gaps can introduce inaccuracies in the 3D

modeling process, thereby compromising the precision of

phenotype measurements. Manually sketching the miss-

ing root segments is a highly complex and time-consuming

task. Hence, automating this process has became as a im-

portant objective in the advancement of fully automated,

high-throughput Root System Architecture (RSA) analysis

pipelines.

1.2. Deep Inpainting

In the realm of image processing, inpainting was widely

used as a prevalent technique for the restoration and com-

pletion of missing data. This methodology entails predict-

ing the absent data by leveraging contextual information

from the surrounding regions such as color, texture, and line

patterns. However, the intricate and non-repetitive struc-

tural characteristics of roots creates challenges for accu-

rately predicting the contents over the gaps based on the

surrounding areas alone. Consequently, traditional inpaint-

ing methods fail to predict missing root data.

Pathak et al. introduced an unsupervised adversarial net-

work named Context Encoder [7]. This network introduced

an encoder-decoder architecture where the encoder com-

presses a corrupted image into a compact representation,

while the decoder reconstructs the data into a complete for-

mat. The optimization of the network utilizes mean square

error (MSE) in combination with an adversarial loss. It

should be noted that Context Encoder assumes prior knowl-

edge of the missing region’s location, which necessitates

user input. In 2017, Sasaki et al. [10] proposed a deep in-

painting approach that can identify and predict gaps in an

image without the need for a mask indicating the missing

regions. Yu et al. [13] took the approach of using random

gap masks during training, demonstrating the model’s capa-

bility to handle inpainting for various mask shapes.

Beyond the Context Encoder approach, Chen et al. [2]

developed a deep learning model to predict random root

gaps. They added gaps at the random locations in synthetic

root images. Then they trained a convolutional neural net-

work (CNN) model with an encoder and decoder to predict

the root pixels. This methodology introduced an innovative

approach for inpainting minor root gaps without requiring

user input; however, it exhibits limitations in effectively de-

tecting large occluded regions, as encountered within the

hydroponic dataset referenced earlier.

1.3. Deep Inpainting based on GAN

A root patch that obtains a high evaluation score may

yield a lower full-image evaluation score due to the lim-

ited information provided by the patch-level in assessing

the completeness of the entire root. Thus, it’s necessary to

evaluate the model performance at both the patch-level and

full-image-level. In order to address this, Chen’s work was

further improved in 2019 by incorporating local and global

discriminators, enabling the model evaluation in both patch-

level and full-image-level [3]. The inclusion of a global

discriminator significantly enhanced the overall connectiv-

ity of the entire root structure, hence forms a Generative

Adversarial Network (GAN).

This project builds upon, modify and extends Chen’s

GAN network, adding the capability to automatically iden-
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tify and restore multiple larger and wider root gaps in the

binary segmentation of root images that arise due to oc-

clusion by supporting structures. The architecture of the

network comprises three key components: an inpainting

generator, a local discriminator, and a global discrimina-

tor. The inpainting generator is designed based on a U-

net-like CNN. The local discriminator assesses the train-

ing process at the patch-level, while the global discrimi-

nator evaluates the training at a holistic full-image level.

The model was trained with hydroponically-grown maize

and pea roots, and subsequently, it was tested on two dif-

ferent datasets. During the testing phase, the model demon-

strates remarkable performance in automatically and accu-

rately filling horizontal gaps through inpainting, effectively

restoring the completeness and connectivity of root struc-

ture. However, the current model has difficulty predicting

area of root characterized by high density and overlapping.

The proposed model presents a robust method for automat-

ically inpainting missing root segments, offering potential

enhancements for subsequent steps in the 3D reconstruc-

tion pipeline, such as 3D modeling, skeletonization, and

root traits extraction.

2. Methodology
The model architecture depicted in Figure 2 comprises

an inpainting generator, a local discriminator, and a global

discriminator. The inpainting generator adopts a U-net-like

CNN structure that is responsible for executing the inpaint-

ing task. In the evaluation process, the local discrimina-

tor compares the predicted patches with the corresponding

ground truth labels to determine the veracity of the predic-

tions. Additionally, the predicted patches are reassembled

into a complete image, which is then evaluated against the

full-image ground truth label for a comprehensive assess-

ment of the inpainting performance at a global level.

In the training stage, the annotated segmentation labels

serve as the input for training, while the inpainting labels

are employed as the ground truth. At the preprocessing

step, the model trainer first detects the locations and widths

of gaps present within the image. Subsequently, the mod-

ule proceeds to extract patches of the root along the iden-

tified gap regions with appropriate overlapping. Although

the inpainting model is designed to accommodate a fixed

patch size, the patching process leverages the flexibility of

dynamic patch sizes by image re-scaling.

When training starts, the segmentation patches are then

fed into the inpainting generator, which generates inpainted

versions of the patches. Subsequently, a comparison be-

tween the segmentation patches and the corresponding in-

painting ground truth patches takes place within the local

discriminator. To evaluate the over-all inpainting perfor-

mance, the predicted patches are stitched together to form

a complete image, which is then compared against the full-

Amount Unit Neutrient

1 mM Ca (NO3)2 · 4H2O
1 mM NH4NO3

1 mM KCl
0.85 mM MgSO4 · 7H2O
0.25 mM NH4H2PO4

77 μM Fe-EDTA

25 μM H3BO3

0.8 μM Na2MoO4 · 2H2O
0.6 μM CuSO4 · 5H2O
9 μM MnCl2 · 4H2O
2 μM ZnSO4 · 7H2O

Table 1: Full strength nutrient solution table

image inpainting label in the global discriminator. The gen-

erator loss, local discriminator score, and global discrimina-

tor loss are combined in a linear manner to provide feedback

to the generator model.

During the testing phase, the segmentation root patches

are fed into the thoroughly trained inpainting generator. The

generator produces a set of patch-level probability maps as

output, wherein pixels with higher probabilities indicate a

greater likelihood of being root pixels. Subsequently, the

predicted patches are combined to form complete root la-

bels. Following this, the resulting labels undergo a series of

post-processing steps, including edge anti-aliasing, dilation,

and other relevant techniques.

2.1. Experiment Settings and Dataset Acquisition

Maize seeds were surface-sterilized with 8% (v/v)

sodium hypochlorite for 20 min, rinsed with 18 Mega-ohm

water (Ω), and germinated at 27◦C on moist germination

paper (Anchor Paper, St. Paul, MN, USA) in darkness. Four

days after germination, seedlings with similar growth vigor

were transferred to 300 L polypropylene tubs and grown hy-

droponically using a specially designed and constructed the

three-dimensional root system architecture of plant growth

system, which holds the seedling and root system on the

mesh tower, as described by Piñeros et al.[9]. The full

strength nutrient solution content can be found in table 1.

The pH of the solution was adjusted to 5.7 ± 0.1 with

NaOH or HCl as required and was continuously aerated

and replaced every three days. The seedlings were cultured

in a growth chamber with 16 h of light at 27◦C, 8 h dark

at 22◦C, a photosynthetic photon-flux density of around

350μmolm−2 s−1 at canopy height, and 50% relative hu-

midity.

The acquisition of plant root images occurred at specific

time points, namely on days 5, 7, and 10 following seedling

emergence. Each day’s dataset comprised 100 images per

sample, captured using an optically corrected digital imag-
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Figure 2: The GAN architecture and data processing pipeline.

ing system, and possessed a resolution of 5520×8288 pix-

els. The images were captured from a range of viewing

angles, encompassing the full 360◦ rotation alone Y-axis,

with an angular increment of 3.45◦. It is noteworthy that

the testing dataset encompassed diverse maize subspecies

in contrast to the training datasets to ensure the randomiza-

tion of the experiment.

The training dataset comprises 1,200 images captured

from four pea samples and ten maize samples. Conversely,

the testing dataset comprises 62 images sourced from the

same datasets as the training set, alongside an additional

62 images obtained from a distinct dataset involving vari-

ous maize species. The datasets underwent manual annota-

tion by two annotators with distinct academic backgrounds

using a ground-truth mark-up tool provided by Seidenthal

[11]. Each image was assigned two labels, a segmentation

label and an inpainting label. During the training phase, im-

ages have the potential to be divided into a variable number

of patches ranging from 5 to 25, depending on the growth

stage and size of the root.

Importantly, it should be noted that the training and test-

ing methodology described herein is not limited to the spe-

cific plant root species of maize and pea. Rather, this ap-

proach can be readily applied to various other plant root

species.

2.2. Model Architecture

2.2.1 Root gaps detection and patching

The occurrence of root gaps resulting from occlusion can

be categorized into two types: horizontal gaps and vertical

gaps. Horizontal gaps manifest as a consequence of occlu-

sion caused by the presence of yellow mesh disks, as de-

picted in Figure 1a and 1b. Conversely, vertical gaps arise

solely when a black plastic rod is rotated between the roots

and the camera. The specific location and size of these gaps

can vary, depending on factors such as the root size and im-

age resolution. Moreover, the width of the gaps varies due

to the perspective view. Notably, at any given time, only

one vertical gap is present.

To identify the presence of root gaps, the row histogram

was computed for each segmented root image. The identi-

fication of the root gap locations was subsequently accom-

plished by detecting the local minima within the histogram.

Additionally, the widths of the wave troughs at these local

minima were utilized as the approximate gap size. By lever-

aging the information pertaining to the location and width

of each gap, patches were generated with overlapping ap-

proach to minimize the boundary effect. Notably, the patch

sizes were dynamically determined based on the respective

gap sizes, ensuring that the patches adequately encapsulated

the full gaps. At last, all patches were resized into desired

patch size before passing to generators.
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2.2.2 Inpainting Generator

The inpainting generator consists of an encoder and a de-

coder, forming a fully convolutional network with a U-net-

like structure. During the encoding phase, a patch is down-

sampled using a convolutional layer with a stride of 2. Con-

sequently, patches with higher resolution are compressed

into a latent space characterized by smaller dimensions. In

the decoding process, the decoder module reconstructs and

up-samples the latent code to generate a complete root patch

with desired size (128 × 128 or 256 × 256). Notably, skip

connections, reminiscent of those found in a U-net archi-

tecture, are incorporated to preserve information during the

down-sampling steps, facilitating improved gradient flow,

as in [3]. The output layer is comprised of a softmax activa-

tion function, yielding a probability map. Higher probabil-

ities in the output patch signify a greater likelihood of the

corresponding pixel being a root pixel.

This project retained the Cross-Entropy (CE) loss for

validating the generator. The CE loss is obtained by com-

paring the probability map with the original patch (ground

truth), which maximizes the likelihood of the training data

distribution.

2.2.3 Local Discriminator

The local discriminator is responsible for evaluating the out-

put patches. Mean square error, and mean absolute error are

known to cause blurry issues when used in image genera-

tion problems [5, 7]. Also, Chen et al. argue that CE loss

can cause inpainting to fail due to the multiple solutions to

a gap [3]. When multiple predictions to a gap are averaged

together, the generator has a higher chance of making a mis-

take inpainting the gap. Thus, a local discriminator network

is used for learning data-driven loss, which will be added to

the generator CE loss and improve the learning process.

The local generator focuses on the high-frequency parts

since the overall low-frequency feature was represented by

CE loss. Chen et al. [3] suggest using a Markovian discrim-

inator to classify a sub-region of the patch as real or fake.

The discriminator was applied convolutionally through the

entire patch, and the average of all outputs is considered a

final score of the patch. In addition, the discriminator uses

least square loss instead of CE because it performs more sta-

bly and can produce better results. Also, a spectral normal-

ization (SN) layer is added after each convolutional layer

for constraining the Lipschitz constant of the classification

function learned by the discriminator.

2.2.4 Global Discriminator

Evaluating the generator only in patch-level is not sufficient

because plant root is a highly complex structure. High-

quality prediction patches may still result low connectivity

and completeness in full-image view. Thus, Chen et al. sug-

gest adding another discriminator to validate the generator

from the full-image view. The global validation can im-

prove the generator performance and ensure a good result

in both patch-level and global-level.

Since thresholding on the probability map and im-

age concatenation are non-differentiable processes, back-

propagation is unachievable in this step. Thus, traditional

validation approaches are not suitable for this global dis-

criminator. In this case, Chen et al. suggest using policy

gradient [12] instead of CE loss. The generator is consid-

ered a policy network governed by the generator weight. It

inpaints the gapped patches into a probability map, where

the probabilities represent the possibility of a pixel being a

root pixel. The probability map can be binarized by some

standard image processing techniques such as thresholding

or Bernolli sampling. Then the binarized prediction patches

are stitched back into a complete root image, which we call

the full-image prediction. The global discriminator encodes

the full-image prediction and the original full-image ground

truth into two latent spaces of size 512. Then, a sigmoid ac-

tivation is applied on the dot product of two latent spaces

and produces a full-image similarity score.

At last, the three loss functions will be combined linearly

to get the final loss to feeds the generator. This process can

be formulated as:

LG = Lce + λ1LLocal + λ2LGlobal (1)

Where Lce is the generator CE loss, LLocal is the loss from

local discriminator, LGlobal is the loss from global discrim-

inator. Real constants λ1 and λ2 weight the influence of

each loss.

2.3. Evaluation Metrics

In this project, we retained the common evaluation met-

rics used in segmentation problems. The binary ground

truth images are annotated by scientists from both biology

and computer science backgrounds. The quantitative eval-

uation metrics used are Intersection-Over-Union (IoU) and

Dice Similarity Coefficient (DSC). IoU is also known as the

Jaccard Index, one of the most commonly used metrics in

semantic segmentation. The IoU is expressed as in Equa-

tion 2, where P is the set of pixels which are marked as

foreground in the prediction image, and G is the set of pix-

els which are marked as foreground in the ground truth im-

age. In addition, this paper evaluate the DSC index on the

prediction. DSC can be obtained using Equation 3, with the

same definition of P and G.

IoU(P,G) =
|P ∩G|
|P ∪G| =

|P ∩G|
|P |+ |G| − |P ∩G| (2)

DSC(P,G) =
2|P ∩G|
|P |+ |G| (3)
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Patch-level testing results, each sub-figure comprises a side-by-side combination of the original patch, a ground

turth labelled by green color, and the corresponding inpainting results labelled by red color.

3. Experiments

The model was implemented in Anaconda python 3.6

[1] with Pytorch 1.0.1 [6]. The training was executed on

a server with three NVIDIA GeForce 1080 graphic cards,

which takes about 120 hours of execution time. The testing

on a single image takes less than 5 seconds. The program

can be executed on more GPUs if available.

3.1. Training

All training and testing images were stored in the PNG

image format, which offers the advantage of lossless com-

pression. The training dataset was randomly divided into

training and validation sets, maintaining a ratio of 7 to

3. For the training processes, the patch size was set to

128×128 and a training batch size of 32 was selected, which

can efficiently accommodate the server’s graphic card mem-

ory size. In cases where a root sample consisted of fewer

than 32 patches, appropriate repetition was applied. During

the training process, the generator and discriminators em-

ployed the Adam optimizer. The model was trained for a

maximum of 40 epochs, with training ceasing if the gener-

ator loss failed to improve for five consecutive epochs. In

addition, the parameters for the Adam optimizer were set

as follows: the learning rate was configured as 0.0002, the

weight decay was set to 0, and the betas were specified as

[0.5, 0.999].

3.2. Testing

The GAN model was comprehensively tested on two

distinct datasets, encompassing analyses at both the patch-

level and full-image-level. The first testing dataset com-

prised 63 roots segmentation images , including two pea

cultivars and 10 maize cultivars. Conversely, the second

dataset encompassed 34 images of a single maize plant, cap-

tured from diverse view angles. Unlike dataset 1, dataset 2

encompasses crops in later growth stages, characterized by

densely packed and overlapping root structures.

The evaluation of the testing images employed the root

gap detection and patching techniques previously explained

in Section 2.2.1. The testing images first undergo a patch-

ing process along the identified gaps using an overlapping

method to minimize boundary effects. Subsequently, the

resulting patches are fed into the trained GAN model for in-

painting. Finally, the inpainted patches are reassembled to

reconstruct the complete root structure at its original size.

Subsequently, the evaluation metrics IoU and DSC (out-

lined in Section 2.3) will be computed at both the full-image

and patches-level for further analysis and assessment.

4. Testing Results

In this section, we present the comprehensive testing re-

sults from both quantitative and qualitative perspectives.

The evaluation of the testing results consists two distinct

components: patch-level evaluation and full-image evalu-

ation. A detailed statistical analysis of both datasets can

be found in Table 2. Moreover, sample outputs for the

patch-level and full-image evaluations are visually depicted

in Figure 3 and Figure 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: full-image testing results: (a), (b), (c) and (d) are sample test results from dataset 1 (same species as training

datasets, (e) and (f) are sample test result from dataset 2. Each sub-figure comprises a side-by-side combination of the

original patch, a ground turth labelled by green color, and the corresponding inpainting results labelled by red color.)

4.1. Patch-level Test Results

At patch-level, the IoU and DSC are ranged from 0.02 to

1, which means the model failed at some specific patches

but generate perfect result on some others. The median

value, located at near 0.8, indicates that it falls towards the

higher end of the distribution. The mean values suggests

that the dataset is moderately centered around this average.

The variance of less than 0.02 indicates a relatively narrow

spread of data points around the mean, reflecting a high

level of consistency in the results.

Based on the visual inspection of sample images, it can

be inferred that the model demonstrates satisfactory per-

formance when dealing with uncomplicated root structures

with less splitting and overlapping, as shown in Figure 3a

and 3b. However, the model may encounter challenges
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Dataset Statistic Min Max Median Mean Variance

1

IoU patch size 0.02 1 0.82 0.80 0.0203

IoU full-image 0.31 0.94 0.82 0.81 0.0110

DSC patch size 0.03 1 0.9 0.88 0.0114

DSC full-image 0.47 0.97 0.9 0.89 0.0059

2

IoU patch size 0.02 1 0.82 0.80 0.0203

IoU full-image 0.62 0.8 0.69 0.69 0.0018

DSC patch size 0.03 1 0.9 0.88 0.0114

DSC full-image 0.76 0.89 0.81 0.81 0.0009

Table 2: Quantitative Evaluation Statistics

when faced with large gaps, as well as instances where gaps

occur at points of root splitting or in regions of high density,

as shown in Figure 3c, 3d, 3e, and 3f.

4.2. Full-image Test Results

Significant evidence indicates a notable disparity in the

model’s performance between dataset 1 and dataset 2. The

IoU and DSC values for dataset 1 ranged from 0.3 to 0.97.

The median values for dataset 1 consistently fall within the

range of 0.82 to 0.9. The mean IoU values for dataset 1

range from 0.81 to 0.88, indicating a relatively consistent

and satisfactory performance. In contrast, dataset 2 demon-

strates a substantial decline in median IoU to 0.69, suggest-

ing a predominance of failures in accurately inpainting oc-

clusion.

Figure 4a and Figure 4b present two samples of success-

ful inpainting results. In Figure 4a, an IoU value of 0.88

and a DSC value of 0.93 were achieved. Similarly, Figure

4b attained an IoU of 0.87 and a DSC of 0.93. Notably, the

model demonstrated its ability to effectively fill in the gaps

in the root structures with minimal imperfections. Never-

theless, Figure 4c shows an instance where the model en-

countered difficulties in accurately inpainting a simple root

structure with large gap. Furthermore, in Figure 4d, the

model faced challenges in effectively addressing the ver-

tical gaps where splitting and overlapping occur most. The

IoU values for Figure 4c and Figure 4d are 0.46 and 0.67,

respectively. These outcomes exemplify instances where

the model struggled to achieve satisfactory results when the

root gaps are larger than the patch scale and when root gaps

covering root branching and overlapping, highlighting its

limitations in handling certain types of root structures and

complex inpainting scenarios.

Figure 4e and Figure 4f display two sample outputs ob-

tained from dataset 2. In Figure 4e, an IoU value of 0.78

and a DSC value of 0.88 were achieved. Conversely, Figure

4f attained an IoU of 0.62 and a DSC of 0.76. The test-

ing results on dataset 2 highlight the model’s limitations in

handling root structures with massive density and overlap-

ping. The model tends to either utilize solid blocks of labels

when filling gaps or ignore the gaps if inpainting cannot be

done. These observations underscore the need for further

improvements in the model’s ability to handle complex root

structures with densely intertwined regions.

5. Conclusion

This project introduces a Generative Adversarial Net-

work that automatically apply detection and inpainting on

root gaps occurring within a hydroponic imaging system

for 3D modeling of the root system architecture (RSA).

The proposed model leverages the power of deep learning

techniques, eliminating the need for manual intervention. It

demonstrated versatility by being trainable on various RSA

in different species, and testable on different growth stages

and viewing angles. Although the model achieves a high

level of accuracy on simple root structures with lower den-

sity and minimal overlap, it encounters challenges when

predicting over-scale gaps and highly dense root regions.

This project has made a significant contribution to the de-

velopment of a comprehensive 3D plant root processing,

analysis, and phenotyping pipeline. By effectively restoring

missing root data, recovering root connectivity, and enhanc-

ing the accuracy of 3D model reconstruction, this project

exhibits considerable potential in assisting root structure ar-

chitectures analysis for plant scientists and biologists.
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