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Abstract

Visual anomaly detection plays a crucial role in not only
manufacturing inspection to find defects of products during
manufacturing processes, but also maintenance inspection
to keep equipment in optimum working condition particu-
larly outdoors. Due to the scarcity of the defective samples,
unsupervised anomaly detection has attracted great atten-
tion in recent years. However, existing datasets for unsuper-
vised anomaly detection are biased towards manufacturing
inspection, not considering maintenance inspection which
is usually conducted under outdoor uncontrolled environ-
ment such as varying camera viewpoints, messy background
and degradation of object surface after long-term working.
We focus on outdoor maintenance inspection and contribute
a comprehensive Maintenance Inspection Anomaly Detec-
tion (MIAD) dataset which contains more than 100K high-
resolution color images in various outdoor industrial sce-
narios. This dataset is generated by a 3D graphics software
and covers both surface and logical anomalies with pixel-
precise ground truth. Extensive evaluations of represen-
tative algorithms for unsupervised anomaly detection are
conducted, and we expect MIAD and corresponding exper-
imental results can inspire research community in outdoor
unsupervised anomaly detection tasks. Worthwhile and re-
lated future work can be spawned from our new dataset.

1. Introduction
Anomaly detection plays a crucial role in not only

manufacturing inspection but also maintenance inspection.

Manufacturing inspection is intended to find defect of

products during manufacturing process in many industrial

fields, such as electronics [13], metals [31], fabrics [28]

and food [5]. Maintenance inspection is intended to find

whether equipment or product is in optimum working con-
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Figure 1. Images for maintenance inspection are usually captured

outdoors and suffer from varying camera viewpoints, messy back-

ground and degradation of object surface after working for a long

time, which makes the distribution of non-defective samples more

complicated. Some state-of-the-art methods can achieve AUROC

of 0.99 on the toy dataset for witness marks with indoor setting.

But when we vary each outdoor uncontrolled factor, we observe

obvious drops in performance. We show the mean AUROC across

state-of-the-art methods on MVTec AD including PatchCore [25],

Reverse Distillation [11], FastFlow [38] and DRAEM [39]. The

detailed metrics are shown in Table 6.

dition after leaving the factory particularly outdoors, such

as inspection of power transmission lines [29], photovoltaic

power station [21], wind power plant [34] and overhead

catenary system [6]. Among various monitoring approaches

including ultrasonic and X-ray, optical inspection is the

most basic, low-cost and frequently used type and is con-

sidered non-contact and non-destructive [13, 34].

Due to the scarcity of defective samples and abundance

of non-defective samples, research community as well as in-

dustrial community has paid increased attention to unsuper-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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vised setting of anomaly detection, i.e. algorithms should

be trained solely on non-defective images and be tested on

both non-defective and diverse defective images.

The problem of unsupervised anomaly detection for

manufacturing inspection [8] has been thorough researched,

which benefits from plenty of emerging datasets especially

MVTec AD [2]. MVTec AD is the first comprehensive

dataset for unsupervised anomaly detection in industrial

inspection which provides pixel-accurate ground truth re-

gions and allows to evaluate algorithms at both image level

and pixel level. Since MVTec AD is collected indoors un-

der controlled environments, images of the same category

are roughly aligned at pixel level with a clean background.

Based on this prior knowledge, PatchCore [25] achieves

state-of-the-art performance with image-level AUROC of

more than 0.99. However, when we try to apply Patch-

Core and other representative methods to maintenance in-

spection in the outdoors, we observe significant drops in

performance. Besides, there are only hundreds of images

in the training dataset per category, which is enough for in-

door scenarios but is not sufficient for outdoor scenarios due

to the complex distribution of non-defective samples. In a

word, existing datasets including MVTec AD are not suit-

able for research on outdoor maintenance inspection due to

pixel-level alignment and limited training dataset size.

The imaging equipment for maintenance inspection

are usually carried outdoors by unmanned aerial vehicles

(UAV) or track inspection vehicles [6] under uncontrolled

environment. As shown in Figure 1, images for outdoor

maintenance inspection suffer from varying camera view-

points, messy background and the degradation of object sur-

face (e.g. dust or rust), and it is reasonable to doubt whether

these uncontrolled factors break the prior assumption about

pixel-level alignment. In order to verify this doubt, we

synthesize a toy dataset of witness mark by control vari-

able technology. Experiments on this toy dataset show that

uncontrolled viewpoints, background, and surface individ-

ually have a negative effect on the accuracy of the state-

of-the-art algorithms, and the combination of these uncon-

trolled factors results in a more challenging task.

Therefore, we build and release a maintenance inspec-

tion dataset, named MIAD*, for unsupervised anomaly de-

tection. Considering the accessibility of various industrial

scenarios and high-cost labeling of pixel-precise ground

truth, we make use of BlenderProc [12], a 3D graphics

software, to build the 3D scenes and automatically gener-

ate 2D color images with pixel-precise ground truth. The

dataset mimics seven outdoor scenarios including photo-

voltaic module, wind turbine blade, nut and bolt, which is

inspired by real-world maintenance inspection. MIAD fo-

cuses on the three dominant factors mentioned above, ig-

noring uncontrolled light, weather, and other factors that

*https://miad-2022.github.io/

may affect imaging quality. Moreover, the area under the

receiver operating characteristic curve (AUROC) is utilized

as a image-level metric by existing datastes, which treats

the performance at the high false positive rate (FPR) and

the low FPR equally. We adopt an additional metric to fo-

cus on the performance at the low false alarm rate which is

pursued by industrial community.

In summary, we make the following contributions:

• We present MIAD, a novel maintenance inspection

dataset for unsupervised anomaly detection in un-

controlled environments (varying camera viewpoints,

messy background, and object surface degradation),

which breaks the pixel-level alignment assumption

used in existing manufacturing inspection datasets. It

consists of more than 100K high-resolution color im-

ages with pixel-level annotation, an order of magnitude

larger than existing datasets.

• We perform comprehensive evaluations on MIAD with

representative unsupervised anomaly detection meth-

ods. Experiments show that all of the evaluated meth-

ods perform poorly (mean AUROC 0.730-0.850) when

compared to their performance on MVTec AD (mean

AUROC 0.980-0.996), indicating that the accuracy of

the existing method is still far from practical applica-

tion, and there is still a long way to go in applying un-

supervised anomaly detection to outdoor maintenance.

2. Related Work
The progress of research in industrial anomaly detection

has been strongly driven by the development of datasets.

Here, we briefly review related datasets and methods for

unsupervised anomaly detection.

2.1. Datasets for Unsupervised Anomaly Detection

2.1.1 Datasets in Manufacturing Inspection

AITEX [28] is a public dataset for textile inspection, which

consists of 245 images of different fabric textures obtained

from a real production plant. BTAD [22] contains a total of

2830 real-world images of 3 industrial products showcasing

body and surface defects. DAGM [35] is a synthetic dataset

for defect detection on textured surfaces. It consists of mul-

tiple categories generated by a different texture model and

defect model, each consisting of 1000 normal samples and

abnormal images with annotated defect. ELPV [10] is col-

lected based on electroluminescence (EL) imaging of poly-

crystalline photovoltaic (PV) modules. It contains 2624 8-

bit grayscale images of functional and defective solar cells.

All images are the 300x300 pixels with varying degree

of degradations extracted from 44 different solar modules.

KolektorSDD [30] is proposed for surface-defect detec-

tion for an industrial semi-finished product where the num-
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Datasets #Category #Train #Test(good+defective) Scene & Env Real/Synthetic

AITEX 1 0 140+105 Manufacturing & Indoor Real

BTAD 3 1799 1031(total) Manufacturing &Indoor Real

DAGM 10 6900 4600(total) Manufacturing &Indoor Synthetic

ELPV 2 1968 656(total) Manufacturing & Indoor Real

KolektorSDD 1 133 266(total) Manufacturing & Indoor Real

MTD 2 448 896(total) Manufacturing & Indoor Real

MVTec AD 15 3629 467+1258 Manufacturing & Indoor Real

MVTec 3D AD 10 2656 248+948 Manufacturing & Indoor Real

MVTec LOCO AD 5 1772 575+993 Manufacturing & Indoor Real

CPLID 1 1186 770(total) Maintenance & Outdoor Real & Synthetic

MIAD 7 70000 17500+17500 Maintenance & Outdoor Synthetic

Table 1. Comparison of datasets for unsupervised anomaly detection. Our MIAD dataset focus on outdoor maintenance inspection and is

an order of magnitude larger than existing datasets.

ber of defective items available for the training is limited.

MTD [16] contains 1344 images, with the cropped ROIs

of 6 kind of magnetic tile and pixel-level labels. To sim-

ulate the manufacturing process in real assembly line, this

dataset collects images under multiple illumination condi-

tions for each given magnetic tile. MVTec AD [2] is a

widely used unsupervised anomaly detection dataset, which

contains 5354 high-resolution normal and anomalous im-

ages of 15 different real-world products. Most of recent

unsupervised anomaly detection methods are driven from

this dataset. MVTec 3D AD [3] was proposed recently

to encourage research into 3D anomaly detection and seg-

mentation. It contains over 4000 high-resolution 3D scans

of industrially manufactured products across 10 categories.

Each sample is represented by an organized point cloud and

a corresponding RGB image with a one-to-one mapping be-

tween the pixels in the point cloud and those in the RGB

image. MVTec LOCO AD (MVTec Logical Constraints

Anomaly Detection) [1] includes both structural and logical

anomalies with 3644 images from five different categories

inspired by real-world industrial inspection scenarios.

The details of aforementioned datasets are summarized

in Table 1. Compared with our MIAD dataset, these

datasets are all collected indoors and does not take into con-

sideration uncontrolled environment such as random cam-

era viewpoints, messy background, degradation of object

surface (rust or dust), etc. In addition, their datasets have

small scales, so it may be unable to fully exploit the poten-

tial of unsupervised anomaly detection algorithms and to

adequately validate them.

2.1.2 Datasets in Maintenance Inspection

Most of the above datasets are collected from indoor scenar-

ios under controlled environments. We also survey some

outdoor datasets which are rarely mentioned by the unsu-

pervised anomaly detection community.

Xiaoxia Li et al. [21] collected two typical PV module

visible defects: snail trail and dust shading by the UAV in-

spection system. The railway catenary dataset used in [6]

consists of the catenary support device images captured

from an approximately 100-km line along a high-speed rail-

way, in which 2000 catenary support devices and 40000 fas-

teners exist. CPLID [32] is proposed to detect the defect of

grid insulator, which contains 1956 high resolution images.

It is captured by an UAV with a DJI M200 camera at a res-

olution of 4608 × 3456 pixels and stored in BMP format.

However, the PV module [21] and the railway

catenary[6] datasets for outdoor inspection are not publicly

available, and thus they cannot be used to verify any pro-

posed results or make comparisons between different meth-

ods. In CPLID [32], the majority of abnormal images are

produced as a result of data augmentation, such as adding

noise to normal images, which is insufficient for represent-

ing outlier samples. Furthermore, these outdoor datasets are

limited to a single industry, resulting in a lack of diversity.

In this paper, we present an outdoor maintenance inspection

dataset that includes more than 100K annotated images and

covers a variety of outdoor industrial maintenance inspec-

tion scenarios to support relevant research more effectively.

2.2. Methods for Unsupervised Anomaly Detection

Following the survey [8], we classify the unsuper-

vised anomaly detection algorithms into four classes:

reconstruction-based, representation-based, normalizing

flow-based and data augmentation-based methods. We will

select one or two representative methods from each class to

make an analysis on our MIAD dataset in Section 4.

2.2.1 Reconstruction-based Methods

Reconstruction-based methods are designed to score

anomaly by reconstruction error. A neural network is

trained only on the normal images to generate high-fidelity
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input reconstructions and, it is not able to reconstruct ab-

normal images correctly in inference. The greater prob-

ability of anomaly there is, the higher anomaly scores of

a pixel will be. Typical algorithms mainly include auto-

encoders [18, 27, 4], variational auto-encoders [17] and

generative adversarial networks [14]. Recently the teacher-

student framework [33, 36, 11] is adopted for unsupervised

anomaly detection. In the training phase, only the stu-

dent network is trained to reconstruct the multi-layer feature

of the teacher network whose frozen parameters are pre-

trained on the ImageNet. In the testing phase, both teacher

and student networks are fed with a sample and the cor-

responding anomaly map is computed based on the differ-

ence of the two multi-layer features. Especially, the student

network of Reverse Distillation [11] takes teacher model’s

one-class embedding rather than raw images as input to re-

verse data flow in knowledge distillation, which achieves

promising results on the MVTec AD benchmark due to het-

erogeneity of the teacher and student networks. UniAD [37]

accomplishes anomaly detection for multiple classes with a

unified framework by designing improvements base on the

transformers.

2.2.2 Representation-based Methods

Representation-base methods extract discriminative fea-

tures from normal images and further build the normal dis-

tribution. Anomaly score results are obtained by measuring

the distance between the test images with the distribution

of normal images. Typical methods include SPADE [7],

PaDiM [9], FYD [40], PatchCore [25], etc. However, these

methods are CPU/GPU memory-consuming when there are

thousands of training samples. Their training time complex-

ities scale linearly with the dataset size, and require large

memory allocation for gallery features.

CFA [19] consists of a learnable patch descriptor to learn

embed representations and a scalable memory bank inde-

pendent of the size of the dataset. It adopts transfer learn-

ing to increase the normal feature density so that abnormal

features can be clearly distinguished by applying patch de-

scriptor and memory bank to a pre-trained CNN.

2.2.3 Normalizing Flow-based Methods

Normalizing Flows [24] are intended to learn transforma-

tions between data distributions and well-defined standard

normal distribution. Recently, some work began to use it for

unsupervised anomaly detection and localization. In these

methods, normal image features are embedded into standard

normal distribution and the probability is used to identify

and locate anomalies. DifferNet [26] achieved good im-

age level anomaly detection performance by using it to es-

timate the precise likelihood of test images. Unfortunately,

this work failed to obtain the exact anomaly localization re-

sults since they flattened the outputs of feature extractor.

CFLOW-AD [15] proposes to use hard code position em-

bedding to leverage the distribution learned by Normalizing

Flows. Furthermore, FastFlow [38] implements efficient

2D normalizing flows and use it as the anomaly estimator,

which can learns to transform the visual input as a tractable

distribution at train stage and obtain the probability to iden-

tify anomalies at inference stage.

2.2.4 Data Augmentation-based Methods

The core idea of data augmentation-based methods is to

simulate the anomalies through augmentation, which is

data-dependent and hand-crafted. DRAEM [39] learns

a joint representation of an anomalous image and its

anomaly-free reconstruction, while simultaneously learning

a decision boundary between normal and anomalous exam-

ples. CutPaste [20] uses a simple data augmentation strat-

egy that cuts an image patch and pastes at a random location

of a large image to train the feature extraction model.

3. Benchmark
In this section, we will first describe the details of our

MIAD dataset. And then we will define the metrics for

anomaly classification and segmentation performance.

3.1. Dataset Description

The MIAD dataset consists of seven outdoor mainte-

nance inspection scenarios. All scenarios are inspired by

real-world maintenance inspection including metal welding

for oil transmission pipeline, photovoltaic modules in pho-

tovoltaic power station [21], wind turbine blades in wind

power plant [34], the catenary dropper in overhead catenary

system [6]. The electrical insulator, nut and bolt, and wit-

ness mark are widely used in many industrial fields such

as power transmission lines [29] and catenary support de-

vices [6]. Note that outdoor maintenance inspection is usu-

ally conducted during the day, but in some special cases it

has to be conducted during the night. For example, the track

inspection vehicles for catenary support device only work at

night since the railway is occupied by transporting passen-

gers during the day. The example images of each scenario

are illustrated in Figure 2.

There are a total of 105000 color images with 512 ×
512 pixel high-resolution. The training set comprises 70000

images without any defect, 10000 of each scenario. The

test set comprises 35000 images, 2500 non-defective and

2500 defective images of each scenario. Further informa-

tion about each category is summarized in Table 2.

Different from the existing datasets for manufacturing

inspection which mainly collected in controlled environ-

ment, the MIAD dataset focus on the impact of uncon-
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Electrical Insulator Metal Welding Photovoltaic Module Wind Turbine Catenary Dropper Nut and Bolt Witness Mark

Figure 2. Example images of the MIAD dataset for seven maintenance inspection scenarios. The test set for each scenario comprises

non-defective (top row) and defective images (bottom row). The first four scenarios contain surface anomalies, and the rest contain logical

anomalies. Pixel-precise annotations are provided for all anomalies.

Anomaly Scenarios Uncontrolled Factors Day/Night #Defect Types #Defect Pixel Ratio

Surface Electrical Insulator UV, UB, US Night 1 0.04%

Metal Welding UV, US Day 2 0.10%

Photovoltaic Module UV Day 3 0.11%

Wind Turbine UV, UB, US Day 1 0.05%

Logical Catenary Dropper UV, UB Day 3 0.37%

Nut and Bolt UV, UB Night 3 0.36%

Witness Mark UV, UB, US Day 1 0.70%

Table 2. Overview of the MIAD dataset. In the third column, UV, UB and US stand for Uncontrolled Viewpoints, Uncontrolled Background

and Uncontrolled Surface, respectively. The defect pixel ratio equals the number of defective pixels divided by the number of all pixels.

trolled environment for maintenance inspection. Images

acquisition in maintenance inspection is usually conducted

by a UAV system, which results in varying camera view-

points (uncontrolled viewpoints). Messy background (un-

controlled background) is also inevitable when imaging in

an open environment. Moreover, degradation of object sur-

face (uncontrolled surface) after long-term outdoor working

makes the distribution of non-defective objects more com-

plex. For convenience, we utilize UV, UB, US to denote

uncontrolled viewpoints, uncontrolled background and un-

controlled surface in this paper, respectively.

We utilize BlenderProc[12], a procedural Blender

pipeline for photorealistic rendering, to generate our MIAD

dataset. A basic pipeline for rendering with BlenderProc

is shown as the top flow in Fig 3. After some basic ini-

tialization of the blender project (e.g. configures comput-

ing device, creates a camera), a 3D scene is loaded and

a camera is set with a predefined position and pose inside

this scene. Then the RGB and semantic segmentation im-

ages can be rendered simultaneously based on the physical

based rendering [23] technology. In order to simulate the

uncontrolled surface, background and viewpoints in main-

tenance inspection, three modules are implemented. The

bottom flow in Fig 3 depicts the modified pipeline and the

details will be describes in the following three subsections.

3.1.1 Uncontrolled Surface

In the outdoors, the surface of objects may deteriorate (such

as dust or rust) due to bad weather or other environment, re-

sulting in random irregular textures. To simulate the uncon-

trolled surface, we randomly change materials of the ob-

ject of interest by a mix shader which can mix the orig-

inal shader with another one like dust. The original and

additional materials can been found in blenderco textures

library†. Plenty of similar texture files are downloaded and

they are randomly split into training set and test set to pre-

vent the data leakage.

3.1.2 Uncontrolled Background

To simulate the uncontrolled background during the day,

e.g. the wind turbine scenario in our MIAD dataset, we

select reasonable images from the Internet‡ for each sce-

nario and then randomly change the background image in

BlenderProc. As for uncontrolled background during the

night, e.g. the nut and bolt scenario in our MIAD dataset,

reasonable background images are almost the same (pure

black), we randomly add background objects to simulate

the messy background.

†https://blenderco.cn/category/tiet
‡https://polyhaven.com
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Figure 3. The basic pipeline (top flow) and a modified pipeline (bottom flow) for rendering photorealistic data by BlenderProc.

3.1.3 Uncontrolled Viewpoints

The images varies with the uncontrolled camera viewpoints

which has 6 degree of freedom. In order to capture the ob-

ject of interest, the 3D pose is constrained based on that the

camera always look at a point of interest on the object, while

the 3D position can been randomly set. For convenient, we

sample the camera position in spherical coordinate rather

than Cartesian coordinate. In other word, the camera po-

sition can be denoted as (r, θ, φ), where r is the radius, θ
is the azimuth angle and φ is the elevation angle. r affects

the size of objects, while θ and φ jointly affects the visible

region of objects. In accordance with the size of the objects

and the size of defect regions, different scenarios necessitate

different sampling ranges of r which is shared by training

and test set to make the dataset follow similar distribution.

To prevent the data leakage, the θ and φ for training images

satisfy

θ, φ ∈ ∪179
n=0 [2n, 2n+ 1), (1)

and the θ and φ for test images satisfy

θ, φ ∈ ∪179
n=0 [2n+ 1, 2n+ 2), (2)

where θ and φ are both in degrees.

3.2. Evaluation Metrics

All evaluated algorithms should provide a one-channel

anomaly map, in which large values indicate that a certain

pixel belongs to an anomalous region. And the maximum

score over all pixels in a given anomaly map is regarded as

the image-level anomaly score.

To assess the image-level anomaly classification perfor-

mance, we adopt AUROC as an evaluation metric follow-

ing MVTec AD [2]. Although AUROC is a independent of

thresholds, a threshold must be determined to make a binary

decision when algorithms are applied in industrial scenar-

ios. Moreover, AUROC treats the performance at the high

FPR and the low FPR equally, but industrial community

pursues better performance only at the low FPR because

lower false alarm rate brings lower cost for manually check-

ing the report from algorithms. FPR is usually required no

larger than 1%, so we propose to use recall at 1% FPR as an

additional image-level metric to measure whether a method

is applicable in industry.

In order to assess the anomaly segmentation capability,

a naive way is to calculate the pixel-level AUROC by re-

garding the classification result of each pixel as a sample.

However, the defect pixel ratio of all scenarios in Table 2 is

less than 0.01 and this means pixel-level AUROC can eas-

ily surpass 0.99 if all pixels are predicted as non-defective,

which indicates that pixel-level AUROC is not a proper met-

ric to reflect different performance of evaluated methods,

especially in outdoor inspection. Following MVTec AD [2],

a normalized per-region overlap (PRO) between segmenta-

tion and ground truth is calculated and the area under the

PRO curve (AUPRO) is adopted as a pixel-level metric.

4. Experiments
In this section, we conduct a thorough evaluation of mul-

tiple state-of-the-art methods for unsupervised anomaly de-

tection on our dataset to serve as a baseline for future meth-

ods. The strengths and weaknesses of each method are dis-

cussed on the various surface and logical anomalies. More-

over, we analysis the impact of three uncontrolled factors of

outdoors and the impact of training dataset size in a quanti-

tative way.

4.1. Evaluated Methods

We select Reverse Distillation [11], PatchCore [25],

FastFlow [38] and DRAEM [39] as representative of

reconstruction-, representation-, normalizing flow- and data

augmentation-based methods, respectively. The naive

method L2 Auto-Encoder as described by [4] is also

adopted as a baseline. Since the above methods train

separate models for different scenarios, we also adopt

UniAD [37] which shares the same parameters for multiple

scenarios. Detailed information of each algorithm including

the input size, data augmentation and neural network can be

found in Appendix.

4.2. Overall Results

Evaluation results for the classification of anomalous im-

ages are given per methods and dataset categories in Tables
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Scenarios RD PatchCore FastFlow DRAEM AE UniAD

Electrical 0.68 0.55 0.54 0.81 0.49 0.50

Insulator 0.01 0.01 0.01 0.24 0.01 0.01

Metal 0.91 0.95 0.78 0.95 0.47 0.57

Welding 0.01 0.22 0.02 0.37 0.01 0.01

Photovoltaic 0.85 0.53 0.97 1.00 0.68 0.64

Module 0.11 0.01 0.74 0.85 0.03 0.05

Wind 0.91 0.80 0.97 0.88 0.48 0.85

Turbine 0.04 0.06 0.67 0.45 0.01 0.12

Catenary 0.96 0.93 0.95 0.95 0.61 0.81

Dropper 0.22 0.60 0.60 0.48 0.05 0.07

Nut and 0.89 0.67 0.55 0.84 0.50 0.52

Bolt 0.20 0.05 0.01 0.02 0.01 0.01

Witness 0.57 0.71 0.51 0.52 0.49 0.59

Mark 0.03 0.02 0.01 0.01 0.01 0.01

Mean 0.82 0.73 0.75 0.85 0.53 0.64

0.09 0.14 0.29 0.35 0.02 0.04

Table 3. Results of the evaluated methods when applied to the clas-

sification of anomalous images. For each method, the AUROC

(top row) and Recall@1%FPR (bottom row) are given. RD stands

for Reverse Distillation and AE stands for Auto-Encoder.

Scenarios RD PatchCore FastFlow DRAEM AE UniAD

Electrical
0.90 0.64 0.74 0.98 0.51 0.64

Insulator

Metal
0.68 0.47 0.87 0.64 0.60 0.76

Welding

Photovoltaic
0.92 0.52 0.59 0.98 0.85 0.69

Module

Wind
0.95 0.73 0.96 0.92 0.45 0.89

Turbine

Catenary
0.76 0.86 0.87 0.53 0.59 0.87

Dropper

Nut and 0.94 0.89 0.66 0.72 0.48 0.74
Bolt

Witness
0.10 0.65 0.45 0.48 0.56 0.79

Mark

Mean 0.75 0.68 0.73 0.75 0.58 0.77

Table 4. Results of the evaluated methods when applied to the seg-

mentation of anomalous regions. For each method, the AUPRO

is given. RD stands for Reverse Distillation and AE stands for

Auto-Encoder.

3. From the view of the metric AUROC, all of the eval-

uated methods perform poorly with highest mean AUROC

0.85 when compared to their performance on MVTec AD

(mean AUROC 0.980-0.996), proving that outdoor inspec-

tion is more challenging than indoor inspection for all exist-

ing algorithms due to uncontrolled environment. A higher

AUROC is not always means a higher recall at 1% FPR.

For example Reverse Distillation achieves highest AUROC

with 0.96 on the catenary dropper subset but obtains Re-

call@1%FPR with 0.22 which is near three times smaller

than than the highest score 0.60. From the view of the met-

ric Recall@1%FPR, existing methods achieve highest recall

0.35, indicating that existing methods are far from practical

Factors RD PatchCore FastFlow DRAEM Mean

baseline 0.85/0.53 0.80/0.40 0.83/0.44 0.90/0.44 0.85/0.45

+UV 0.89/0.37 0.64/0.02 0.70/0.18 0.78/0.23 0.75/0.20

+UB 0.73/0.17 0.71/0.29 0.71/0.41 0.81/0.19 0.74/0.27

+US 0.81/0.05 0.76/0.07 0.79/0.16 0.89/0.21 0.81/0.12

+UV+US+UB 0.68/0.01 0.55/0.01 0.54/0.01 0.81/0.24 0.65/0.07

Table 5. Impact of uncontrolled factors under outdoor environment

on the electrical insulator. For each method, the image-level AU-

ROC (the first number) and Recall@1%FPR (the second number)

are given. RD stands for Reverse Distillation and AE stands for

Auto-Encoder.

application for outdoor inspection.

From Tables 3, we can also observe that none of the

methods manages to consistently perform well across all

surface and logical anomaly. DRAEM is more prefer-

able for surface anomaly while Reverse Distillation is more

preferable for logical anomaly.

Evaluation results for the segmentation of anomalous re-

gions are given for all methods and dataset categories in

Tables 4. We can observe that a high AUPRO does not

necessarily coincide with a high AUROC or a high Re-

call@1%FPR.

Qualitative results of each method are shown in Fig-

ure 4, majority of results are failure cases due to uncon-

trolled viewpoints, background and surface.

Since the Auto-Encoder and UniAD performs poorly on

MIAD, we will conduct further experiments only with the

other four methods.

4.3. Impact of Outdoor Uncontrolled Factors

In this section, we will study the impact of the three out-

door uncontrolled factors. As described in Table 2, not all

scenarios cover these three factors, so we select the electri-

cal insulator and the witness mark as the representative of

surface anomaly and logical anomaly, respectively. We gen-

erate two baseline datasets under controlled environment,

and individually add UV, UB, US to the baseline. At the

end, we add these three factors simultaneously, which is

under the setting with our MIAD. The results are shown in

Table 5 and 6. UV, UB and US will bring significant drops

in performance separately to most methods except Patch-

Core on the witness mark. The three factors seems to have

equal impact from the view of AUROC. However, from the

view of Recall@1%FPR, US plays a dominant role for the

surface anomaly. The combination of these factors results

in greater drops without exception.

4.4. Impact of Training Dataset Size

According to Table 1, the training dataset size per cate-

gory of existing datasests for unsupervised anomaly detec-

tion is not greater than 1200. The limited training dataset
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Figure 4. Qualitative anomaly segmentation results for each evaluated method on the MIAD dataset.

Factors RD PatchCore FastFlow DRAEM Mean

baseline 0.95/0.42 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.86

+UV 0.61/0.04 1.00/1.00 0.88/0.06 0.66/0.08 0.79/0.30

+UB 0.57/0.03 0.93/0.39 0.92/0.28 0.86/0.27 0.82/0.24

+US 0.64/0.04 1.00/0.99 0.99/0.65 0.47/0.02 0.78/0.43

+UV+US+UB 0.57/0.03 0.71/0.02 0.51/0.01 0.52/0.01 0.58/0.02

Table 6. Impact of uncontrolled factors under outdoor environment

on the witness mark. For each method, the image-level AUROC

(the first number) and Recall@1%FPR (the second number) are

given. RD stands for Reverse Distillation and AE stands for Auto-

Encoder.

size is partly due to costly collection, but the main rea-

son is that hundreds of samples is enough to stands for

the distribution of roughly aligned non-defective samples.

We believe an order of magnitude larger training data size

is essential for outdoor anomaly detection to describe the

complex non-defective objects. In order to verify this

thought, we sample training data size from 1000 to 10000

on the electrical insulator which is a represent for surface

anomaly and the witness mark which is a represent for log-

ical anomaly. As shown in Table 7, Reverse Distillation

enjoys the growth of the training data size, while PatchCore

and FastFlow obtain a little benefit after the training dataset

size is larger than 2000. DRAEM, which is more preferable

for surface anomaly, benefit a lot from the extensive train-

ing data on the electrical insulator but fail on the witness

mark. Furthermore, PatchCore is failed to run when train-

ing data size is larger than 2000 due to GPU memory lim-

itation. How to exploit the bonus of massive non-defective

samples in the outdoors is an interesting research direction.

Size RD PatchCore FastFlow DRAEM

1000(10%) 0.56/0.35 0.54/0.67 0.51/0.51 0.63/0.51

2000(20%) 0.62/0.44 0.55/0.65 0.53/0.51 0.67/0.51

4000(40%) 0.65/0.48 -/- 0.53/0.50 0.67/0.51

8000(80%) 0.67/0.48 -/- 0.54/0.51 0.78/0.52

10000(100%) 0.68/0.57 -/- 0.53/0.51 0.81/0.52

Table 7. Results of different training dataset size. For each al-

gorithm, the image-level AUROC on the electrical insulator and

witness mark is given. Due to GPU memory limitation, PatchCore

is failed to run when training data size is larger than 2000.

5. Conclusion
We introduce the MIAD dataset, a novel dataset for un-

supervised anomaly detection in various maintenance in-

spections. This dataset is intended for tasks under un-

controlled environments including uncontrolled viewpoints,

uncontrolled backgrounds and uncontrolled surfaces. It pro-

vides researchers with sufficient images, which are an order

of magnitude larger than existing datasets, to facilitate al-

gorithms to learn the complex distribution of outdoor non-

defective samples. Some representative methods including

Reverse Distillation, PatchCore, FastFlow, DRAEM, Auto-

Encoders and UniAD are evaluated on the MIAD dataset,

and the significant drops in performance demonstrate that

the maintenance inspection is more challenging than manu-

facturing inspection. We expect that MIAD can attract more

attention of the research community on the outdoor mainte-

nance inspection and that worthwhile future work can be

spawned from the proposed dataset.
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