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Abstract

Optimal plant reconstruction is an essential element in
automating our future agriculture. Computerized inspec-
tion of proper growth, nutrition, or pest infestation has
become mandatory in fully autonomous in-door or micro-
farm settings, shifting from fixed to moving camera systems.
In industrial environments, plant scanning must work effi-
ciently with a limited number of significant images to be-
come economically viable. We present an adaptive learning
algorithm for agricultural plant inspection robots, in par-
ticular, a specific type of reinforcement learning that we
developed for our micro-farming platform created within
the EU project ROMI. We suggest a new approach to 3D
plant reconstruction by integrating the space carving tech-
nique with categorical Deep Q-Networks. Space carving
leverages images captured from various positions to create
a binary voxel grid, representing the occupied and unoccu-
pied spaces of the scanned object. The proposed method
incorporates partial 3D reconstructions of plants obtained
through space carving, which get compared to a ground
truth model to calculate the reward and guide scanning
policies. We explain the algorithmic details and the 3D re-
construction technique in design, implementation, and eval-
uation. Experimental results confirm our approach’s effec-
tiveness in improving the 3D plant reconstruction process,
highlighting its potential for further applications in agricul-
ture and related fields.

1. Introduction

3D plant reconstruction has become an essential tool for

understanding plant growth and development, facilitating

advances in agriculture and plant breeding [4, 7]. Accu-

rate and efficient 3D modelling techniques provide valu-

able information for monitoring plant health, optimizing re-

sources, and improving yield predictions [16]. It has crucial

applications for plant phenotyping as well as agricultural

robotics. For example, it can be used in automated pheno-

typing set up to track the growth [20] and geometry of plants

[19] or to guide the arm of a robot harvester [12]. In par-

ticular a good reconstruction of the plants enables further

processing like plant 3d segmentation [6].

Various methods have been proposed to reconstruct 3D

plant models, including ToF, stereo vision or LiDAR [13]

or photogrammetry and space carving [21]. However, these

techniques often require a significant amount of time and

manual intervention, limiting their applicability in large-

scale and real-time scenarios. Photogrammetry and space

carving require the acquisition of a collection of RGB im-

ages from various viewpoints, which has a cost in terms

of time and computing power. Some of these images may

be more informative and it is thus important to collect the

least amount of images which make the 3d reconstruction

most accurate. This adaptive planning of the trajectory of

the camera is also important in an exploration framework,

when capturing images with drones for example, where it is

known as next-best view planning, and information based

strategies [3] or reinforcement learning (RL) algorithms [5]

have been proposed. Active vision and RL algorithms have

also shown potential in optimizing image acquisition poli-

cies for 3D reconstruction tasks [8] [5]. RL algorithms en-

able an agent to learn through trial and error, finding the best

strategy to complete a task while maximizing a cumulative

reward [14]. Recently, researchers have started to explore

the integration of RL algorithms with 3D reconstruction

techniques to improve efficiency and accuracy [17] [10].

Space carving is a 3D reconstruction technique that con-

structs a binary voxel grid by processing images captured

from various positions, determining whether spaces are oc-

cupied by the scanned object or not [11]. Space carving has

been used in various applications, including object recogni-

tion and scene reconstruction [1] [9] [22].

In this paper, we propose a novel approach to 3D plant

reconstruction by integrating space carving with reinforce-
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ment learning algorithms. We investigate the potential of

space carving for obtaining partial 3D reconstructions of

plants and use them to guide the scanning policies through

reward calculation. We present the details of the reinforce-

ment learning algorithm, the space carving technique, and

the design, implementation, and testing of the algorithm.

Lastly, experimental results demonstrate the effectiveness

of the proposed method in achieving accurate and efficient

3D plant reconstructions.

2. Methods
2.1. Reinforcement learning

Reinforcement learning (RL) involves mapping situa-

tions to actions to maximize a reward signal, with the agent

discovering rewarding actions through trial and error. The

agent and environment interact in discrete time steps, with

the environment providing states and rewards, and the agent

choosing actions. The agent’s goal is to maximize expected

cumulative rewards using a policy, which maps states to ac-

tions.

A critical component of RL is the action-state value

function, Q value, representing long-term rewards. This

function is represented by a deep artificial neural network

when deep reinforcement learning techniques are used. In

this work, we implemented an enhanced Q-learning algo-

rithm called Categorical DQN (Deep Q-Network) (known

as C51).

2.2. Space carving

The space carving algorithm [11, 15] creates a 3D model

of a physical object by iteratively removing voxels from a

solid volume (Fig. 1). The initial solid cube consists of a

3D grid of voxels, all marked as undetermined (coded by

value, o = 0). Each time a new picture is acquired, a binary

mask segments the plant and the background and all voxels

projecting to background regions of the image are switched

to unoccupied (o = −1) and those belonging to the plant

region switched to occupied (o = 1). By iteratively carving

the space in such a manner, the 3d reconstruction of the

plants gets more and more refined as the number of images

taken increases.

3. Experimental setup
3.1. Agent and environment

The ROMI Plant Imager1 is a phenotyping station con-

sisting of a camera mounted on a cartesian arm [18]. To

accelerate the learning process, we use a Virtual Plant Im-

ager in the following.

In our experiment, the camera (agent) moved in a semi-

sphere space (see Fig. 2) around a plant, taking discrete 2-

1https://docs.romi-project.eu/plant imager/

Figure 1. Different steps for creating a 3D model of a plant using

space carving.

Figure 2. Representation of the camera setup. Every red point rep-

resents one possible position of the camera, resulting in a total of

720 images.

degree steps and always pointing to the centre. With three

additional vertical levels, there were 720 possible positions

for the agent.

We created 8 simulated environments for agent inter-

action, comprising 720 images each with real-world cam-

era coordinates, sourced from various plant and geometric

models in Blender2. Five environments were allocated for

training the scanning algorithm, and three for testing (see

Fig. 3).

3.2. Goals, actions, states, and rewards

3.2.1 Goal

The primary goal of reinforcement learning is to optimize

the agent’s actions to achieve a defined objective. In these

2https://www.blender.org/
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Figure 3. Five environments used for training (1-5) and three for

testing (6-8) the reinforcement learning scanning algorithm.

experiments, the aim is to obtain the best 3D reconstruction

of a plant using a limited number of 2D images taken at

different camera positions. The goal can also be viewed as

collecting the optimal set of images for the space carving

algorithm.

To evaluate reconstruction quality, a high-resolution re-

construction for each environment was used as ground truth.

Comparing current reconstructions to ground truth during

training guided the agent toward an optimal solution. The

agent learns to prioritize actions that bring reconstructions

closer to ground truth, under the constraint of allowed im-

ages. Actions are defined as discrete camera arm move-

ments along a semi-sphere trajectory around the plant, de-

tailed in the next section.

3.2.2 Actions

At every time step, the agent could perform a single action,

which corresponded to a horizontal-vertical movement

pair. The horizontal movement (circle around the plant)

was restricted to be anticlockwise and had the following

possible values which were chosen empirically:

[0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 26,

28, 30, 33, 35, 37, 40, 42, 45, 67, 90]

These values indicate how many steps the agent has to

move around the plant from the current position. Every step

represents a movement of 2° along the above-mentioned cir-

cular path. The vertical movement was composed of the

values [-3, -2, -1, 0, 1, 2, 3], which indicate the number of

steps the agent has to move vertically (there are four differ-

ent levels) from the current position. The combination of

horizontal and vertical movements results in 140 different

action pairs that the agent is able to execute.

3.2.3 States

The RL algorithm relies on rewards and states to define the

more suitable actions to execute. In this work, two RL sys-

tems were designed: one using seen images as state and an-

other using the current 3D reconstruction of the plant object.

For the image-based state, the last three images collected by

the agent were converted to grayscale and resized to 84x84

pixels (see Fig. 4).

The state representing the current carved volume com-

prised a 64x64x64 tensor (see Fig. 4). Each tensor element

represents a voxel with three possible values: -1 for empty

voxels, 0 for undetermined voxels, and 1 for solid voxels.

3.2.4 Rewards

A reinforcement learning algorithm requires the definition

of a reward function to lead the learning process. Here, we

defined the reward as the improvement (difference) of sim-

ilarity between the current state of the carved volume and

a known volume of the plant under analysis (ground truth).

This is quantified by the Intersection over Union:

IoU =
Ri ∩Rgt

Ri ∪Rgt

where Rgt and Ri are the sets of voxels for the ground truth

reconstruction and the reconstruction at iteration i respec-

tively. This calculation was made at every time step in the

training process.

3.3. DQN model

We implemented Categorical DQN (C51) in this work.

Traditional Q-learning algorithms learn a Q function to pre-
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Figure 4. State represented by images (grey) and represented by

volume (green). A partially reconstructed plant is also shown.

dict long-term rewards from a certain action and state, using

the average of observed rewards. However, this discards

valuable information about the environment. To address

this, C51 predicts a histogram model for the Q-value prob-

ability distribution instead of just the expected value. This

approach improves stability during training and enhances

performance [2].

The model structure (Fig. 5) consists of three main parts:

• Experience Replay
This is a ring buffer used to keep a history of sam-

ples collected by the agent. It is only required in

the training process in order to improve sample effi-

ciency (samples can be used more than once for train-

ing the model). Additionally, selecting batches of sam-

ples from different episodes avoids feeding the model

with highly correlated data, which improves the con-

vergence of the system. Our models used a buffer of

50000 elements with a batch size of 64.

• Q-function
This is a neural network that predicts the probability

distribution of state-action values. In training mode, it

is fed from the experience replay buffer with batches

of samples, while in normal mode it gets samples di-

rectly from the environment. This network consisted

of 3 layers of 3D convolutions (for processing the carv-

ing volume), followed by 2 fully connected layers. The

same architecture applies to the models with images

Environment

Epsilon
greedy

Q(s,a)
NN

Experience replay Action selection

Ring 
bu er

ActionState, reward

SARS

Agent

Figure 5. Reinforcement learning architecture.

as states, with the only difference being that 2D con-

volutions were used before the Fully Connected (FC)

layers.

• Action selection
This module utilises the epsilon greedy algorithm for

selecting the action the agent is to execute. This al-

gorithm selects the action with the best expected cu-

mulative reward obtained from the Q function within

a specified probability. Otherwise, it chooses an ac-

tion randomly. This random action selection is useful

in the training process because it helps the agent to ex-

plore new action combinations that could lead to find-

ing better policies.

4. Results

Two types of reinforcement learning agents were de-

fined: one using images as state and another using the 3D

reconstruction volume. For each, three policies collecting

8, 16, and 32 images were trained, resulting in six policies.

Each movement had to generate an image, with no move-

ment allowed without taking one.

During training, an environment was randomly chosen

(see Fig. 3), and data collected for one episode, and re-

peated for every episode. The goal was to learn a policy for

good 3D reconstruction in training environments, expected

to work for unseen environments.

The six trained policies were tested in 200 episodes with

random initial positions across environments. Figures 6a,

6b, 8a, 8b, and 8c display the mean and standard deviation

of similarity between the reconstructed volume and ground

truth for environments 3 and 4, and 6, 7, and 8, respec-

tively. To evaluate if agents learned to find good image sets,

two random policies were tested: one selecting positions
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(a) Training results for environment 3 for 8, 16, and 32 steps.

(b) Training results for environment 4 for 8, 16, and 32 steps.

Figure 6. Similarities (IoU) between the 3D reconstructions and

the ground truth model for the training environments 3 and 4. Four

different policies are compared: one selecting random positions,

one executing random actions, one RL trained using images as

inputs, and one RL trained using the reconstruction volume.

randomly with a uniform distribution and another executing

random actions.

Trained policies achieved better 3D reconstructions than

random ones in most tests. However, using more images

diminished this advantage. For instance, in environment 4

with 32 images, all policies had similar results (Fig. 6b). As

more images are used, finding better camera views becomes

less important since object coverage improves. This is sup-

ported by 8-image tests, where the IoU difference was sig-

nificantly better than random policies. In more constrained

environments, learned policies tend to find better camera

views.

By comparing the learned policy using images as state

against the one using the reconstructed volume, it is shown

that their performance is very similar in all environments

except for environment 3, where the policy using the vol-

ume achieved an IoU up to 10 percent better than the one

using images (Fig. 6a).

The test plots revealed that learned policies did not per-

form well compared to random ones in environment 6 (Fig.

8a), except for the 8-image test using images as state. How-

ever, in environment 7 when the plant was placed next to a

wall, learned policies achieved better results (Fig. 8b). This

could be due to the fact that environment 6’s regular, sym-

metrical plant structure makes any viewpoint equally valu-

able for 3D reconstruction. In contrast, the wall in environ-

ment 7 obstructs some viewpoints, making random camera

Figure 7. Voxel volume (top) used for training the algorithm using

environment 2 and its post-processed version (bottom).

placement less effective, while trained policies can move to

better positions.

In Environment 8, all policies had low IoU (Fig. 8c), as

expected, since the camera’s closer proximity to the plant

requires more images to cover the entire volume. Inter-

estingly, the performance gap between random and trained

policies grows with more images taken in this environ-

ment. This could be due to the need for many more im-

ages to cover the volume, where taking a few images from

any viewpoint provides little information. Once a sufficient

number of images are taken, the impact of collecting images

from good viewpoints is reflected in the resulting similarity

ratio. Examples of reconstructions for environments 5, 6, 7,

and 8 are shown in Fig. 9.

The reconstructed volumes shown previously were set

at dimensions of 64x64x64 voxels to expedite the training

process, which might not be optimal for generating final

3D models. This can be addressed by applying a post-
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(a) Test results for environment 6 for 8, 16, and 32 steps.

(b) Test results for environment 7 for 8, 16, and 32 steps.

(c) Test results for environment 8 for 8, 16, and 32 steps.

Figure 8. Similarities (IoU) between the 3D reconstructions and

the ground truth model for the test environments. Four different

policies are compared: one selecting random positions, one exe-

cuting random actions, one RL trained using images as inputs, and

one RL trained using the reconstruction volume.

processing step to the collected images. Alongside saving

the images, the algorithm should also save the camera posi-

tions where the images were taken, allowing space carving

to be reapplied for generating volumes with a higher voxel

density. Fig. 7 illustrates the volume used for training and

the resulting post-processed volume.

5. Conclusion

This work demonstrates an adaptive reinforcement learn-

ing algorithm developed for the micro-farming platform

within the EU project ROMI, focusing on the innovative

integration of space carving techniques with reinforcement

learning algorithms for 3D plant reconstruction. Space

carving uses images captured from various positions to cre-

ate a binary voxel grid representing the occupied and unoc-

cupied spaces of the scanned object.

The experimental results demonstrate the effectiveness

of this approach in improving the 3D plant reconstruc-

tion process, showcasing its potential for broader applica-

tions in agriculture and related fields. Future work will fo-

cus on adapting the algorithms for real-world environments

and integrating them with real robotic platforms, enabling

more sophisticated 3D reconstruction systems and facilitat-

ing further research on sensor fusion and data-driven im-

provements to the reconstruction process.

Ultimately, this research highlights the effectiveness of

reinforcement learning in 3D plant reconstruction and its

ability to adapt to new situations. The ongoing work in

refining the approach and expanding its use in agricultural

robots and 3D reconstruction will lead to further advance-

ments and practical applications in the field.
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(a) Environment 5 with 32 images. (b) Environment 6 with 8 images.

(c) Environment 7 with 16 images. (d) Environment 8 with 32 images.

Figure 9. 3D reconstructions for different environments.
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