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Figure 1. Comparison between the proposed approach and baselines. Our model is more accurate and coherent in real time, compared

to two baseline methods with input from monocular video, Atlas [27] and NeuralRecon [39] + Semantic-Heads. Real-time 3D perception

efficiency η3D the higher the better. Color denotes different semantic segmentation labeling.

Abstract

We present a novel real-time capable learning method
that jointly perceives a 3D scene’s geometry structure and
semantic labels. Recent approaches to real-time 3D scene
reconstruction mostly adopt a volumetric scheme, where a
Truncated Signed Distance Function (TSDF) is directly re-
gressed. However, these volumetric approaches tend to fo-
cus on the global coherence of their reconstructions, which
leads to a lack of local geometric detail. To overcome this
issue, we propose to leverage the latent geometric prior
knowledge in 2D image features by explicit depth predic-
tion and anchored feature generation, to refine the occu-
pancy learning in TSDF volume. Besides, we find that this
cross-dimensional feature refinement methodology can also
be adopted for the semantic segmentation task by utilizing
semantic priors. Hence, we proposed an end-to-end cross-
dimensional refinement neural network (CDRNet) to extract
both 3D mesh and 3D semantic labeling in real time. The
experiment results show that this method achieves a state-
of-the-art 3D perception efficiency on multiple datasets,
which indicates the great potential of our method for in-
dustrial applications.

1. Introduction

Recovering 3D geometry and semantics of objects or en-

vironment scenes prevails these days with the advent of

the ubiquitous digitization. The digitization of the world

where people live can not only help them better understand

their environment scenes, but also enable robots to compre-

hend what they need to know about the world and there-

with conducting assigned tasks. Generally, with surround-

ing environment measurements as input, 3D reconstruc-

tion and 3D semantic segmentation are two key 3D percep-

tion techniques [9, 40, 13] in the computer vision society,

which enable a wide range of applications, including digital

twins [19, 3], virtual/augmented reality (VR/AR) [29, 39],

building information modeling [25, 42], and autonomous

driving [4, 21].

Tremendous research efforts have been made for 3D per-

ception techniques. Based on the sensor types, researches

on 3D perception can be divided into two main streams,

namely active range sensors that capture surface geome-

try information and RGB cameras that capture texture with

perspective projection. Originated from KinectFusion [29],

the commodity RGB-D range sensor is used to measure

depth data first and then fuse it into Truncated Signed

Distance Function (TSDF) volume for 3D reconstruction.

Although the follow-up depth-based TSDF fusion meth-

ods [45, 46, 1, 47, 37] achieve detailed dense reconstruction

result, they suffer from global incoherence due to the lack

of sequential correlation, the tendency of noise disturbance

due to redundant overlapped calculations, and the incapabil-

ity of semantic deduction due to the lack of texture features.

On the other hand, as camera-equipped smartphones be-

come readily available with built-in inertial measurement
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units, recent advances have emerged to explore 3D percep-

tion with RGB cameras on mobile devices. The problem

of reconstructing 3D geometry with posed RGB images in-

put only is referred to as multi-view stereo (MVS). Existing

methods for MVS that are based on deep learning, tend to

adopt a volumetric scheme by directly regressing the TSDF

volume [27, 38, 7, 39] either as a whole or in fragments.

However, these volumetric learning methods extract 3D ge-

ometric feature representation simply from the back pro-

jection of 2D image features, resulting in the mismatch to

the 2D information priors for the predicted 3D reconstruc-

tion. Moreover, the intrinsic end-to-end learning manner

and the lack of local details on the reconstructed mesh of

these volumetric schemes result in an inferior semantic de-

duction based on its 3D reconstruction prediction.

What’s worse, these learning-based methods tend to

store their entire computational graphs in memory for ag-

gregation and require prohibitive 3D convolution opera-

tions [27, 33, 38], which keeps them from being deployed

on robots due to the real-time and low-latency requirements

in SLAM. These limitations motivate our key idea to utilize

2D explicit predictions to further impose a light-weight fea-

ture refinement on the 3D features input in a sparse man-

ner, while keeping the global coherence within the frag-

ments. Unlike these preceding learning-based volumetric

works, we conjecture that the utilization of 2D prior knowl-

edge coming out of explicit predictions as a latent feature

refinement plays a significant role in learning the feature

representation in 3D perception. In addition, the feature re-

finement brought by 2D explicit prediction can be operated

within the fragment input for keeping the computation re-

dundancy and thus overhead low, while having the global

coherence by correlating different fragments to extract the

target 3D semantic mesh.

In this paper, we propose a novel framework, CDRNet,
to accomplish both 3D meshing and 3D semantic labeling

tasks in real-time. Our key contributions are as follows.

• We propose a novel, end-to-end trainable network archi-

tecture, which cross-dimensionally refines the 3D fea-

tures with the prior knowledge extracted from the explicit

estimations of depths and 2D semantics.

• The proposed cross-dimensional refinements yield more

accurate and robust 3D reconstruction and semantic seg-

mentation results. We highlight that the explicit estima-

tions of both depths and 2D semantics serve as efficient

yet effective prior knowledge for 3D perception learning.

• To achieve real-time 3D perception capability, our ap-

proach performs both geometric and semantic localized

updates to the global map. We present a progressive 3D

perception system that is capable of real-time interaction

with input data streaming from cellphones with a monoc-

ular camera.

2. Related Work

Real-Time 3D Perception. The prosperity of deep learn-

ing hardwares enables both inference and training at the

edge [20, 14], thus it consolidates the foundation to deploy

more and more learning-based 3D perception techniques in

real time. KinectFusion [29] first brought in the concept

of handling 3D reconstruction tasks in real time with com-

modity RGB-D sensors. Han et al. [13] presented a real-

time 3D meshing and semantic labeling system similar to

our work, however, depth measurements from RGB-D sen-

sors are required as input in their work. Pham et al. [31]

built up 3D meshes with voxel hashing, and then fuse the

initial semantic labeling with super-voxel clustering and a

high-order conditional random field (CRF) to improve la-

beling coherence. Menini et al. [26] extended RoutedFu-

sion [45] by merging semantic estimation in its TSDF ex-

traction scheme for each incoming depth-semantics pair.

NeuralRecon [39] adopted sparse 3D convolutions and the

gated recurrent unit (GRU) to achieve a real-time 3D recon-

struction on cellphones, without the capability of seman-

tic deduction. For depth estimation and semantic segmen-

tation, there are also works achieving real-time processing

capability [44, 28, 31].

Voxelized 3D Semantic Segmentation. The learning

of semantic segmentation on the voxelized map started

from [5], which extends TSDF fusion pipeline [29] with

per-pixel labels. 3DMV [11] and MVPNet [18] further

combined both depth and RGB modalities to train an end-

to-end network with 3D semantics for voxels and point

clouds, respectively. PanopticFusion [28] performed map

regularization based on adopting a CRF on the predicted

panoptic labels. Atlas [27] utilized its extracted 3D fea-

tures and passed them to a set of semantic heads for voxel

labeling, the pyramid features are proven to have strong se-

mantics at all scales than the gradient pyramid in nature, as

proven in [22]. BPNet [15] proposed to have a joint-2D-3D

reasoning in an end-to-end learning manner. Two deriva-

tive works [26, 17] of RoutedFusion incorporated seman-

tic priors into their depth fusion scheme and removed their

routing module for less overhead. However, none of these

works utilize the prior knowledge within the estimated 2D

semantics as a 3D feature refinement.

Volumetric 3D Surface Reconstruction. Volumetric

TSDF fusion became prevalent for 3D surface reconstruc-

tion starting from the seminal work KinectFusion [29] due

to its high accuracy and low latency. A follow-up work,

PSDF-Fusion [30] augmented TSDF with a random vari-

able to improve its robustness to sensor noise. Starting from

DeepSDF [30], the learned representations of TSDF using

depth input dominates the current fad. These learning-based

substitutes [45, 46, 3, 1, 47, 37, 49] to TSDF fusion achieve

impressive 3D reconstruction quality compared to the base-
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Figure 2. Overview of CDRNet. Posed RGB images from monocular videos are wrapped as fragment input for 2D feature extraction,

which is used for both depth and 2D semantic predictions for cross-dimensional refinement purposes. To learn the foundational 3D

geometry before conducting refinements, the extracted 2D features are back-projected into raw 3D features, Vs, in different resolutions

without any 2D priors involved. At each resolution, after being processed by the GRU, the output feature Ls in the local volume is further

fed into Depth and Semantics refinement modules sequentially to have a 2D-prior-refined feature with better representations.

line method with the availability of RGB-D range sensors.

Given the fact that range sensors have relatively higher

cost and energy consumption than RGB cameras, MonoFu-

sion [32] is one of the first works to learn TSDF volume

from RGB images by fusing the estimated depth into an im-

plicit model. Atlas [27] started the trend of learning-based

methods by a direct regression on TSDF volume. Neural-

Recon [39] achieved a real-time 3D reconstruction learn-

ing capability by utilizing sparse 3D convolutions and re-

current networks with key frames as input. Transformer-

Fusion [2] and VoRTX [38] introduced transformers [43]

to improve the performance by more relevant inter-frame

correlation. These learning-based methods prevail thanks

to the availability of these general 2D feature extractors,

such as FPN [22] and U-Net [35]. 2D information in RGB

images can be effectively extracted and further utilized for

constructing their 3D perception counterparts.

However, the learning of the explicit representations of

2D latent geometric features, such as depths and semantics,

is typically ignored by all the prior arts. They only treat

the 2D feature as an intermediate in the network and then

conduct ray back-projection upon it, without considering

the explicit representations for their 3D embodiment, which

we found are significant prior knowledge for 3D perception.

To extract depth as the explicit 2D representation, Volume-

Fusion [7] and SimpleRecon [36] performed local MVS

and further fused it into TSDF volume with its customized

network, while 3DVNet [33] performed sparse 3D convo-

lutions on the feature-back-projected point cloud. Differ-

ent from above, our method extracts the 2D representations

from light-weight network modules, including a portion of

MVSNet [48] for depth and a simple 2D MLP head for 2D

semantics, to conduct the 3D feature refinements. The re-

finement incorporates the geometric and semantic prior in-

formation to improve the generalizability of our network by

correlating the 2D representations in their 3D counterparts.

To the best of our knowledge, we present the very first

learning-based method which uses posed RGB images input

only to conduct 3D perception tasks in real time, including

3D meshing and semantic labeling.

3. Methods

Given a posed image sequence I, our goal is to extract a

3D mesh model that can represent both 3D geometry and

3D semantic labeling, i.e., 3D meshing with vertices K ∈
R

3, surfaces G ∈ N
3, and its corresponding 3D semantic

labeling S ∈ N. We achieve this goal by jointly predicting

TSDF value T ∈ [−1, 1] and semantic label S ∈ N for each

voxel, and then extracting the mesh with the marching cubes

[23]. Meanwhile, our proposed method aims at establishing

a real-time capable deep learning model for these two 3D

perception tasks. To quantitatively evaluate the efficiency

of conducting these two tasks simultaneously, we define a

3D perception efficiency metric η3D by involving frames

per second (FPS) in runtime, as shown in Sec. 4.1.

The proposed network architecture is illustrated in Fig.

2. In Sec. 3.1, we introduce the joint fragment learning

on depth, 2D semantic category, intermediate TSDF, and

occupancy using key frames input, for the following cross-

dimensional refinements of TSDF and 3D semantics. For

each fragment, the geometric features are progressively ex-

tracted in a coarse-to-fine hierarchy using binomial inputs

GRU to build the learned representations of 3D. Sec. 3.2

describes the cross-dimensional refinements for 3D features

that refines 3D features with anchored features and semantic

pixel-to-vertex correspondences enabled by the depth and

2D semantic predictions, which helps the learning of not

only the TSDF value, but also the 3D semantic labeling in a

sparsified manner. We also present the implementation de-

tails including loss design in Sec. 3.3. Specifications of the

network are elaborated in the supplement.

3.1. Sparse Joint Fragment Learning in a Coarse-
to-Fine Manner

Given the inherent nature of great sparsity in the ordi-

nary real-world 3D scene, we utilize sparse 3D convolutions

to efficiently extract the 3D feature from each input scene.

However, the memory overhead of processing a 3D scene

is still prohibitive, thus we fragment the whole 3D scene

and progressively handle each of them, to further release

the memory burden of holding up the huge 3D volume data.
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Inspired by [27, 12, 39, 38, 33], we adopt a coarse-to-fine

learning paradigm for the sparse 3D convolutions to effec-

tively exploit the representation of 3D features in multiple

scales. In each stage of the hierarchy, the raw features in the

fragment bounding volume (FBV) is extracted from a GRU

by correlating local features and global feature volume.

FBV Construction by Image Features. Following [44,

39], we select a set of key frames as the input sequences

out of a monocular RGB video by querying on each frame’s

pose, namely the relative translation and optical center ro-

tation with empirical thresholds, θkey and tkey . Key frames

I, camera intrinsics K, and transform matrices T ∈ SE(3)
which is an inversion of the camera pose, are all wrapped

into a fragment Fi = {Ii,j ,Ki,j ,Ti,j}Nk
j=1 as the input to

the network, where i, j, and Nk denote the fragment index,

the key frame index, and the number of key frames in each

fragment, respectively.

Once the fragment Fi is constructed, it is processed by

a 2D feature extractor pyramid to extract image features.

In the decoder part of the extractor pyramid, three differ-

ent resolutions of feature maps are extracted sequentially

as Ps ∈ {P2, P3, P4}, where the suffix notation of P de-

notes the scaling ratio level in log2 similar to [22]. The

extracted feature Ps is then back-projected into a local 3D

volume, according to the projection matrix of each frame

in Fi. We hereby define FBV as the current local volume

Fs,i = {T x×y×z
s,i , Sx×y×z

s,i } that is conditioned on the pyra-

mid layers Ps, where all the 3D voxels that are casted in the

view frustums of current Fi are included.

Initial Depth and 2D Semantics Learning. With the fine

feature P2 as input, we build up differentiable homography

fronto-parallel planes for the coarse-level depth prediction

D̂4. Likewise, 2D semantics prediction Ŝ2D
4 is extracted

with a pointwise convolutional decoder as the 2D seman-

tic head using P2. The resolution gap between the input

and output feature map provides generalizability. The initial

depth estimation is retrieved from the features using a light-

weight multi-view stereo network via plane sweep [48]. For

each source feature map x in P2, we conduct the planar

transformation xj ∼ Hj(d) ·x, where “∼” denotes the pro-

jective equality and Hj(d) is the homography of the jth key

frame at depth d. The jth homography1 in a given fragment

input Fi is defined as:

Hj(d) = d ·Kj · (Tj ·T−1
1 ) ·KT

1 . (1)

To measure the similarity after conducting homography

warping, we calculate the variance cost of xj and further

process it with an encoder-decoder-based cost regulariza-

tion network. The output logit from the regularization net-

work is treated as the depth probability on each plane and

1For brevity’s sake, the transformation from homogeneous coordinates

to Euclidean coordinates in the camera projection is omitted here.

the soft argmin [48] is conducted to have initial depth pre-

dictions.

Geometric and Semantic GRU Fusion. Meanwhile, as

the 2D features are extracted in different resolutions, they

are back-projected from each of the pyramid level in Ps into

raw geometric 3D features Vs ∈ {V2, V3, V4}, which are

further sparsified by sparse 3D convolutions. To improve

the global coherence and temporal consistency of the re-

constructed 3D mesh, following [39], we first correlate the

sparse geometric feature Vs in the current Fs,i using GRU,

with the local FBV hidden states Hs,i−1 whose information

coming from all of the previous fragments Fs,i′ , i
′ < i and

coordinates are masked to be the same as Vs. Such correla-

tion outputs a temporal-coherent local feature Ls,i for each

stage s, which is used to generate dense occupancy inter-

mediate os,i, and passed to the 2D-to-3D cross-dimensional

refinements. The global feature volume for the entire scene

Gs,i is fused by Gs,i−1 and Ls,i given the coordinates of Vs

as masks, and update Hs,i. Unlike [39], we reuse the same

parameters in GRU to process the back-projected and up-

sampled 3D semantic features to generalize better for the se-

mantic prediction Ŝ in the current FBV. This is because in-

putting TSDF and semantic features sequentially into GRU

enables its selective fusion across modalities, thus the fea-

ture extracted from the hidden state incorporates more se-

mantic information, as pointed out in [34].

For the sake of learning 3D features consistently between

scales, we update Vs at each stage by fusing with the up-

sampled Ls+1,i. Inspired by the meta data mechanism pro-

posed in [36], we further concatenate sparse features, with

sparse TSDF, occupancy and semantics after masking with

os,i, as the meta feature Ls+1,i to be upsampled. We found

the inclusion of semantic information in the hidden state of

GRU helps build up a good starting point for the upcoming

feature refinements, which is verified in the ablation.

3.2. 2D-to-3D Cross-Dimensional Refinements

The raw coherent features from GRUs lack detailed ge-

ometric descriptions, leading to unsatisfactory meshing and

semantic labeling results. To overcome these issues, we

propose to leverage the 2D feature that is latent after in-

corporating the learning of depth and semantic frame for

the refinement purposes. We notice that with the learning

of depth and 2D semantics, the 2D features now reside in

the latent space which can generalize to more accurate 3D

geometry and semantics via cross-dimensional refinements.

2D-to-3D Prior Knowledge. Consider a probabilistic prior

in the latent space of the output coherent feature coming

from GRU, which accounts for the prior knowledge that the

pixel information in both depth predictions and 2D semantic

predictions should produce high confidence matching with

regard to their own 3D representations. The prior condi-
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Figure 3. Workflow of the depth anchor refinement module.
Anchored voxels are extracted from depth points and further serve

as a geometric prior for the occupancy refinement.

tioned 3D feature for both perception tasks is defined as:

Xprior = f(Ls,i) = f
(
Hs,i(Vs, Hs,i−1 | Fs,i)

)
, (2)

where f(·) is the 2D-to-3D feature refinement process for

either 3D meshing or 3D semantic labeling, whose input

is Ls,i extracted from Vs and Hs,i−1 given Fs,i. We bor-

row the notation of Hs,i to be a constructor function Hs,i(·)
indicating GRU. For each voxel in Fs,i, both TSDF and se-

mantic labeling predictions can be formulated as:

Îs,i = εh
(
Hs,i(Vs, Hs,i−1 | Fs,i)

)
+ (1− ε)Xprior , (3)

where Îs,i ∈ Fs,i is the refined prediction; ε is a random

variable for the respective prior, which is jointly learned by

the feature refinement modules representing the 2D-to-3D

priors and the GRU network trained with maximum like-

lihood estimation losses; h(·) is the prediction head. The

proof of Eq. (3) can be found in the supplement.

The key insight is that the voxels back-projected from ei-

ther depth prediction or semantic label prediction of the in-

put images has strong evidence on its 3D counterparts. We

hereby define anchored voxels αi, as those voxels in Fs,i

that are incorporating all the back-projected depth points,

given the fact that the 3D reconstruction task is essentially

an inverse problem. We propose two progressive feature re-

finement modules to learn the high confidence of the refined

features in latent space such that a more accurate Îs,i can be

extracted with the help of 2D-to-3D prior knowledge.

Depth-Anchored Occupancy Refinement. Unlike the

volumetric methods [27, 39] that directly regress on the

TSDF volume, we propose a novel module in each stage

s that can explicitly refine the initial depth, predict depths

in resolutions, and further create the 3D anchored features

with the depth prediction, as shown in Fig. 3. The anchored

feature is generated by 3D sparse convolutions with an an-

chored voxel on the occupancy intermediate oi
2.

Intuitively, the anchored voxel has higher confidence of

achieving a valid oi and Ts,i close to zero. We imposed

the anchored feature on occupancy feature to reinforce the

occupancy information brought by the depth prior.

2The universal stage suffix s is hereinafter omitted for brevity.
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Inspired by [6, 33], we conduct PointFlow algorithm for

each stage in the coarse-to-fine structure Vs to determine

the depth displacement on the initial depth prediction such

that finer depth prediction can be achieved. Different from

the PointFlow algorithm used in [33], we utilize the back-

projected depth points from all Nk views in the fragment

to query an anchored voxel, which can be further aggre-

gated with oi. Fig. 4 illustrates how these hypothesis points

are selected and turned into depth displacement prediction,

such that the anchored voxel can be generated. The an-

chored voxel index in the 3D volume is sparsified as a mask

to update the occupancy prediction as ôi in the following:

ôi = oi ∩ αi . (4)

The enhanced occupancy prediction ôi is used to condition

the TSDF volume at the current stage to generate the refined

T̂i, which is further sparsified with a light-weight pointwise

convolution and upsampled to concatenate with Ls,i.

Pixel-to-Vertex Matching Semantic Refinement. In ad-

dition to the depth anchor refinement, we propose a seman-

tic cross-dimensional refinement which utilizes the seman-

tic prior that lies in the 2D semantic prediction to have a

refined 3D voxel semantic prediction, implemented as fol-

lows. First, the 2D feature backbone learns the 2D semantic

prior information that is useful for 3D voxel semantic la-

beling learning by incorporating the learning of 2D frame

semantic labeling. Second, the sparse 3D feature Ls,i is

passed to pointwise 3D convolution layers and come up

with the initial 3D voxel semantic labeling predictions in

respective scales. Third, to conduct the semantic feature

refinement, we observed that there is a sole 3D voxel coun-

terpart in Fs,i for each pixel on a 2D semantic prediction

of Ii,j , since the surface edges are encoded as vertices. We

define these vertices as the one-on-one matching correspon-

dences to their camera-projected pixels, which is recorded

in a matching matrix for masking the 2D features Ps.

The upper part of Fig. 5 illustrates the design of the
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matching matrix that is used to correlate the pixel-vertex

pairs for each frame Ii,j across all vertices in Fs,i. We con-

struct the matching matrix M = {−→midx}Nidx=1 for each se-

mantic labeling frame, where N is the number of the ver-

tices in the volume Fs,i. Each column of the matching ma-

trix M is defined as:

M(idx) = −→midx =

⎡
⎣
uidx

vidx
mask

⎤
⎦ . (5)

For each column, each pixel-vertex pair recorded in the

matching matrix, i.e., the idxth vertex in the 3D volume on

the right-hand side of the upper part and its correspondence

pixel on the left-hand side is recorded. The last entry of

the pixel-vertex pair represents a mask which is recorded as

valid when the 2D correspondence for M is in the current

view frustum of the frame.

After the matching matrix M is constructed, it will be

used for masking each of the feature map Ps with the log2
scale of s to create a refined feature, whose voxel number is

the same as the number of sparse 3D features, as shown in

the lower part of Fig. 5. Meanwhile, the coordinates of the

sparse 3D features Ls,i are mapped as the coordinate of the

refined feature. By doing so, the underlying semantic infor-

mation from the Ps can be incorporated by Ls,i, such that

better 3D semantic prediction can be achieved. Then we use

the sparse pointwise convolution to extract its underlined

feature from 2D semantics, and concatenate it with Ls,i to

create Ls−1,i with semantic information for the refinement

in the next finer stage, so as to ensure the 2D semantic priors

to have reliable refinement on the sparse coherent features.

3.3. Implementation Details

Our model is implemented in PyTorch, trained and tested

on an NVIDIA RTX3090 graphics card. We empirically set

the optimizer as Adam without weight decay [24], with an

initial learning rate as 0.001, which goes through 3 halves

throughout the training. The first momentum and second

momentum are set to 0.9 and 0.999, respectively. For key

frame selection, following [44, 39], we set thresholds θkey ,

tkey and fragment input number Nk as 15 degrees, 0.1 me-

ters, and 9, respectively. A fraction of FPN [22] is adopted

as the 2D backbone with its classifier as MNasNet [41].

MinkowskiEngine [8] is utilized as the sparse 3D tensor li-

brary. More details are introduced in the supplement.

Loss Design. Our model is trained in an end-to-end fash-

ion except for the pretrained 2D backbone. Since our target

is to learn the 3D geometry and semantic segmentation of

the surrounding scene given posed images input, we regress

the TSDF value with the mean absolute error (MAE) loss,

classify the occupancy value with the binary cross-entropy

(BCE) loss and the semantic labeling with cross-entropy

Features with
3D Semantic Info.Semantic Info.

Semantic Prediction as 
Input to the Next Stage

Camera Projection 

Matching Matrix

Coordinates
Mapping 

Sparse Pointwise
Convolutions

Cross-Dimensional Semantic Refinement

Sparse
Encoder-Decoder

Convolutions

Mask

2D 
View

3D 
Volume

Masked by 

Figure 5. Workflow of the pixel-to-vertex matching feature re-
finement. Upper: Matching matrix M for pixel-to-vertex corre-

spondence is constructed with camera projection. The red-shaded

boxes in the 3D volume denote an example of valid correspon-

dence pairs of the 2D semantic prediction −→ma and its surrounding

3D scene. The green and purple boxes in the 3D volume view

denote the occluded vertex and out-of-view vertex that is not im-

aged in the 2D semantic prediction, which correspond to −→mb and−→mz , respectively; Lower: The 2D features are further masked by

M(a) with the mapped coordinates from the sparse 3D features of

the scene that are valid for the current view.

(CE) loss as:

L3D =
4∑

s=2

αsLMAE(Ts, T̂s) + λαsLBCE(Os, Ôs)

+ βsLCE(Ss, Ŝs) , (6)

where T , S, and O denote TSDF value, semantic labeling,

and occupancy predictions. αs, βs, and λ are the weighting

coefficients in different stages for TSDF volume, semantic

volume and positive weight for BCE loss, respectively. By

doing so, the learning process stays most sensitive and rele-

vant to the supervisory signals in the coarse stage, and less

fluctuating as the 3D features become finer with the upsam-

pling, after log-transforming the predicted and ground-truth

TSDF value following [27].

To conduct cross-dimensional refinements, we regress

the depth estimation with MAE loss and classify the 2D se-

mantic segmentation with CE loss:

L2D =LMAE(dinit, D̂init) + LCE(S
2D
2 , Ŝ2D

2 )

+
4∑

s=2

γsLMAE(Ds, D̂s) , (7)

where D and γs denote depth and the weighting coefficient

for depth estimation in different stages. We further wrap the

losses into an overall loss L = L3D+μL2D, where μ is the

coefficient to balance the joint learning of 2D and 3D.

4. Experiments
4.1. Datasets and Metrics

We conduct the experiments on two indoor scene

datasets, ScanNet (v2) [10] and SceneNN [16]. The model
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Figure 6. Qualitative 3D reconstruction results on ScanNet. Our method is capable of reconstructing consistent and detailed geometry

which is neither overly smooth as the one from Atlas [27] nor eroded with holes as from NeuralRecon [39].

Method Acc. ↓ Comp. ↓ Prec. ↑ Recall ↑ F-Score ↑
Atlas [27] 0.124 0.074 0.382 0.711 0.499

NeuralRecon [39] 0.073 0.106 0.450 0.609 0.516
3DVNet [33] 0.051 0.075 0.715 0.625 0.665

SimpleRecon [36] 0.061 0.055 0.686 0.658 0.671
VoRTX [38] 0.891 0.092 0.618 0.589 0.623

Ours 0.068 0.062 0.609 0.616 0.612

Table 1. Quantitative 3D reconstruction results on ScanNet.
Our method is superior to two main baselines, Atlas and Neural-

Recon, and as competitive as other SOTAs on 3D reconstruction.

Method FPS ↑ KFPS ↑ FLOPF ↓ mIoU ↑ η3D ↑
3DMV [11] 7.04 N/A 65.06G 44.2 N/A

BPNet [15] 4.46 N/A 141.06G 74.9 N/A

Atlas [27] 66.3 N/A 267.04G 34.0 11.25

NeuralRecon [39] + Semantics-Heads 228 30.9 42.38G 27.9 32.82

VoRTX [38] + Semantic-Heads 119 13.5 150.23G 13.2 9.79

Ours 158 21.4 90.62G 39.1 37.81

Table 2. Quantitative 3D voxel semantic segmentation and
overall 3D perception results on ScanNet. Upper: Two rep-

resentative state-of-the-art methods for semantic segmentation

whose input requires either depth or 3D mesh, respectively. No

key-frame selection and F-score are involved due to their input

modality; Lower: RGB-input-only volumetric methods. Key-

frame FPS (KFPS) is measured with the same selection scheme

across all methods. FLOPF is measured with PyTorch operation

counter across operations of neural network’s learnable modules.

is trained on the ScanNet train set, tested and reported on the

ScanNet test set and further verified on SceneNN data set.

To quantify the 3D reconstruction and 3D semantic segmen-

tation capability of our method, we use the standard metrics

following [27, 39]. Completeness Distance (Comp.), Ac-

curacy Distance (Acc.), Precision, Recall, and F-score, are

used for 3D reconstruction, while mean Intersection over

Union (mIoU) is used for 3D semantic segmentation.

To evaluate how much robustness a model can achieve

while targeting 3D perception tasks in real time, we define

the 3D perception efficiency metric η3D = FPS × mIoU ×
F-score, since F-score is regarded as the most suitable 3D

metric for evaluating 3D reconstruction quality by consid-

ering Precision and Recall at the same time [27, 39, 36].

It is noteworthy that for fairness across methods, FPS for

processing speed is measured in the inference across all

captured frames in a given video sequence rather than key

frames only, since the input is the same for different meth-

ods regardless of their key frame selection scheme.

4.2. Evaluation Results and Discussion

3D Perception. To evaluate the 3D perception capabil-

ity, we mainly compare our methods against state-of-the-art

works in two categories: volumetric 3D reconstruction and

voxelized 3D semantic segmentation methods.

For 3D reconstruction capability, we compare our pro-

posed method with the canonical volumetric methods [27,

39] and several state-of-the-art 3D reconstruction methods

with posed images input [33, 36]. Fig. 6 demonstrates the

superiority of our method in terms of 3D reconstruction by

showing the 3D meshing results in normal mapping. Ta-

ble 1 shows that our method outperforms two main base-

line methods in terms of 3D meshing accuracy. We further

compare both state-of-the-art depth estimation methods and

volumetric methods in depth metrics in the supplement to

justify from the depth extraction perspective.

For 3D semantic segmentation quality, we compare At-

las, NeuralRecon with semantic heads, and VoRTX with se-

mantic heads with our methods in Table 2. We augment

three stages of MLP heads on top of the flattened 3D fea-

tures to predict the semantic segmentation for both base-

lines. Due to its lack of 3D feature extraction, SimpleRe-

con, as one of the SOTA baselines, is intrinsically incapable

of following this modification for semantics as well as being

combined with our proposed cross-dimensional refinement

techniques. Table 2 shows that our method outperforms

these two baselines. Besides mIoU for semantic segmenta-

tion, we include FPS and η3D for 3D perception efficiency

in the comparison. We also include two state-of-the-art

3D semantic segmentation methods, 3DMV [11] and BP-

Net [15]. It shows that our method can achieve mIoU results

nearly comparable to 3DMV, but with only RGB images as

input. Overall, our method achieves the best 3D semantic

segmentation performance and highest 3D perception effi-

ciency among all the volumetric methods. Fig. 7 and Fig.

8 illustrate the 3D semantic labeling results. We found that

the semantic information generation on VoRTX is unsatisfy-

ing, mostly caused by its bias on geometric features brought

by the projective occupancy mentioned in [38].

Efficiency. Since our main goal is to achieve real-time pro-

cessing performance while solving 3D perception tasks, we

compare the computational efficiency of our model against

other RGB-input-only volumetric methods in Table 2. The

3D perception efficiency metric η3D for several 3D seman-

tic segmentation works are shown there. We employ FPS,

which is commonly used to measure efficiency for 2D-input

3D perception methods [27, 39, 38], as a metric to bring out

and emphasize the nature of real-time system. We also in-

clude the floating-point operations per frame (FLOPF) to

compare the learnable parameters’ operations across differ-
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Figure 7. Qualitative 3D semantic segmentation results on ScanNet. Our method consistently outperforms baseline models and some-

times even surpasses the ground-truth labeling, e.g., in the bottom row, the photo-printed curtain above the bed is correctly recognized as

“curtain” and “picture”, whereas the ground truth mistakes it as “other furniture”.

Ground
Truth Ours Atlas NeuralRecon+

Semantic-HeadsOurs NeuralRecon+
Semantic-Heads

Method Acc. ↓ Comp. ↓ FPS ↑ F-Score ↑ mIoU ↑ η3D ↑
Atlas [27] 0.074 0.164 54.7 0.499 31.4 8.57

NeuralRecon [39] + Semantic-Heads 0.138 0.216 178 0.510 15.9 14.43

Ours 0.068 0.143 121 0.611 36.7 27.09

Figure 8. Qualitative and quantitative 3D pereception results
on SceneNN dataset. Our method is proven to be generalized to

SceneNN without pretraining on the SceneNN train set.

ent methods. The superiority in η3D of our method mani-

fests that it has better deployment potential for real-life 3D

perception applications. From the human user’s and robotic

SLAM’s points of view, our method greatly surpasses the

threshold of being real-time, 90.17 FPS, as elaborated in the

supplement. It shows that our method is more suitable for

real-time industrial scenarios with input data from low-cost

portable devices compared to baseline methods.

4.3. Ablation Study

To analyze the effectiveness of cross-dimensional refine-

ment, we present 3D perception efficiency η3D and its com-

ponents of with different modifications in Table 3. In other

experiments above, we adopt (e) as our method.

Binomial GRU Fusion. In (a), we remove the back-

projected semantics input to GRU in the pipeline. Com-

pared with (e), both F-score and mIoU of the removal de-

grade since no hidden semantic information from last FBV

is fused with GRU anymore. Although FPS increases due

to less computations, the efficiency η3D is worse.

Depth Refinement. In (c), we remove the depth anchored

refinement in the pipeline. The loss in F-score and mIoU

manifests that the geometric feature without depth anchored

refinement becomes inferior, which means depth anchored

refinement can improve 3D reconstruction performance.

Semantic Refinement. We validate the semantic refine-

ment in the pipeline by removing this module and, as shown

GRU Input
Depth Semantics

F-Score↑ mIoU↑ FPS ↑ η3D ↑
DE AR SE PVR

(a) Geo. � � � � 0.477 31.7 190 28.73

(b) Geo.+ Sem. � � 0.479 27.1 232 30.12

(c) Geo.+ Sem. � � � 0.482 34.5 169 28.10

(d) Geo.+ Sem. � � � 0.556 26.8 226 33.68

(e) Geo.+ Sem. � � � � 0.612 39.1 158 37.81

Table 3. Ablation study. We assess our method by removing each

of the proposed feature fusion techniques on ScanNet. DE, AR,

SE, and PVR denote depth estimation, anchored refinement, 2D

semantics estimation, and point-to-vertex refinement, respectively.

in (d). The mIoU drops due to the insufficient learning in-

formation from semantic heads only. This result demon-

strates the effectiveness of our semantic refinement scheme

based on pixel-to-vertex matching for improving 3D seman-

tic segmentation performance. We also experiment with no

refinements but depth and 2D semantics learning setup in

(b), which gives the highest FPS but not satisfying 3D per-

ception performance.

5. Conclusion
In this paper, we proposed a lightweight volumetric

method, CDRNet, that leverages the 2D latent information

about depths and semantics as the feature refinement to han-

dle 3D reconstruction and semantic segmentation tasks ef-

fectively. We demonstrated that our method has real-time

3D perception capabilities, and justified the significance of

utilizing 2D prior knowledge when solving 3D perception

tasks. Experiments on multiple datasets justify the 3D per-

ception performance improvement of our method compared

to prior arts. From the application point of view, the scala-

bility of CDRNet supports the notion that 2D priors should

not be disregarded in 3D perception tasks and opens up new

avenues for achieving real-time 3D perception using input

data from readily accessible portable devices such as smart-

phones and tablets.
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