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Abstract

We propose JEDI, a multi-dataset semi-supervised
learning method, which efficiently combines knowledge
from multiple experts, learned on different datasets, to train
and improve the performance of individual, per dataset, stu-
dent models. Our approach achieves this by addressing two
important problems in current machine learning research:
generalization across datasets and limitations of supervised
training due to scarcity of labeled data. We start with an
arbitrary number of experts, pretrained on their own spe-
cific dataset, which form the initial set of student models.
The teachers are immediately derived by concatenating the
feature representations from the penultimate layers of the
students. We then train all models in a student-teacher
semi-supervised learning scenario until convergence. In
our efficient approach, student-teacher training is carried
out jointly and end-to-end, showing that both students and
teachers improve their generalization capacity during train-
ing. We validate our approach on four video action recog-
nition datasets. By simultaneously considering all datasets
within a unified semi-supervised setting, we demonstrate
significant improvements over the initial experts.

1. Introduction

Modern algorithms tackling specific computer vision

tasks in image and video understanding rely on models

trained on large scale visual datasets. While the size of rep-

resentative datasets for different visual tasks has increased

over the past years, ranging from tens of thousands in se-

mantic segmentation (MS COCO [26]) and action recogni-

tion (Kinetics [19]) to millions in object recognition (Ima-

geNet [6]), they are only able to capture a small part of the

complexity of the real world. In the supervised case, each

dataset consists of a set of class labels and a limited set of

samples drawn from the infinitely large space of examples

in the real world. Usually, the representation obtained based

on this data sampling has a strong built-in bias [39], with

various factors such as manual example selection, image ac-

quisition, label distribution biases contributing to the overall

bias. In object recognition, a simple linear SVM classifier

performs much better than random chance in distinguishing

between images of different known datasets [39] with sim-

ilar object classes. In video action recognition, in both Ac-

tivityNet [17] and UCF101 [36] datasets, “playing piano”

is the only class depicting pianos [23], so a piano detector

is sufficient to correctly classify the respective action. Sim-

ilarly [23], classifying scenes as basketball court or soccer

field is enough to correctly classify action classes “basket-

ball dunk” and “soccer juggling”. Each dataset provides a

unique view of the visual world through the data samples

it contains. Thus, methods have a hard time achieving gen-

eralization across datasets. Indeed, an algorithm trained on

a dataset might not perform well on others, as data follows

different distributions. Moreover, class labels vary across

datasets, and consequently, with each new dataset, a method

has to solve a new task. Creating datasets that properly cap-

ture generic patterns, without inheriting biases, constitutes

one of the biggest challenges nowadays [24, 38].

In this paper, we come to address these challenges, with

a model that simultaneously learns from multiple datasets

in a semi-supervised fashion. More precisely, we leverage

information from multiple datasets to improve performance

on each dataset in part. The main idea is to facilitate under-

standing the visual world depicted by each particular dataset

by using the out-of-distribution data from other datasets.

We demonstrate the usefulness of our method for the case

of video action recognition. We leverage the use of expert

models pretrained on different datasets and group them to-

gether in an ensemble of experts. Each expert is specialized

in recognizing specific action classes and comes with its

own perspective, as learned from the corresponding dataset.

We show that by combining the knowledge of all experts

into ensembles of experts (teachers) and employing semi-

supervised knowledge distillation (by using the output of

teachers as pseudo-labels) back into the individual experts
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(students), we improve the performance of each expert. Our

framework unifies multi-dataset and semi-supervised learn-

ing into a single pipeline, being trained jointly and end-to-

end. This approach is novel in the literature and proves its

effectiveness by improving the student networks over the

initial counterparts, at no extra cost during test time.

We conduct experiments on four action recognition

datasets: ActivityNet [17], HMDB51 [21], Kinetics400

[19] and UCF101 [36]. Our results show that we signif-

icantly improve the performance of the students (experts)

themselves (between 1% and 8%).

In summary, we make the following contributions:
• We propose a novel semi-supervised multi-dataset

model for action recognition in video, which learns

to combine multiple experts (one per dataset) to cre-

ate semi-supervised teachers for the next generation

of students, over multiple iterations. We address the

limited labeled data problem through self-supervision:

students at one iteration become teachers for the stu-

dents at the next iteration.

• We address the issue of dataset bias by simultaneously

learning on multiple datasets. We perform tests using

four challenging datasets and show that our learning

pipeline significantly improves the performance of the

individual experts. To our best knowledge, this repre-

sents a novel training pipeline.

• We make learning efficient such that both the distilla-

tion of teacher knowledge into the student and learn-

ing of the teacher ensembles are carried out jointly and

end-to-end. To our best knowledge, this is also novel.

2. Related Work
Relation to video action recognition methods. State-

of-the-art action recognition models use different deep net-

work architectures based on optical flow [10, 34], 3D con-

volutions [3, 15], or recurrent connections [35]. These ar-

chitectures consider as input either a frame or a clip (a set

of frames) that are densely [34] or randomly [40] sampled.

They alternatively employ some smart frame or clip sam-

pling strategy [13, 25], learn to select the best frame [33]

or use the entire video [27] by using a cumulative tempo-

ral clustering algorithm based on the Hamming distance. In

contrast, our method is designed to integrate several expert

models pretrained on different datasets, and thus, it can use

any of the mentioned models. In particular, we use the Tem-

poral Shift Module [25] and the Temporal Segment Net-

work [40] architectures in our experiments.

Relation to ensemble and teacher-student learning.
Ensembles are widely used in machine learning [14]. The

usual approach in building ensembles is to combine the

prediction of different models trained on the same dataset.

Distinct from the common methodology, we build an en-

semble of expert models which are pretrained on different

datasets. Moreover, instead of just using the output of the

expert models, we use the representation in the form of hid-

den features provided by the individual models. Combining

experts towards guiding the learning through ensembles has

previously been demonstrated for image retrieval [9], video

retrieval [28] or multi-task scene understanding [22]. Dif-

ferent from previous work, our approach creates ensembles

by forming two-hop pathways that pass through an inter-

mediate representation obtained from all experts trained on

their specific dataset and then return to the target expert. In

this manner, our multi-task system is in fact a set of en-

sembles in which all knowledge from all datasets is jointly

used. We combine experts to build ensembles following a

teacher-student learning paradigm [1, 18]. Usually this is

done in a two-step iterative scheme by alternating the en-

semble learning of a teacher from students with the learning

of students to mimic the teacher. Different from the conven-

tional approach, we formulate the learning of both students

and teachers in a joint manner, where both teachers and stu-

dents improve over each training iteration.

Relation to multi-task learning. Multi-task learning

was successfully applied in scene understanding [22, 31],

video anomaly detection [11], universal/generic 3D rep-

resentation [41] or image classification and depth predic-

tion [7]. The works of [22, 31] exploit consistency between

various different tasks such as semantic segmentation, depth

and motion, while [7, 11, 41] employ a shared feature ex-

traction backbone and train multiple heads for each separate

task. In our case, we impose consistency between different

datasets, depicting different action classes by retraining the

specific experts on the output of ensembles that effectively

combine features from all datasets.

Relation to unsupervised and semi-supervised repre-
sentation learning. Many recent methods that include an

unsupervised learning component are based on some form

of clustering [2, 37, 42], using pretext tasks [12, 32, 43, 44]

or training adversarial generative models [8]. In our case,

the unsupervised learning part is based on training on

pseudo-ground-truth labels, which we obtain from the out-

put of our multi-dataset ensembles. This is different from

the recent neural graph consensus model [22], which trains

on pseudo-labels from ensembles, but there is no multi-

dataset and transfer learning aspect. Different from [22],

we train students and teachers jointly end-to-end.

3. Proposed Method
Consider a set of n models {M1,M2, ...,Mn}, where

each model Mi is pretrained on samples (and labels) of

some dataset Di. The classes from any two datasets may

overlap or be completely disjoint. One may reason that

each model in the set {Mi}ni=1 provides a different per-

spective for the same data sample, which is induced by the

inherent bias of dataset Di. For simplicity, we will refer to
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the initial experts Mi simply as “experts”. We aim to im-

prove each expert Mi by employing self-supervised learn-

ing from out-of-distribution knowledge from all other ex-

perts Mj , ∀j �= i.
Each expert Mi is composed of a pretrained encoder

model (e.g. convolutional layers), and a classification head

(e.g. fully connected layers). We create n ensembles Ei
(mixtures) of experts, such that there is one ensemble Ei per

dataset. The input to each of the n ensembles is a combined

representation of the sample. We obtain the joint represen-

tation by aggregating (via concatenation) the intermediate

representations given by all the experts for the given sample.

The intermediate representations are taken just before the

classification heads. Each ensemble model will ultimately

yield outputs (i.e. prediction logits) that are similar to the

classification head of the corresponding expert model.

3.1. Alternating vs. Joint Training

Alternating training: Perhaps the most straightforward

procedure for training is to start a two-step student-teacher

iterative learning process: 1) The ensembles (teachers) learn

to classify the data samples more robustly by combining the

knowledge of the students; 2) The experts (students) learn

from the teachers via knowledge distillation, by using the

output of the teachers as pseudo-labels during training.

Joint training (proposed): The aforementioned two-step

training process can be further improved in terms of learn-

ing speed and efficiency: instead of iteratively retraining the

students and teachers from scratch, we propose to jointly

train both teachers and students in an end-to-end differ-

entiable pipeline, such that with each gradient step in the

learning process (per batch), both students and teachers are

jointly optimized.

3.2. JEDI Training Procedure

As motivated above, we employ a training procedure

to increase the performance of both students and teachers,

formulated as a joint multi-task semi-supervised teacher-

student learning scenario. We specifically identify 3n tasks

that need to be jointly optimized:

1. Supervised training of each Mi to classify samples

from dataset Di, for all i = 1, n (n tasks);

2. Supervised training of each teacher Ei to classify sam-

ples from dataset Di, for all i = 1, n (n tasks);

3. Unsupervised knowledge distillation of teachers Ei
into their corresponding students Mi on samples from

all datasets {Dj}nj=1, by using the output predictions

of Ei as pseudo-labels, for all i = 1, n (n tasks).

An illustration of the training procedure is shown in Fig-

ure 1, for n = 3 models. Each student Mi is composed

of an encoder part and a classification head. We extract in-

termediate representations just after the final encoder layer,
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Figure 1. For simplicity, we exemplify the iterative JEDI training

procedure for D1. Dashed arrows indicate knowledge distillation.

and aggregate them via concatenation. Dashed arrows show

how knowledge is distilled in our framework. All models

benefit from unsupervised knowledge distillation.

Combined loss criterion. The whole end-to-end pipeline is

trained in a multi-task scenario, by employing a combined

loss for all 3n tasks. As knowledge distillation involves all

datasets, and classification involves just one dataset Di for

model Mi, it follows that each model gets to “see” more

data distributions in the distillation scenario than in the clas-

sification one, which helps each teacher and student to gen-

eralize better. However, since the number of samples in

each dataset Di can vary from one dataset to another, the in-

terplay between different data distributions might have neg-

ative effects from smaller datasets. We address this mis-

alignment by weighting the distillation loss by a factor of

wi. Our novel combined loss for an example x ∈ {Di}ni=1

and its corresponding ground-truth label y is given by:

L(x, y) = α · Lcls(Mi(x), y) + β · Lcls(Ei(x), y)+

+ γ ·
n∑

j=1

wij · Lkd(Mj(x), Ej(x)), (1)

where α, β and γ are hyperparameters controlling the im-

portance of various loss components, and wij is a dataset

weighting factor defined as follows:

wij =

{
1, if i = j

|Dj |∑n
k=1 |Dk| , if i �= j

, ∀i = 1, n, j = 1, n.

(2)

Note that we decide to set wij = 1 in Eq. (2) for sam-

ples coming from the dataset of the corresponding model,

i.e. when i = j, as we argue that samples from the refer-

ence dataset are more important and should impose a greater

weight.

In Eq. (1), Lcls can be any desired classification loss

function (e.g. Hinge loss, cross-entropy loss, etc.), and Lkd

is a chosen knowledge distillation loss criterion (e.g. soft-

label MSE, cross-entropy loss, etc.). Moreover, α, β and
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Figure 2. Scheme of the distillation network. Thick solid arrows

indicate linear layers. The dashed arrow indicates a skip connec-

tion. The network is trained to optimize the knowledge distillation

loss between Mi’s predictions and Ei’s predictions.

γ are hyperparameters, and should be chosen empirically

according to the task (e.g. by cross-validation). The total

loss of the joint model is defined as the sum of the com-

bined losses over all training samples of all datasets. Note

that for the samples where ground-truth labels are not avail-

able (the unsupervised learning phase), only the third term

of the loss is active, which essentially performs the student-

teacher distillation. However, when ground-truth labels are

available (the supervised learning phase), it is important to

use them as well (by activating the first two terms), in order

to avoid catastrophic forgetting [20] of the ground-truth la-

bels, thus preserving the stability of the multi-task process

and improving the convergence rate.

3.3. Weight Freezing and Embedding Caching

In order to make the training process more efficient, dur-

ing our experiments, we freeze the encoder architecture of

all student models, and only keep the classification heads

trainable. This is, undoubtedly, a compromise. If we are to

allow the whole architecture to be trained, this may lead to

even higher accuracy gains. However, introducing this com-

promise improves the experimental training time by consid-

erable margins, allowing us to pre-compute the intermediate

representations by running the inference pipeline once for

all models and all datasets. The intermediate embeddings

are persisted on disk. This makes the training procedure

essentially equivalent to end-to-end fine-tuning with frozen

encoders.

Adjustment module. One may notice that, if we are

to freeze the encoder weights, then the intermediate rep-

resentations (and, by extension, the input to the ensemble

models) are fixed during training. This is a limitation com-

ing from our decision of freezing the encoder weights. We

circumvent this by employing a trainable “adjustment mod-

ule” inside each of the experts. This module aims to slightly

modify the initial weights, before feeding them into the stu-

dent classification heads, as well as the ensemble classifica-

tion heads. We choose a simple two-layer neural network

architecture as the adjustment model, with a considerably

lower number of neurons in the hidden layer than the initial

embedding size. The output of the network is then added to

the initial embeddings, with dropout applied to the adjust-

ments. The motivation for such an architecture is to emulate

an adjustment of the embedding vectors e ∈ R
d×1 by alter-

ing them with a transformation of the form:

e ← (M + Id) · e, (3)

where M is a low-rank d × d matrix (M = UV , where

U ∈ R
d×m, V ∈ R

m×d, m � d). This is only partially

accurate, as our model also includes a non-linear activation

function and dropout, which makes the adjustment transfor-

mation more complex than a simple matrix-vector product.

The exact design of the distillation net, with the integrated

adjustment module, is shown in Figure 2.

4. Experimental Evaluation
We conduct experiments on four action recognition

datasets, selecting one expert model per dataset. We

carry out the experiments on a computer with an NVIDIA

GeForce RTX 3090 GPU, an Intel i9-10940X 3.3 GHz

CPU, and 128 GB of RAM.

4.1. Datasets

The videos in the four action recognition datasets vary by

size, video length, content, and the annotated actions have

variable specificity. Some datasets contain similar or even

common classes, whereas others are completely disjoint.

ActivityNet [17] is a dataset containing 19, 994
untrimmed videos annotated with 200 activities. The ac-

tivities cover a wide range of complex human activities that

are of interest to people in their daily living. The activity

classes are grouped into 7 different high-level categories:

Personal Care, Eating and Drinking, Household, Caring and

Helping, Working, Socializing and Leisure, and Sports and

Exercises. Unlike other datasets, the videos here have a

considerably greater average length of around 2.5 minutes.

The annotations for the test videos are not publicly avail-

able. Therefore, following the common practice, we use

the validation set along with its publicly-available labels

for the final evaluation. Out of the 19, 994 videos, a num-

ber of 3, 189 videos were no longer available for download.

Therefore, the total size of our dataset is 16, 805.

HMDB51 [21] is a dataset that consists of 7, 000
clips distributed in 51 action classes. The classes are

more generic compared to the ActivityNet dataset and

are grouped in 5 different categories: general facial ac-

tions, facial actions with object manipulation, general body

movements, body movements with object interaction, body

movements for human interaction. The original evaluation

scheme uses three different training/testing splits. We con-

sider the first split for our training and evaluation, as the
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publicly available expert models are trained using the same

split.

Kinetics400 [19] is a large-scale dataset consisting of

YouTube videos. It has 400 action classes, with at least 400
videos per action. These classes include human-human in-

teractions (e.g. hugging, shaking hands), as well as human-

object interactions (e.g. playing instruments). Due to its

large size, Kinetics400 is often used for model pretraining.

UCF101 [36] is a dataset with 13, 320 YouTube videos

from 101 action classes, which vary in terms of camera

motion, object appearance, pose, scale, viewpoint, amount

of clutter and illumination. Being of similar complexity

with ActivityNet, the 101 classes belong to 5 types: Body

motion, Human-human interactions, Human-object interac-

tions, Playing musical instruments, and Sports. The evalua-

tion scheme could use three different training/testing splits.

We use the first split in our experiments.

4.2. Initial Expert Models

We use the PyTorch framework, as well as the Open-

MMLab’s MMAction2 [4] toolbox, as it provides multiple

model architectures pretrained on several datasets. For each

dataset, we opt for a pretrained open-source architecture

yielding competitive performance in the reported bench-

marks, at the time of writing.

ActivityNet. We use a Temporal Segment Network [40]

architecture, with a ResNet50 [16] backbone with 8 seg-

ments. As described in the toolbox documentation, the

model was pretrained on the Kinetics400 dataset, and then

trained for 50 epochs on the training split of the ActivityNet

dataset.

HMDB51. We use a Temporal Shift Module [25] archi-

tecture, with a ResNet50 [16] backbone with 16 segments.

As described in the MMAction2 toolbox, the model was

pretrained on the Kinetics400 dataset, and then trained for

25 epochs on the first training split of the HMDB51 dataset.

Kinetics400. We use an implementation of the Video

Swin Transformer [29], developed on top of the MMAc-

tion2 toolbox. More specifically, we use the Swin-B back-

bone, with a spatial crop of size 244. As described in the im-

plementation, the model was pretrained on ImageNet-22K.

UCF101. We use the same model as for the HMDB51

case. As described in the MMAction2 toolbox, the model

was pretrained on the Kinetics400 dataset, and then trained

for 25 epochs on the first training split of UCF101.

4.3. Embedding Caching Stage

We run inference on the aforementioned models on

videos from all datasets to obtain feature vectors from each

of the experts. The embedding size obtained for each

dataset is shown in Table 1. Ultimately, by concatenating

the embeddings, we end up with an aggregated feature vec-

tor of size 7168 for each video from each dataset. We also

Dataset Model Training size Feature size
ActivityNet TSN 8 398 2048
HMDB51 TSM 3 570 2048

Kinetics400 SWIN-B 226 070 1024
UCF101 TSM 9 537 2048

TOTAL 251 358 7168

Table 1. Number of training samples per dataset (3rd column), and

number of features for each corresponding model (4th column).

compute the predicted probabilities for each class alongside

the feature vectors. Both features and predicted probabili-

ties are persisted to disk for quicker experiments. As men-

tioned earlier, this is a trade-off between the efficiency of

the training and the learning potential.

4.4. Implementation Details

Teachers. We model each teacher as a simple ensem-

ble based on a linear meta-classifier. We choose Hinge loss

(maximum margin loss) for the ensembles, making each en-

semble similar to a soft-margin Support Vector Machines

model. We conjecture that an SVM-like architecture would

be a robust choice in the context of a high-dimensional sys-

tem, where the input dimensionality (7168) is comparable

to and even surpasses the number of examples (see Table

1, e.g. HMDB51). We also employ a dropout layer before

each of the meta-classifiers. We choose separate dropout

rates for each model, given by the formula:

pi = max

(
0, 1− k · NumClasses(Di)

d

)
. (4)

In the above equation, pi is the dropout probability for

ensemble Ei, d is the input dimensionality (d = 7168).

Based on preliminary experiments with k ∈ {1, 10, 100},

we find that k = 10 is a good choice. Intuitively, the

dropout rate is set such that the expected number of active

neurons in the training procedure is k times larger than the

number of classes of the given dataset, namely:

E[#neurons]i = d · (1− pi) = k · NumClasses(Di). (5)

In most experiments, we find that the ensembles fit the

training data perfectly, obtaining close to 100% accuracy on

the training set. However, as the objective of the last SVM

layer is to maximize the separation margin between classes,

it also proves effective on unseen data.

Students. We keep the encoders of each of the pre-

trained expert models frozen and we fine-tune only their

classification heads. We employ an adjustment module

(Figure 2) for each of the experts. The adjustment module

consists of a two-layer neural network, with 256 neurons in

the hidden layer (around 12-25% of the input dimensional-

ity), and SiLU activation. The adjusted weights are coupled
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Model ActivityNet HMDB51 Kinetics400 UCF101
acc@1 acc@5 mAP acc@1 acc@5 mAP acc@1 acc@5 mAP acc@1 acc@5 mAP

Initial Experts [25, 29, 40] 73.81 93.55 42.83 73.60 93.66 61.27 81.80 95.19 87.36 94.63 99.36 86.32
JEDI Students (ours) 81.56 95.31 82.89 75.32 93.92 76.81 82.08 94.36 85.94 95.97 99.58 97.96
JEDI Teachers (ours) 88.50 97.42 90.33 78.67 94.90 79.13 81.50 93.98 85.03 98.05 99.84 99.20

Table 2. Results of the expert models compared with our individual students, as well as our teacher ensembles, on ActivityNet, HMDB51,

Kinetics400, and UCF101. The most interesting comparison is between the initial experts and our students, since these models are the same.

The top scoring individual model is highlighted in bold. Note that the students outperform the initial experts by a large performance gap

(e.g. mAP), on all datasets (except Kinetics400). As expected, the teachers (larger ensemble models) outperform the individual students

(except Kinetics400).

Figure 3. Top-1 accuracy evolution over 500 epochs on the test set of each dataset (x-axis shows current epoch, y-axis shows accuracy).

JEDI quickly brings both the student and the teacher significantly above the initial experts on all datasets (except for Kinetics400). Best

viewed in color.

with a Dropout layer with a dropout rate of 0.75 and com-

bined (via addition) with the original weights.

Training setup. As mentioned before, in our pipeline,

we jointly train the teachers Ei and the students Mi us-

ing both supervised classification tasks and unsupervised

knowledge distillation tasks. In this sense, we retrain the

classification head for all the expert models on the task of

predicting the confidence scores of Ei. For knowledge dis-

tillation, each student network (Mi) is trained to minimize

the cross-entropy loss between the output predictions and

their corresponding teacher’s (Ei) soft pseudo-label logits

with “softmax with temperature”, as popularly suggested by

Hinton et al. [18]. We set the temperature T = 1.

We employ the proposed combined loss described in

Eq. (1), choosing α = β = 1 and γ = 0.4 for the hyperpa-

rameters defined in the equation. We employ the AdamW

[30] optimizer, with a constant learning rate of 10−5 and a

weight decay factor of 3×10−3. We use a burn-in period of

25 epochs to warm up the teacher models, before turning on

the knowledge distillation losses. Preliminary experiments

showed that this warm-up period does not improve the fi-

nal results, although we have seen slight improvements in

convergence speed. All hyperparameters were chosen af-

ter preliminary experiments conducted on a validation set

obtained by retaining 15% of the videos from the training

set of each dataset Di. The final experiments and ablation

studies are conducted while learning on the entire training

sets. Furthermore, as the hidden features are already pre-

computed, the only extra computational cost corresponds to

the inference of the non-frozen part of the architecture (the

classification heads of each Mi and the teacher networks

Ei). This leads to a very fast training regime.

4.5. Results

We evaluate the performance of our approach in terms

of three metrics: top-1 accuracy (acc@1), top-5 accuracy

(acc@5), and mean Average Precision (mAP). We present

quantitative results of our experiments in Table 2.

Performance of students. In terms of the top-1 accu-

racy, all students learned by distilling the teacher ensem-

bles perform better than the initial experts, with little ex-

tra inference cost (only two extra matrix-vector multipli-

cations). The gains brought by our students are marginal

for Kinetics400 and range between 1.34% on UCF101 and

7.75% on ActivityNet. In terms of the mAP, we observe the

same behavior, with large gains on the three datasets (Ac-

tivityNet, HMDB, UCF101), ranging between 11.64% on

UCF101 and 40.06% on ActivityNet.

Performance of teachers. For completeness, we also

show the performance of the final teachers on each dataset.

958



Scenario ActivityNet HMDB51 UCF101
Teacher Student Teacher Student Teacher Student

(Initial Expert) – 73.81 – 73.60 – 94.63
Predictions 85.59 80.40 73.59 72.10 97.30 94.86

Base Features 88.27 81.65 78.13 74.25 98.02 96.04
Adjusted Features 88.50 81.56 78.67 75.32 98.05 95.97

Adjusted Features + Predictions 87.93 81.15 78.71 74.80 97.76 95.62
No Distillation 87.79 71.74 77.55 71.95 97.71 95.52
Single Dataset 88.17 78.86 78.09 73.43 97.71 95.44
Just Kinetics 88.57 80.81 77.84 73.98 97.76 95.81
All Datasets 88.50 81.56 78.67 75.32 98.05 95.97

Table 3. Top-1 accuracy rates of ablation study scenarios. First part indicates the starting expert models. Second part describes scenarios

with varying ensemble input strategies (as described in 5.1). Third part describes scenarios with varying unsupervised distillation strategies

(as described in 5.2). Results are reported on ActivityNet, HMDB51, UCF101. The best results in each section are highlighted in bold.

Unsurprisingly, our ensembles of experts perform much
better than the initial experts on all chosen datasets apart

from Kinetics400. The trained teachers manage to surpass

the initial experts with accuracy margins as high as 14% (on

the ActivityNet dataset), and the improvements are consis-

tent across datasets.

We observe that the experiments on the Kinetics400

dataset seem to be a special case, probably due to the very

large size of the dataset when compared to others (as shown

in Table 1). As before, we observe an improvement over

semi-supervised iterations for both teacher and student, but

the teacher remains weaker than the initial expert, probably

due to the additional features from the other small datasets

which, in this case, seem to reduce the generalization power.

However, what is still a positive result is that the additional

pseudo-labels provided by the teacher continue to help the

student model, which outperforms the initial expert. More-

over, the fact that the student outperforms the more complex

teacher is in fact a pleasant surprise, but this less common

case is not unheard of in the literature. It is in fact known

that when teachers tend to overfit (it seems to be our case

on Kinetics400), the simpler students can generalized bet-

ter, outperforming their teachers [5].

Improvements during training. Figure 3 shows the im-

provement of the teachers and students, over training itera-

tions (epochs), in terms of top-1 accuracy. The training pro-

cess displays fast convergence for all datasets, except for

the much larger Kinetics400. The students initially obtain

better performance than the teacher ensembles (due to their

pretraining), but the teachers quickly catch up. The sudden

performance drop at epoch 25 is due to the introduction of

knowledge distillation into the pipeline (which proves effec-

tive shortly after). The plots show the accuracy on test data,

which could explain the fluctuation for the teacher on the

Kinetics400 dataset. However, we notice that the teacher

improves and it could potentially overcome the initial ex-

pert if left to train for more epochs. By design, we chose

to stop the training at 500 epochs for all datasets, and as it

can be seen the experiments prove in all cases the benefit

of our semi-supervised approach. Each student improves

significantly over the corresponding initial expert, while the

teachers exhibit considerable accuracy gains in three out of

four cases.

5. Ablation Study
In order to fully motivate our claims and better under-

stand the source of the significant improvements in our

methods, we propose several ablation experiments. We re-

strict ourselves to three of the four datasets and exclude Ki-

netics400, as the experiments are much more time consum-

ing to run on this dataset.

5.1. Input to Ensembles

We test the impact of different input features for our en-

semble of experts forming our pipeline. We analyze four

different scenarios:

1. Predictions: We use the prediction logits of the re-

fined experts as input to the ensembles.

2. Base Features: We use the intermediate features be-
fore the adjustment module as input to the ensembles.

As these features are fixed during training, in this sce-

nario, the teachers are completely decoupled from the

students (the dependence is unidirectional).
3. Adjusted Features. We use the intermediate features

after the adjustment module as input to the ensembles.

As these features change during training, the teachers

end up being jointly trained with the students (the de-

pendence is bidirectional). This is the proposed sce-

nario presented in the main results, corresponding to

our final model.

4. Adjusted Features + Predictions. We use the ad-

justed features, along with predictions as input to the

ensembles.
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We compute the top-1 accuracy of the teachers and the

distilled students on the testing set of their corresponding

dataset. The results are reported in the second section of

Table 3. The results show that feeding just predictions as in-

put yields no overall improvement over the experts on two

out of three datasets. We also observe a slight difference

in performance between using base features and adjusted

features, in terms of teacher performance. Interestingly, we

find that the continuous improvement of the students mostly

affects the future generation teachers’ performance, and it

hardly bootstraps back to the children themselves. Surpris-

ingly, we see no improvement (even some form of degrada-

tion) when combining predictions with hidden features as

opposed to using just hidden features. This goes against the

naive intuition that more input features makes for a better

network.

By contrasting the performance reports in the

Predictions, Adjusted Features, and Adjusted Fea-
tures+Predictions scenarios, we conclude that: 1) The

output predictions of experts alone leverage considerably

less knowledge than using the intermediate features; and 2)
Predictions do not add extra information when intermediate

features are present. In fact, one may see that predictions

are ultimately a simple (linear, even) function of the

intermediate features, i.e.:

predictions = ClassificationHead(features).

5.2. Effectiveness of Unsupervised Distillation

We claim that the choice of using data from all datasets

in a semi-supervised scenario is beneficial to the effective

distillation of the teachers back into the students. We pro-

pose an ablation study to empirically test this hypothesis.

Our study analyzes three scenarios:

1. No Distillation. Both students and teachers are trained

only on the supervised classification tasks.

2. Single Dataset. Each student uses only data from the

training set of its original dataset for distillation.

3. Just Kinetics. We take a sample of 20, 000 videos

from the Kinetics400 dataset for distillation. This data

is only used for unsupervised training (the labels are

merely ignored).

4. All Datasets. The students are fed with data from the

training sets of all datasets for distillation. This is the

scenario corresponding to the main results.

Table 3 shows the top-1 accuracy for students and teach-

ers. First, if no distillation is performed at all (the No Distil-
lation scenario), the single expert performance degrades for

two out of three models. We explain this phenomenon by

stating that, in this scenario, the single experts are trained

with supervision on the data already available for them dur-

ing pretraining, and no common knowledge is leveraged.

Moreover, in our training procedure, we do not employ

techniques that were used during pretraining (in particular,

data augmentation techniques), which ultimately lead to ex-

perts overfitting the (now unaugmented) data.

In the Single Dataset case, the performance of students

is improved on two out of three datasets. It is also impor-

tant that the performance of the teacher ensembles improves

as well. This shows that the unsupervised training stage is

effective and the improvement of students positively influ-

ences the combined ensemble teachers. Using Just Kinet-
ics data, however, suffers from the out-of-distribution bias

of the Kinetics400 dataset. This is especially visible on

HMDB51, where the labels are much more semantically

different from Kinetics400 than from the other datasets.

The All Data scenario (main results) benefits from both the

inside-distribution data of the own dataset and the out-of-

distribution data of the other datasets, and its performance

is notably higher than the other scenarios. This indicates

that the extra data provided from the other datasets helps

improve the robustness and generalization power of each

student net. Overall, the ablation study shows that the in-

clusion of knowledge distillation combined with our joint

approach is highly effective.

6. Conclusions and Future work

In this work, we proposed JEDI, a semi-supervised

learning model that distills knowledge learned across sev-

eral datasets into student models corresponding to each

dataset. The process takes the form of a student-teacher

paradigm. Teachers are ensembles of previous generation

students, which provide supervisory signals to the next gen-

eration students, in a self-supervised distillation fashion.

Learning of students and teachers is performed jointly, by

employing a novel cost function. Our extensive experiments

demonstrated that our approach efficiently improves the stu-

dents, as well as the teachers (even after a few learning

epochs), significantly outperforming the original experts by

a wide margin on challenging datasets. The practical ad-

vantage at test time is significant, since the highly improved

students have the same inference cost as the initial experts.

Although we have focused on the problem of action clas-

sification in video, by covering vastly different types of ac-

tions and contexts, the overall approach is quite general and

could be used in many other multi-dataset multi-task scenar-

ios. In future work, we plan to further explore and develop

our approach in the realm of other domains.
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