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Abstract

The process of recognizing and distinguishing between
real content and content generated by deep learning algo-
rithms, often referred to as deepfakes, is known as deepfake
detection. In order to counter the rising threat of deepfakes
and maintain the integrity of digital media, research is now
being done to create more reliable and precise detection
techniques. Deep learning models, such as Stable Diffusion,
have been able to generate more detailed and less blurry
images in recent years. In this paper, we develop a deep-
fake detection technique to distinguish original and fake
images generated by various Diffusion Models. The devel-
oped methodology for deepfake detection takes advantage
of features from fine-tuned Vision Transformers (ViTs), com-
bined with existing classifiers such as Support Vector Ma-
chines (SVM). We demonstrate the proposed methodology’s
ability of interpretability-through-prototypes by analysing
support vectors of the SVMs. Additionally, due to the
novelty of the topic, there is a lack of open datasets for
deepfake detection. Therefore, to evaluate the methodol-
ogy, we have also created custom datasets based on var-
ious generative techniques of Diffusion Models on open
datasets (ImageNet, FFHQ, Oxford-IIIT Pet). The code is
available at https://github.com/lira-centre/
DeepfakeDetection.

1. Introduction

A variety of social and security challenges have emerged

in the current digital environment as a result of the

widespread use of deepfakes, which convincingly mod-

ify media produced using cutting-edge deep learning algo-

rithms. This endangers verifiability and validity of digi-

tal media. The availability of existing software platforms,

which can be easily accessible by end-users, opens the

door to dangerous applications. The study [37] shows that

spreading false information through artificially generated

*Dmitry Kangin and Agil Aghasanli are both first authors of this paper.

content, such as text and visuals, can deceive millions of

users and reduce trust in social media platforms; therefore,

it may have detrimental effects on society. Additionally,

various records [27] show a dramatic increase in deepfake-

based theft and fraud over recent years. In certain simi-

lar settings, such as immersive virtual reality, it has been

demonstrated to interfere with human psychological mech-

anisms, such as implanting false memories in individuals

who have been exposed to fake content continually [16, 33].

Figure 1: Example of SVM explainability: the image on

the right side represents the sample query image, while the

left side shows images corresponding to the closest (top to

bottom) three support vectors in feature space. For more

details, see subsection 4.3

In order to analyze and spot visual anomalies and in-

consistencies in media, deep learning has emerged as an

effective tool for deepfake detection. Deep learning mod-

els have the potential to mitigate the risks deepfakes pose.

Another crucial step in addressing the problem of Deep-

Fakes is creation of datasets using deepfake generating

techniques. These datasets offer representative samples of

changed media to academics and industry specialists, en-

abling creation and assessment of reliable detection sys-

tems. Some big technology companies, such as Meta [12],

have partnered with academics to create datasets to over-
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come the issues of deepfakes. By training deep learning

techniques on those datasets, we can effectively recognize

and distinguish between fake and original content.

In this paper, we propose a methodology based on Vi-

sion Transformers to distinguish deepfake images, which

are generated by diffusion models, from the original ones.

We have also created custom datasets to train our models

by utilizing various Latent Diffusion and Stable Diffusion

model-based fake generation techniques on open datasets

(ImageNet [9], Oxford-IIIT Pet [28], FFHQ [21]). In ad-

dition, we also provide explainability to understand the

decision-making process through eXplainable Deep Neural

Network (xDNN) [1] and Support Vector Machine (SVM)

classifiers. xDNN is a prototype-based interpretable ar-

chitecture that showed great performance on various tasks,

such as semantic segmentation of satellite images for Earth

Observation [42] and detection on CT scans for Covid-19

identification [35]. This paper aims to contribute to this field

by focusing on three key aspects:

• We have developed a deepfake detection model

based on fine-tuned and non-fine-tuned (pre-trained on

ImageNet-1K) Vision Transformer features and vari-

ous classifiers to perform comparative analysis.

• We have created datasets for the deepfake detection

task based on images generated using different fake

generation techniques with diffusion models, such as

class-conditional and unconditional fake image gen-

eration with Latent Diffusion models and a text-

guided image-to-image generation using Stable Diffu-

sion models.

• We provide interpretability to understand how and why

particular predictions are made. We use SVM and

xDNN classifiers to figure out models’ behavior by an-

alyzing the closest support vectors and prototypes for

each classifier, respectively.

2. Related Work

Deepfake Generation. With the development of deep

learning models and algorithms, deepfake generating tech-

niques have advanced quickly. By training discriminator

and generator networks in an adversarial way, GANs [15]

have demonstrated an outstanding ability in synthesising

very realistic and convincing deepfakes. During training,

the discriminator network tries to separate fake material

from original content while the generator network generates

fake content. Several GAN-based techniques [3, 26, 14, 41]

have been applied to generate high-quality DeepFake im-

ages, specifically in the domain of DeepFake Face gener-

ation. Moreover, FaceForensics++ [32] is an open dataset

that contains images generated by GAN, and it has been

used as a benchmark dataset for DeepFake Detection Chal-

lenge.

Utilising Variational Autoencoders (VAE) [22] is yet an-

other noteworthy method for deepfake generation. By map-

ping random noise to the learnt latent space, a Variational

Autoencoder (VAE) learns a compressed representation of

the data distribution and enables controlled generation of

fake samples. Various modifications of VAE [34, 38, 40]

have been developed in recent years and have shown great

performance in creating DeepFake images on open datasets,

such as CIFAR-10 [24], MNIST [10], FFHQ and ImageNet.

Additionally, Celeb-DF [25] and DeeperForensics-1.0 [20]

have been extensively used for benchmarking of deepfake

detection models, where images are generated with Autoen-

coder models in those datasets.

The generation of realistic fake samples with sharper fea-

tures and less blurriness is made possible by diffusion mod-

els [18], which involve repeatedly updating an initial noise

distribution to match the desired data distribution. Diffu-

sion models are able to generate more highly detailed im-

ages than GANs [11] and VAEs [19], which make the deep-

fake detection task hypothetically more complex. However,

there exist very few open datasets [4] for benchmarking of

deepfake Detection on Diffusion Model generated images.

Deepfake Detection. To classify deepfake images, some

methods use Convolutional Neural Networks (CNN) [23,

5]. The work [6] utilizes optical flow fields in order to

exploit inter-frame correlations. Target-specific region ex-

traction layer for the CNN architecture [36] has also been

used to feed only the most important information to the

model. The proposed model [2] is based on feature extrac-

tion from the trained CNN model and XGBoost for clas-

sification. The composite method [29], which consists of

state-of-the-art Deep Learning models, is also used on the

DeepForensics++ dataset.

In addition, Vision Transformers are also applied to the

deepfake detection problem in recent years. The use of Ef-

ficientNet as a feature extractor for the Vision Transformers

model [7], and combining CNN features with patch embed-

dings [17] have been analyzed to distinguish fake and orig-

inal contents.

Not only there is a lack of open datasets for deepfake

detection with images generated by diffusion models, but

also very few works [8, 30] have examined the detection of

diffusion models’ fake images.

3. Methodology

3.1. Dataset Creation

In this section, we describe the creation process for four

different datasets for deepfake detection based on open

datasets (Oxford-IIIT Pet, ImageNet, FFHQ) with the help

of several fake generation techniques of Latent Diffusion
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and Stable Diffusion Models (class-conditional, uncondi-

tional, image-to-image generation).

Oxford-IIIT Pet Deepfake dataset. A popular dataset

for fine-grained image classification tasks is the Oxford-

IIIT Pet Dataset. It is made up of images of cats and dogs

from 37 different breeds. We have created a new dataset

for deepfake detection based on Oxford-IIIT Pet in this

work. To create the dataset, we used the Stable Diffusion

Model’s text-guided image-to-image fake generation tech-

nique [31]. This approach is based on Denoising Diffusion

Implicit Models (DDIM), and requires a text prompt and an

input image for conditioning to generate fake images. We

took all images from the Oxford-IIIT Pet dataset (approx-

imately 7400 images) and combined them with the same

number of fake images, which are generated by the Stable

Diffusion Model’s image-to-image generation approach for

each image in the dataset with resolution 448x320 while set-

ting class names as a text prompt; so, the new Oxford-IIIT

Pet Deepfake dataset consists of roughly 14800 images as

a whole. We set the DDIM steps to 30, the downsampling

factor to 8, and the strength of noising to 0.75 (1.0 refers to

the total destruction of information in the initial image).

Figure 2: Original samples from Oxford-IIIT Pet dataset

and corresponding fake generated images by Stable Diffu-

sion’s image-to-image technique

ImageNet-1K Subset Deepfake dataset with class-
conditional approach. The ImageNet-1K dataset, some-

times referred to as the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) dataset, is a frequently

used benchmark dataset in the field of computer vision. It

consists of a set of labeled images representing 1,000 dis-

tinct classes with approximately 1300 images for each class

for the training. We have selected only a small subset of the

ImageNet-1K dataset, which consists of 10 classes, for this

work; then, we created a deepfake detection dataset based

on that. We have used Latent Diffusion Model’s (LDM)

class-conditional image synthesis approach with the pre-

trained LDM on ImageNet-1K. It uses the images from the

sample (specific class images) to generate high-quality fake

images. We have generated 1000 images for each class in

the selected subset of ImageNet-1K by class conditioning

with resolution 256×256 and combined them with the orig-

inal images in the same subset; hence, the new deepfake de-

tection dataset based on the subset of ImageNet-1K consists

of around 23000 images.

Figure 3: Examples of generated images on ImageNet with

class-conditional LDM

ImageNet-1K subset deepfake dataset with image-to-
image approach. To create this dataset, we have used the

same subset of the ImageNet-1K dataset, but the image-to-

image generation technique of the Stable Diffusion Model

is utilized at this time. Similarly, the same number of im-

ages are generated in the original subset of ImageNet-1K

by the image-to-image approach for each image with class

names as a text prompt. Overall, this deepfake detection

dataset is composed of around 26000 images. To generate

corresponding fake images, we again set the parameter val-

ues to 30, 8, 0.75 for DDIM steps, downsampling factor and

strength of noising, respectively.

FFHQ Deepfake dataset. FFHQ, or ”Flickr-Faces-

HQ,” is a dataset that is often used in the fields of com-

puter vision and machine learning. It is made up of high-

quality, high-resolution face photos that were gathered from

the photo-sharing website Flickr. FFHQ dataset for deep-

fake detection was built from 54000 original images from

FFHQ and merged with 50000 fake generated human faces

based on unconditional image synthesizing of Latent Dif-

fusion Model, which pre-trained on FFHQ. Unconditional

image synthesizing is generating new images without con-

ditioning and any specific input where just only trained

dataset features are concerned during the generation of fake

images. To generate fake images, batch size was set to 10,

number of steps ddim sampling was 50 and η for ddim sam-

pling was 1.

Figure 4: Sample generated human faces by unconditional

LDM
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3.2. Deepfake Detection Model

The architecture used in this work is composed of two

main parts: the feature extractor and the classifier. Vi-

sion Transformer [13] (ViT) takes advantage of the trans-

former architecture to recognize pictures as sequences of

patches rather than as a grid of pixels. Instead of convolu-

tional processing, it divides images into fixed-sized patches

and flattens them; then, it feeds all this sequential data to

transformer layers. The ViT model enables the attention

mechanism to attend to both local patch-level information

as well as the overall image-level context by incorporating

the class token in the input sequence. It gives the model

the ability to discover representations that include both fine-

grained local information and high-level semantic informa-

tion necessary for tasks like picture categorization. We used

the specific Vision Transformer model, named Vit-L-32,

and trained several classifiers (SVM, KNN, Naive Bayes,

xDNN) based on extracted 1024 dimensional class tokens

of the ViT model. We also compared the classifiers’ perfor-

mance on pre-trained features of ViT (trained on ImageNet-

1K) or fine-tuned features of the model trained on cus-

tom datasets in this work as a binary classification problem

(original or fake), where it will be described more specifi-

cally in the section 4 of this paper.

The architecture is shown in Figure 5 in more detail.

4. Results
4.1. Testing on single datasets

We fine-tune a ViT-L-32 architecture, pre-trained on

ImageNet-21K, on our custom datasets. We present the

problem as the one of binary classification (original or fake),

where MLP is used in the classification part as in original

ViT models. For every dataset, the model has been trained

over five training epochs, with the batch size of 32 for

the FFHQ Deepfake dataset and 16 for others. While tak-

ing into account that Deepfake FFHQ is the largest dataset

among them, we set batch size relatively greater value to

accelerate the training process. We provided a training loss

over the training steps in Figure 8.

We have evaluated several classifiers (KNN, SVM,

Naive Bayes) using both pre-trained and fine-tuned ViT-

L-32 architecture as a feature extractor by setting 10%
of the whole data for testing. We can clearly see that

SVM with pre-trained and MLP Head with fine-tuned fea-

tures performed best among the classifiers for three datasets

(Oxford-IIIT Pet Deepfake, with image-to-image ImageNet

Deepfake, class-conditional ImageNet Deepfake) used in

this study from Table 1. On the other hand, only SVM

performed very well on pre-trained features, while we can

say that all classifiers showed competitive results with fine-

tuned results. 2D tSNE visualization of image-to-image

ImageNet Deepfake subset training and testing samples

with fine-tuned and pre-trained features are provided in Ap-

pendix A.

Classifier Accuracy Features

MLP Head 99.5% fine-tuned

SVM 96.9% pre-trained

SVM 93.0% fine-tuned

KNN 87.2% fine-tuned

Naive Bayes 85.9% fine-tuned

KNN 77.2% pre-trained

Naive Bayes 72.7% pre-trained

(a) Results on Oxford-IIIT Pet Deepfake dataset

Classifier Accuracy Features

SVM 98.0% pre-trained

MLP Head 96.7% fine-tuned

SVM 93.4% fine-tuned

KNN 90.2% fine-tuned

Naive Bayes 89.5% fine-tuned

Naive Bayes 79.9% pre-trained

KNN 79.0% pre-trained

(b) Results on image-to-image ImageNet Deepfake subset

Classifier Accuracy Features

MLP Head 99.7% fine-tuned

SVM 96.0% pre-trained

SVM 94.7% fine-tuned

KNN 93.4% fine-tuned

Naive Bayes 90.5% fine-tuned

Naive Bayes 69.2% pre-trained

KNN 65.8% pre-trained

(c) Results on class-conditional ImageNet Deepfake subset

Table 1: Testing results on corresponding datasets across

classifiers. All classifiers are prototype-based except MLP

Head.

We have also tested and compared five classifiers (MLP

Head, SVM, KNN, Naive Bayes, xDNN) on the FFHQ

Deepfake dataset with fine-tuned features. It can be said that

MLP Head classifier performed the best again among all

classifiers, and xDNN also showed satisfactory results. The

megaClouds layer generated by the xDNN can be visualized

by tSNE [39] plots or Voronoi Tessellations to understand

further how the model found prototypes and how separable

they are. tSNE and Voronoi Tessellation plots, representing

the xDNN MegaClouds layer on FFHQ Deepfake, are de-

scribed in Figure 6 and Figure 7, respectively. As demon-

strated in those figures, xDNN found 9 prototypes for the

Original class and 18 prototypes for the Fake class. Con-

sidering that xDNN is a prototype-based and interpretable

model, we also provided explainability for that classifier by

extracting rules on the FFHQ Deepfake dataset, which will

470



Input Patches

L
in

ea
r

p
ro

je
ct

io
n

o
f

p
at

ch
es

C
la

ss
/P

o
si

ti
o

n
al

E
m

b
ed

d
in

g
s

T
ra

n
sf

o
rm

er
E

n
co

d
er

C
la

ss
ifi

er

P
re

d
ic

ti
o

n

ViT-L-32 Feature Extractor

Figure 5: Deepfake detection model architecture

be described in the subsection 4.3 of this paper.

Classifier Accuracy Features

MLP Head 99.4% fine-tuned

SVM 97.2% fine-tuned

KNN 94.4% fine-tuned

xDNN 91.1% fine-tuned

Naive Bayes 85.2% fine-tuned

Table 2: Results on FFHQ Deepfake dataset

Figure 6: TSNE plot of xDNN MegaClouds layer on Deep-

fake FFHQ dataset

Model parameters The model implementation uses

Python 3.10, torch 2.0.1 (with cuda support) and sklearn

1.2.0. SVM implementation uses RBF kernel; the rest

of the parameters are default for sklearn implementation.

For Naive Bayes, sklearn implementation of Gaussian

Naive Bayes, which can be imported as GaussianNB from

sklearn.naive bayes, is used with default parameters. We

Figure 7: Voronoi Tessellation of xDNN MegaClouds layer

on Deepfake FFHQ dataset

also used sklearn implementation of KNN, while the best

K value is selected based on the error rate across various K

values between 1 and 40. The MLP architecture represents

final two layers, finetuned to provide a binary classification

output.

4.2. Testing with cross-dataset approach

We have tested classifiers on cross-dataset domains.

Cross-dataset testing in machine learning refers to the eval-

uation of a trained model on one or more datasets that dif-

fer from the datasets used for training. By examining a

model’s capacity to produce precise predictions on unseen

data from many sources or domains, it is possible to evalu-

ate a model’s generalization performance. When a model is

applied to data that is different from the data it was trained

on, this method aids in identification of any biases, overfit-

ting, or performance restrictions.

The classifiers have been with both pre-trained and fine-

tuned features, trained on the image-to-image ImageNet

Deepfake subset and testing on the Oxford-IIIT Pet Deep-

fake dataset and vice versa. Both datasets have been cre-
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(a) Deepfake FFHQ dataset fine-

tuning

(b) Deepfake Oxford-IIIT Pet

dataset fine-tuning

(c) Class-conditional ImageNet

Deepfake dataset fine-tuning

(d) Image-to-image ImageNet

Deepfake dataset fine-tuning

Figure 8: Fine-tuning loss over the training steps

ated by image-to-image generation technique of the Stable

Diffusion Model. Table 3 represents classification accura-

cies for the classifiers in all domains. It indicates that all

classifiers can better generalize the data with fine-tuned fea-

tures, which can be interpreted that they are more specific

to distinguishing fake and original images. 2D tSNE plot of

testing samples of Oxford-IIIT Pet dataset with fine-tuned

features on image-to-image ImageNet Deepfake subset is

provided in Appendix A. According to that plot, we can see

that there are a large number of scattered points between

the two classes compared to other tSNE plots, which can

explain why KNN showed 50.1% accuracy while consid-

ering that it predicts a new data point based on its nearest

neighbors.

Classifier Accuracy Features

MLP Head 81.3% fine-tuned

SVM 80.9% fine-tuned

KNN 79.4% fine-tuned

Naive Bayes 75.7% fine-tuned

SVM 74.8% pre-trained

Naive Bayes 72.4% pre-trained

KNN 50.0% pre-trained

(a) Classification results on image-to-image ImageNet Deepfake sub-

set by training on Oxford-IIIT Pet Deepfake dataset

Classifier Accuracy Features

MLP Head 84.0% fine-tuned

SVM 80.5% fine-tuned

Naive Bayes 76.4% fine-tuned

KNN 75.0% fine-tuned

SVM 64.7% pre-trained

Naive Bayes 55.5% pre-trained

KNN 50.1% pre-trained

(b) Classification results on Oxford-IIIT Pet Deepfake dataset by

training on image-to-image ImageNet Deepfake subset

Table 3: Results of cross-dataset approach

4.3. Interpretability

The interpretability for classifiers such as SVM or xDNN

is provided through similarity through prototypes.

SVM. To interpret model’s behaviour in particular situ-

ations, we have selected the three closest support vectors to

the specific testing samples in the feature space. To calcu-

late the distance between the sample and support vectors,

we have used the Euclidean distance in n-dimensional fea-

ture space (in a case, n = 1024-dimensional) as represented

in equation 1, and selected corresponding support vector

samples from the training dataset to visually interpret the

model behaviour through prototypes:

d (p, q) =

√√√√
n∑

i=1

(qi − pi)
2

(1)

xDNN. On selected use cases, we demonstrate inter-

pretability with a prototype-based classifier xDNN. We cal-

culated the similarity score (Euclidean distance in feature

space) between an input image and all identified prototypes,

so, we were able to extract the rules for each specific sample

to explain the model’s behavior as described:

Rc : IF (I ∼ Î1) OR (I ∼ Î2) OR ...

OR (I ∼ Îp) THEN (class c)
(2)

where I stands for the input image, P is the number of iden-

tified prototypes, and c is the class. The ∼ sign simply de-

notes the similarity.

Figure 9: Use case example of xDNN Interpretability on

’Original’ class of FFHQ Deepfake dataset with top 3 clos-

est prototypes on feature space
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5. Conclusion

In this paper, we developed a deepfake detection model

based on Vision Transformer features to differentiate fake

and original images, which are generated diffusion mod-

els. We created four different datasets as deepfake counter-

parts to open datasets (ImageNet, FFHQ, Oxford-IIIT Pet)

with Stable Diffusion and Latent Diffusion models. We

also presented interpretability techniques based on SVM

and xDNN results to understand the reason why particular

predictions are made by models. Various classifiers (SVM,

KNN, Naive Bayes, xDNN) are compared with fine-tuned

and non-fine-tuned (pre-trained on ImageNet-1K) features

of Vision Transformer architecture (ViT-L-32) based on

each custom deepfake detection dataset used in this work.

We demonstrate that foundation models such as ViT can

be successful in telling apart real and fake images, includ-

ing in the interpretable-through-prototypes learning scenar-

ios. We showed that classifiers performed particularly well

on single datasets on fine-tuned features, while SVM also

showed great results on features of Vision Transformer pre-

trained on ImageNet-1K. Moreover, the eXplainable Deep

Neural Network (xDNN) model showed satisfactory results

on the FFHQ Deepfake dataset, which is specifically a large

dataset compared to others, with fine-tuned features. It

can also be shown that the results of all classifiers with

fine-tuned features outperform the results with pre-trained

weights in the cross-dataset domain. In future work, we

will focus on creating larger and more representative deep-

fake datasets to perform comparative analysis in the cross-

dataset domain while considering that classifiers demon-

strated better generalization ability with features of the fine-

tuned model on relatively small deepfake detection datasets

(Oxford-IIIT Pet Deepfake, image-to-image ImageNet sub-

set Deepfake).
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