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Abstract

“Generalizability” is seen as the hallmark quality of a
good deepfake detection model. However, standard out-of-
domain evaluation datasets are very similar in form to the
training data and lag behind the advancements in modern
synthesis methods, making them highly insufficient metrics
for robustness. We extend the study of transfer performance
of three state-of-the-art methods (that use spatial, temporal,
and lip-reading features respectively) on four newer fake
types released within the last year. Depending on the ar-
tifact modes they were trained on, detection methods fail
in different scenarios. On diffusion fakes, the aforemen-
tioned methods get 96%, 75%, and 51% AUC respectively,
whereas on talking-head fakes, the same methods get 80%,
99%, and 92% AUC. We compare various methods of com-
bining spatial and temporal modalities through joint train-
ing and feature fusion in order to stabilize generalization
performance.

We also propose a new, randomized algorithm to syn-
thesize videos that emulate diverse, visually apparent ar-
tifacts with implausibilities in human facial-structure. By
testing deepfake detectors on highly randomized artifacts,
we can measure the level to which detection networks have
learned a strong model for “reality”, as opposed to memo-
rizing subtle artifact patterns.

1. Introduction

Deepfakes are artificially generated videos of humans,

created using deep neural network-based generators. While

these videos are often visually impressive, their potential

for deception and misuse is significant [53]. The threat

of deep-fake videos has prompted significant research into

techniques for detection, which often involves training bi-

Figure 1. Artifacts can manifest very differently depending
on the type of deepfake. Notice that the Face-Swap fake (left)

from [27] has a discolored spot on the right cheek, which can be

detected with a typical spatial classifier. While the frame-level

quality of the 3D-motion driven fake [8] is high, temporal detec-

tion methods with strong attention mechanisms between adjacent

frames should be able to pick up the sudden change in shape of the

highlighted hair strand. The diffusion synthesized video [41] has

an unnatural blotting of the shadow under the left nostril across

two frames.

nary classifiers to detect manipulated image sequences on

a large set of deep-fakes and measuring their performance

on various benchmarks. While one can trivially achieve

good results on the training set using out-of-the-box im-

age and video classification models (such as XceptionNets,

ResNets, and EfficientNets) [38], achieving good general-

ization when evaluating on deep-fakes and other types of

manipulation that are outside the training domain is consid-

erably more challenging [20, 23]. To overcome this, recent

methods introduce inductive biases by restricting the train-

ing architecture to features along a single modality [60, 13]

or patch-wise constraints [10] to prevent the network from

picking up on easy-to-detect artifacts that are specific to

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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the deep-fakes in the training dataset. This is a counter-

intuitive result: one would imagine that accessing multiple

cues and artifact modes would yield superior generaliza-

tion capabilities; yet, leading detection methods only gen-

eralize when they abandon certain detection modes entirely

[60, 40]. When artifacts get sparse, overly relying on hand-

picked cues has its costs. Newer fakes, for example, can

be produced by neurally rendering the image from scratch,

rather than modifying a target video on a pixel-level using

face-swap and warping, without the distributional inconsis-

tencies between the inside and the outside of the face that

existing detectors rely on [57] [5].

We conduct evaluations of state-of-the-art detection

methods on four such newer, neural rendering deep-fake

creation methods [41, 8, 11, 54] along with the common

high quality benchmark in Celeb-DF [28], and find that

methods can perform well on one fake type and fail dra-

matically on another. We showcase the variance in artifact

modes using anecdotal examples from our proposed eval-

uation suite in Figure 1. We explore the complementarity

of the spatial and temporal modalities as a means to sta-

bilize generalization performance across a variety of fakes

in Section 5. Importantly, we note that since prior works

have not handcrafted their methods with the fakes from our

evaluation-suite in mind, the results in our paper act as a le-

gitimate test-set record of how state-of-the-art methods gen-

eralize to unseen manipulation types [41, 8, 11, 54].

Still, as such creation methods get incorporated into

out-of-domain evaluation datasets, it is possible to design

newer inductive biases that can saturate performance on

these benchmarks too. Towards this, we propose the use

of a simulated generalizability evaluation (SGE), where we

simulate spatial and temporal deepfake artifacts in videos

of human faces with a Markov process. We argue that a

sufficiently generalizable detection method should be able

to identify these artifacts, since they reflect implausibilities

in facial structures that can accompany unseen manipula-

tion types. Our design of SGEs is modeled off prior work

[40, 23] that use synthetic data to train deepfake detectors,

but with modifications to produce richer temporal artifacts

and spatial localization.

2. Related Work: Deepfake Synthesis

2.1. Facial Retargetting

Synthesizing deepfakes has historically been formulated

as a face retargetting problem. Early methods used alpha

and poisson blending schemes to replace the pixels in the

target image [49]. Eventually, to deal with pose and pos-

ture in the target video, Thies et al. adopted explicit 3D

models or texture maps to estimate facial motion from RGB

video and transfer it to a target face [45, 44]. The landscape

for facial retargetting changed dramatically with generative

models such as GANs that reapplied similar ideas from pre-

vious facial retargetting and face-swap methods using an

adversarial classifier for hyperrealism [21] [34] [32]. Li et
al. developed FaceShifter to incorporate the crucial lighting

details of the scene into facial retargetting to enhance the re-

alism of the rendered videos [22]. Wav2Lip changes the for-

mulation of the facial retargetting, conditioning on an input

audio sequence, rather than facial movement, to get around

structural differences between the source and target [35].

2.2. Neural Rendering

Recently, neural rendering-based deepfakes have be-

come a popular way to generate deepfakes with fewer

artifacts. While these methods are still conditioned on

pose or input audio, they do not modify a target video

sequence to produce the deepfake. These methods use

generative models and volumetric representations to ren-

der the video sequence from scratch. Recently, Shen et
al. and Stypulkowski et al. use denoising diffusion mod-

els to auto-regressively sample frames of the target speaker

conditioned on source audio and a single image [39, 41].

Other methods use normalizing-flows [47], and GANs to do

motion-transfer, also using a single target image [54, 46].

MegaPortraits uses super-resolution networks to generate

particularly high resolution talking heads [8].

Recent work has shown that hybrid graphics pipelines

too, potentially including the use of 3D models, also allow

for more realistic facial expressions and movements [43]. Ji

et al. and Gurunani et al. decompose the audio-conditioned

generation problem into predicting facial landmark trajec-

tories, and then rendering them with either a neural transfer

or computer graphics model [18] [11]. Liu et al. [30] use

Neural Radiance Fields to train implicit representation net-

works for each scene. Due to their novelty, neural rendering

methods have not been represented in deepfake detection

datasets. This can be a problem in measuring generalizabil-

ity of detection methods, since their artifact modes diverge

significantly from facial-retargetting methods.

3. Related Work: Deep-fake Detection

3.1. Detection: Early Approaches

While supervised face-forgery detection methods ini-

tially focused on relatively shallow convolutional neural

networks [2, 1], works such as [12, 33, 56, 31, 38, 58,

61, 33, 37, 50] found success training unconstrained deep

end-to-end networks that implicitly learn to detect low-level

textural artifacts. These methods have now been shown to

be highly unstable, with dramatic drops in performance on

unseen fake types [4], video compression and perturbations

[13], as well as adversarial attacks [17].
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3.2. Detection Methods Today

Recent work has stepped away from training models

end-to-end without constraints on their representational ca-

pacity. High-level semantic methods have shown superior

generalization abilities compared to low-level techniques,

with some of the best performance on highly compressed

videos. They focus on specific features such as blink-

ing and head pose [55, 19, 25], biological and neural pat-

terns [51, 16], and the readability of lip-movements (Lip-
Forensics) [13]. Among these, LipForensics achieves strong

generalization performance and is considered a benchmark

for measuring face-forgery detection methods. They use a

frozen lipreading network as an encoder, which they feed

into a temporal classification head. Prashnani et al. use the

same architecture, but replace RGB lip-region inputs with

hand-crafted frequency-domain features [36]. Zheng et al.
[60] observe that temporal inconsistencies in generators are

more transferable between manipulation-types than spatial

artifacts, and modify the convolutional kernel size of 3D

ResNet-50 to 1x1 along the spatial axes. Another recent

method, Guan et al. [10], uses a modified version of a vision

transformer [7], analyzing temporal inconsistencies along

independent 16x16 patch sequences.

3.3. Training on Synthetic Data

In parallel, there has been an effort to increase the di-

versity of the training set by augmenting or replacing the

training-set fakes entirely with fake emulation schemes. Li

et al. [26] reproduces face warping artifacts that appear on

GAN-fakes, whereas [24, 59] focus on source-target blend-

ing region artifacts associated most commonly with face-

swaps. [40] modifies these algorithms to produce self-

blended images that use a single-image as both the source

and the target. It outperforms state-of-the-art supervised

methods on uncompressed fakes and cross-dataset gener-

alization. This method, however, is purely image-based and

could suffer dramatically when conditions around blending-

boundaries in manipulations reduce (See Figure 5). Further,

it does not consider temporal or multi-modal inconsisten-

cies that can be valuable signal for even better generaliza-

tion.

4. Improving Generalizability Metrics

4.1. Methods being Evaluated

We evaluate the following state-of-the-art methods with

publicly available code-bases:

1. Temporal: Zheng et al. [60] use a 3D Res-Net 50 [14],

and modify it to reduce the spatial kernel to a 1x1.

This is then received by multi-layer transformer net-

work [48] with the class token as proposed in [6]. The

class token is then linearly projected to predict the final

logit.

2. Self-Blended Images: Shiohara et al. train an

EfficientNet-b4 [42] on a synthetic image blend-

ing scheme using Sharpness-Aware Minimization, a

second-order optimization method [40].

3. Lip-Forensics Haliassos et al. [13] use a frozen

ResNet-18 [15] pre-trained on lip-reading, and feed it

to a MS-TCN based temporal classification head [9].

This is designed to capture unnatural movement in the

lip-region.

4.2. Higher Quality Deepfakes

Typical generalizability paradigms involve training on

four fakes types in the FaceForensics++ [38], and are then

measured on standard datasets such as DFDC [3], FFIW

[62], or Celeb-DFv2[29]. However, solely using these

datasets to measure out of domain robustness is not suf-

ficient since they are predominantly comprised of facial-

retargetting deepfakes which are similar in domain to the

training fakes, even if they come from different generators.

Further, since these datasets have existed for a while, one

runs the risk of “overfitting to the metric”. It is possible that

the handcrafted methods that measure to be generalizable

are relying on a single artifact mode that is shared between

the the training domain and out-of-domain datasets. To test

this hypothesis, we re-evaluate transfer accuracy by com-

plementing the Celeb-DFv2 dataset with four other unseen

manipulation types that are released within the last year.

We detail the manipulation types below:

1. Face-Swap (2020)
We use 340 samples from test set of Celeb-DFv2 [27]

to evaluate generalizability on Face-Swap fakes. The

fakes are generated using an undisclosed Deep-Fake

algorithm with additional post-processing to remove

otherwise clearly visible color and frequency related

artifacts. The results from our re-evaluation are on Fig-

ure 2.

2. MegaPortraits (2022)
We use 48 samples from the test-set output of the

method from [8]. This method transfers the expres-

sion from the source video onto a target image. To

encode the appearance of the target frame [8] predict

volumetric features, a global descriptor, and an ap-

pearance encoder. In parallel, they predict the motion

representations from the driving video, including head

motions and latent descriptors. This in turn outputs a

3D warping operations that map the current expression

to a canonical space, and then re-warp it into the tar-

get expression. Figure 3 plots the logit distribution of

state-of-the-art methods on this synthesis method.

428



Figure 2. Logit Distribution on Face-Swap Fakes: We use a

fixed bin width histogram to plot the predicted logit distribution

(ln Pfake
1−Pfake

) using the models from [60], [40], and [13] and the

fake-set from [29]. AUC scores are parenthesized for reference.

Figure 3. Logit Distribution on Mega-Portrait Fakes: We use a

fixed bin width histogram to plot the predicted logit distribution

(ln Pfake
1−Pfake

) using the models from [60], [40], and [13] and the

fake-set from [8]. AUC scores are parenthesized for reference.

3. Diffusion (2023)

Diffusion methods originally popularized for text-to-

image-synthesis have been successfully repurposed for

talking head generation. Stypulkowski et al. uses an

auto-regressive diffusion model that samples frames

conditioned on input audio and an image of the tar-

get speaker [41]. The results from evaluating on 820

test-set outputs are in Figure 4.

4. Speech Conditioned Face-Vid2Vid (2022)

Face-Vid2Vid was originally proposed by [52], where

they synthesize a talking-head video using the target

Figure 4. Logit Distribution on Diffusion Fakes: We use a

fixed bin width histogram to plot the predicted logit distribution

(ln Pfake
1−Pfake

) using the models from [60], [40], and [13] and the

fake-set from [41]. AUC scores are parenthesized for reference.

person’s appearance and a driving video. Gurunani et
al. extend this [11] to be speech conditioned by pre-

dicting target landmarks using an LSTM before Face-
Vid2Vid renders them from projected latents. We eval-

uate on 100 sample videos (see Figure 5).

Figure 5. Logit Distribution on Face-Vid2Vid Fakes: We use a

fixed bin width histogram to plot the predicted logit distribution

(ln Pfake
1−Pfake

) using the models from [60], [40], and [13] and the

fake-set from [11]. AUC scores are parenthesized for reference.

5. AniFaceGAN (2022)
AniFaceGAN is an animatable 3D-aware GAN for

multi-view consistent face animation generation

[54]. They explicitly formulate deformation fields to

synthesize an input image using driving facial motion.
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We evaluate detection methods on 112 samples and

plot logit histograms in Figure 6.

Figure 6. Logit Distribution on AniFaceGAN Fakes: We use a

fixed bin width histogram to plot the predicted logit distribution

(ln Pfake
1−Pfake

) using the models from [60], [40], and [13] and the

fake-set from [54]. AUC scores are parenthesized for reference.

4.3. Simulated Generalizability Evaluation

We propose the use of a simulated generalizability
evaluation (SGE), where we simulate spatial and temporal

deepfake artifacts using a randomized algorithm. These

artifacts reflect implausibilities in facial structures that can

accompany unseen manipulation types can be detected with

a human eye. We detail the process of generating SGEs
below:

• Let M be a binary mask representing the sub-region of

a face in a given frame of a video. To generate a syn-

thetic training sample, we apply a random affine trans-

form θM to M to obtain a distorted mask M ′. Sim-

ilarly, we apply a random affine transform θI to the

entire frame I and blend the resulting image I ′ with

the original image I using M ′ as the blending mask:

M ′ = Distort ◦Affine(M ; θM )

I ′ = (M ′�Distort ◦Affine(I; θI))+((1−M ′)� I)

where � denotes element-wise multiplication.

• Note that, we also post-process masks and images with

separate constant distortion operations to the mask as

well as the images in the entire frame sequence. For

the mask, this involves a combination of feathering of

the borders and an elastic distortion, whereas for the

image, only an elastic distortion is randomly used.

• To produce a synthetic video, we repeat this process

for each subsequent frame of the video, with the twist

that the parameters for the random affine transform are

chosen to stay the same with probability p, or to be

randomly re-selected with probability (1 − p). Addi-

tionally, with probability q, we do not blend the next

frame and instead use the actual image It+1 as is. In

other words, if θ
(t)
M and θ

(t)
I represent the affine trans-

forms applied to the mask and image respectively, for

the t-th frame, then we have:

θ
(t)
M =

{
θ
(t−1)
M , w.p. p

RandθM (), w.p. (1− p)

θ
(t)
I =

{
θ
(t−1)
I , w.p. p

RandθI(), w.p. (1− p)

• While such a set-up emulates sudden flickering arti-

facts well, it is not well suited to smoother changes

over time. In order to reproduce those artifacts,

we post-process with an additional randomization of

sometimes linearly interpolating between affine trans-

formation matrices. Figure 7 shows a sample rollout

from our SGE method.

5. Stabilizing Generalizability Performance
with Multi-modal Detection

5.1. Spatio-Temporal Detection

An observable outcome of the potpourri of hand-crafted

training methods is that generalizability is not just a scalar

metric. Depending on which set of manipulated fakes you

evaluate on, vastly different detection methods outperform

one another or fail inexplicably. We hypothesize that a sin-

gle spatio-temporal architecture can achieve more uniform

transfer performance since it has access to more artifact

modes. However, this is not a trivial task, since large spatio-

temporal networks broadly to tend to overfit on dataset-

specific artifacts. We analyze if it is possible to get the best

of both words with intermediate and late fusion schemes.

We describe the architectures below, with illustrations in

Figure 8.

1. Joint Training: We modify the architecture from [60],

by restoring the spatial kernel size from the original

3D Res-Net architecture [14]. We then concatenate

a learnable class token along the time axis and add
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Figure 7. A sample rollout from our SGE evaluation method. The frames with the red border are manipulated. Notice that artifacts can

range from subtle to highly visible: in the second frame there is a slight change in eye position in a way that is inconsistent with previous

frames. A generalizable detector should be able to pick up on these randomized artifacts, since the glitch in the sub-mask could not have

been plausible in a real human video.

Figure 8. Spatio-Temporal Architectures: We illustrate our ablations for combining spatial and temporal features above. We pre-train

the spatial and temporal encoders on self-blended images and on FF++ respectively.
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FF++ CDF [29] V2V* [11] MP* [8] DIFF* [41] GAN* [54] SGE* AVG

SBI + EfficientNet-b4 [40] 100.0 89.6 80.1 99.3 96.5 97.2 94.0 92.8

Lip Forensics [13] 100.0 82.4 92.3 17.8 50.6 98.6 93.2 68.3

Temporal (FTCN) [60] 99.9 86.5 99.9 77.1 75.0 83.7 88.0 85.0

LTTD [10] 100.0 89.3 - - - - - 89.3

Joint S-T (#1) 99.9 47.2 88.6 84.5 49.5 54.6 22.1 57.8

S-T Intermediate Fusion (#2) 99.9 78.2 90.0 85.0 55.6 59.0 71.2 64.1

S-T Ensemble (#3) 99.9 90.7 99.9 81.0 93.9 87.9 94.0 91.2

S-T Late Fusion (#4) 99.9 89.8 99.9 97.9 99.4 93.4 93.7 95.7
Table 1. AUC Scores when Evaluating SOTA Methods: The categories with the asterisk are our proposed evaluation metrics. Methods in

italics are our spatio-temporal fusion methods. [10] was not evaluated since the codebase was not publicly available and we were not able

to reproduce their results with our own code. We also note the limitation that SGE is only an upper-bound metric for generalizability, since

it is possible for a classifier to achieve high classification performance on algorithmically generated psuedo-fakes, but fail to classify fakes

generated by a deep-network. This appears to be the case for [13], which performs well on SGE, but poorly on MegaPortraits for instance.

a learnable positional embedding. Then, we linearly

project the classification token to compute the classifi-

cation logits.

2. Intermediate-Fusion We combine two Res-Net en-

coders, one with convolutions only along the spatial

axes, and another with convolutions only along the

temporal axis. These encodings are then projected

into a shared latent space with per-modality encoders,

and an asymmetric channel-wise dropout scheme. The

full-token dropout prevents the network from binding

to a specific artifact from a single modality. Finally,

once the features are in the same latent space, we add

shared learnable positional embeddings. The afore-

mentioned transformer decoder learns to combine fea-

tures from each modality, and outputs the target logits.

We freeze the encoders after pre-training.

3. Independent Training (Ensemble) We ensemble the

independently trained methods from [60] and [40] with

equal weight.

4. Late-Fusion We freeze the methods from [60] and

[40], and project the final embedding vectors from both

methods with a three-layer perceptron. To prevent the

classifier from picking up on only one of the modali-

ties, we employ a paired modality dropout, i.e. when

predicting on fakes we replace a modality input with

the corresponding real video with a certain probabil-

ity. We freeze the spatial and temporal encoders after

pre-training on self-blended images and FF++ HQ.

5.2. Analysis

Our results in 1 show that the best performance overall

was attained by the late-fusion model. Unlike the single

modality detection methods, our late fusion method gener-

alizes universally across fake types, either performing the

highest or comparable to the highest AUC score on all

fake types. We hypothesize that poor generalization per-

formance in setups 1 and 2 were caused by direct spatial

supervision. Prior works [10] conduct experiments describ-

ing how training on deepfake datasets with strong convolu-

tions allows deep-fake detectors to cheat by picking subtle,

unseen artifacts, rather than generalizable cues. Since the

spatial encoder was frozen till the very last layer in setup

4, and we included modality dropout to prevent overfitting

to purely the spatial domain, this method of combining did

not suffer from the same generalizability issues. Overall, we

show that relatively simple adjustments to existing methods

can help existing methods generalize better out-of-domain.

The results in table 1 also generally support the validity

of our simulated generalizability evaluation (SGE) method.

Methods with higher SGE scores tend to also have high av-

erage evaluation score across the five out-of-domain SOTA

methods considered.

6. Implementation Details

We first pre-process all videos by clipping into segments

of 32 frames, then find the smallest square region that con-

tains the face, and cropped with a static camera. We perform

all training experiments using the train and validation sets

from Face Forensics++ (HQ compression). For evaluations

of other methods, we consult the pre-processing steps from

their code-bases. When computing prediction logits, we av-

erage prediction probabilities for all clips in the video. We

use the real set from Celeb-DFv2 [29] for all our evalua-

tions.

For our spatio-temporal experiments in Section 5, we

train using Adam Optimizer and a fixed learning rate

(0.001) chosen with grid-search on a validation set. We

continue training for as many epochs as necessary until the

validation loss does not significantly decrease for five con-

secutive epochs. All reported results are measured on the

same out-of-sample test set as prior methods.
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7. Conclusion
In this paper, we introduce a new evaluation benchmark

for measuring generalizability on a modern, more diverse

set of deepfakes. We also evaluate the state-of-the-art meth-

ods on our new benchmarks and identify multi-modal ar-

chitectures to mitigate the variance that comes with highly

handcrafted detection methods. We are releasing this evalu-

ation set, along with the code for SGE to encourage further

research in using randomized artifacts to improve general-

izability metrics.
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