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Abstract

Generalisation of deep neural networks becomes vulner-
able when distribution shifts are encountered between train
(source) and test (target) domain data. Few-shot domain
adaptation mitigates this issue by adapting deep neural net-
works pre-trained on the source domain to the target do-
main using a randomly selected and annotated support set
from the target domain. This paper argues that randomly
selecting the support set can be further improved for effec-
tively adapting the pre-trained source models to the target
domain. Alternatively, we propose SelectNAdapt, an algo-
rithm to curate the selection of the target domain samples,
which are then annotated and included in the support set.
In particular, for the K-shot adaptation problem, we first
leverage self-supervision to learn features of the target do-
main data. Then, we propose a per-class clustering scheme
of the learned target domain features and select K rep-
resentative target samples using a distance-based scoring
function. Finally, we bring our selection setup towards a
practical ground by relying on pseudo-labels for cluster-
ing semantically similar target domain samples. Our ex-
periments show promising results on three few-shot domain
adaptation benchmarks for image recognition compared to
related approaches and the standard random selection.

1. Introduction

Domain shifts between source and target domain data
are considered harmful to the generalisation performance of
deep neural networks (DNNs). The adaptation of DNNs to
the target domain is, thus, essential to preserve their perfor-
mance on the task in place. Among the family of adaptation
methods, few-shot adaptation is a well-known approach that
adapts DNNs to the target domain using a few annotated
target domain samples. However, few-shot adaptation re-
lies on the random selection of target domain samples to be
annotated, which is likely a sub-optimal sample selection
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Figure 1. Few-shot domain adaptation is a powerful technique that
should be exploited carefully. We propose a more effective sup-
port set selection for few-shot domain adaptation by replacing a
random selection strategy by an algorithm to select representative
target domain samples in an unsupervised way. Our pipeline lever-
ages self-supervision, pseudo-labelling, clustering and selection
via a distance metric score.
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Adaptation of DNNs can be carried out with varying set-
tings regarding source and target domain data availability.
Vanilla (unsupervised) domain adaptation assumes adapta-
tion of DNNss using jointly source and unlabelled target do-
main data [12]. On the other hand, recent studies argue that
access to source domain data at test time is often impractical
due to several reasons, including privacy and computation
efficiency [39]. As a result, test-time domain adaptation
emerged as a more interesting alternative setting that dis-
regards source domain data at test-time and assumes only
access to the pre-trained source model and the target do-
main. Well-known test-time adaptation strategies perform
on-the-fly adaptation by updating the batch-normalisation
(BN) statistics of the source models using unsupervised
losses, e.g., entropy minimisation [39]. Nevertheless, it has
been shown by [46] that proper adaptation of the BN statis-



tics can not be achieved without supervision from the target
domain, as it can not be guaranteed that unsupervised adap-
tation can correct the domain shifts. Furthermore, test-time
adaptation approaches require large mini-batches from the
target domain for a good approximation of the BN statistics.
Therefore, supervision from the target domain is necessary
and can be provided in the form of a small number of ran-
domly selected and annotated target domain samples known
as the support set [8]. This process is referred to as source-
free few-shot domain adaptation.

Similarly to few-shot adaptation, few-shot classification
tasks assume a class-balanced support set. However, this
would require access to the ground-truth of the target do-
main to select a set of samples per class which is also im-
practical in real-world situations. Indeed few-shot adap-
tation has brought a significant improvement compared to
the state-of-the-art unsupervised test-time adaptation ap-
proaches, yet, it remains unclear whether adaptation of the
source model using randomly selected samples from the tar-
get domain is sufficient for a good performance on the tar-
get domain. Optimising for data sample selection has been
thoroughly studied in active learning where data samples
are selected and annotated sequentially using unsupervised
losses like Shannon’s entropy [36] or MC-dropout [11].
Nevertheless, it has not been addressed before for few-shot
adaptation, where a support set is selected in one step only
to adapt a pre-trained source model.

In this paper, we focus on few-shot adaptation for im-
age recognition. We empirically argue that proper adapta-
tion of the pre-trained source model requires selecting rep-
resentative target domain data to be included in the sup-
port set. Therefore, we propose a simple yet effective se-
lection approach that boosts the few-shot adaptation perfor-
mance by improving the selection of target samples to be
included in the support set. In particular, we propose to
perform per-class clustering of the target domain features
where the number of clusters is equivalent to the number
of K-shot adaptation task at hand. The target samples with
features close to the cluster centres are included in the sup-
port set. However, using the source backbone for extracting
target domain’s features may negatively impact the cluster-
ing and selection process due to the domain shift between
source and target. Thus, we seek to narrow this gap by
training the source backbone with self-supervision from the
target domain. Unlike the prior work [46], we rely next
on pseudo-labels for determining the target samples of the
same pseudo-class to avoid using the target domain ground-
truth. Finally, we rely on the Euclidean distance as our se-
lection score to determine the distance of target samples’
features to their corresponding cluster centres. A percent-
age of samples with the smallest distance to the cluster cen-
tres are annotated and included in the support set i.e. we
use the real labels of support set samples at the adaptation
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stage. Our code is made publicly available '.

To the best of our knowledge, we are the first to propose
a mechanism to select a support set for few-shot domain
adaptation. In summary, our contributions are as follows:

e Qur algorithm overcomes the target domain shift using
state-of-the-art self-supervised tasks to learn target-
specific features which aid in a robust support set se-
lection. The learned target features are utilised to se-
lect representative samples by per-class clustering of
target data features.

* We rely on pseudo-labels for the target domain data to
select support set samples, in particular, K -shots per
class. Hence, we ought to perform the selection in a
more practical and realistic setup without the need to
access the target ground-truth, unlike, prior work.

In our experiments, including several domain adap-
tation benchmarks, we deliver major improvements
compared to random support set selection. Addition-
ally, we show promising results when comparing with
other selection approaches, namely, entropy and MC-
dropout and few-shot transfer-learning baselines.

2. Related Work
2.1. Few-Shot Domain Adaptation

Early domain adaptation approaches assumed the avail-
ability of source data for jointly adapting a pre-trained deep
neural network to a new unlabelled target data [12, 31]. Un-
der this assumption, several unsupervised-domain adapta-
tion tasks have been developed over the course of the years,
including unsupervised-domain classification and segmen-
tation [35, 25] for natural and medical datasets [16, 13].
Recently, test-time domain adaptation restricted access to
the source data and only allowed access to the pre-trained
source model along with the target domain data [40, 38, 42].
Test-time adaptation approaches adapt the BN statistics of
the source model using unlabelled data from the target do-
main. For instance, Tent and test-time BN adaptation [27]
rely on unsupervised loss functions like entropy minimisa-
tion to update BN parameters using mini-batches from the
target domain. Nevertheless, it has been shown in [46] that
proper adaptation of the BN parameters in neural networks
requires supervision from the target domain using a ran-
domly selected support set comprising few-annotated sam-
ples. In this paper, we argue that random support selection
remains ineffective for good approximation of BN statistics.
Therefore, we present a method for optimising the selection
of support set that further enhances the BN approximation
and in return the overall few-shot adaptation performance.

"https://github.com/Yussef93/SelectNAdapt ICCVW



Additionally, we pose the selection problem as an unsuper-
vised selection where we rely on pseudo-labels in the per-
class clustering stage. In our experiments, we demonstrate
state-of-the-art results using our selection mechanism.

2.2. Self-Supervised Learning for Domain Adapta-
tion

Self-supervision is a widely used technique for learn-
ing useful representations that enhances the performance
on downstream tasks [9, 2, 45, 14]. Over the past
few years, self-supervision tasks have been introduced in
unsupervised-domain adaptation approaches [28] where the
target domain in conjunction with the supervision from the
source domain is utilised to reinforce the representations of
the shared backbone network. Accordingly, several self-
supervised tasks have been put to practice in unsupervised-
domain adaptation and have demonstrated promising results
[20, 34]. Similarly, contrastive learning has been exploited
in test-time adaptation [4] jointly with pseudo-labels to
learn classification on the target domain. Also, in our work,
we utilise self-supervised learning. In particular, we train
the backbone of the source network using self-supervision
defined over the target domain data for reducing the gap be-
tween the data features of source and target domains similar
to [7]. In return, the learned target features of each class are
clustered based on the K '-shot problem at hand. We show
that relying on self-supervision delivers significantly better
results than using features of the source backbone.

3. Method

In this section, we start by defining the problem of sup-
port set selection. Then, we present our unsupervised sup-
port set selection approach for adapting a pre-trained source
model to the target domain.

3.1. Problem Definition

Let hg = g o f be a deep neural network trained on the
source domain Dg, where f denote the backbone network
of the source model that maps an input image to a latent
code (feature representation) f : X — Z,Z C R” and ¢
is the task head network that maps features extracted by f
to the output space of the learning task athand g : Z — ).
In this work, we focus on image recognition, hence, g is a
classification head that maps the features to the label space
Y C [0,1]¢, where C is the total number of classes. Note
that both source and target images share the same label
space. Given access only to hg and the target domain D at
adaptation time, our objective is to seek for few annotated
target samples, namely, the support set Dr C Drp, to adapt
hg to the shifted target domain Dp. In general, a few-shot
classification task is framed as C-way, K-shot task which
is referred to as the support set, where C' is the number of
semantic classes and K is the number of samples per class,
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Algorithm 1: Unsupervised Support Set Selection

1: Input: Source model hg trained using Dg,
unlabelle~d target domain data Dr , and annotation
budget |Dr| = KN.

2: Adapt f with self-supervision using Dy and keep [, q.
3: Get pseudo-labels of X € Dr (1).
4: forc=1,2,...,Cdo
5. x¢={}
6: form=1,2...,|Dr|do
7: if ¥,,, = c then
8: X U{xm}
9: end if
10:  end for
11:  Get features z¢ from (2).
12:  Cluster z° using K-means algorithm i.e.
calculate cluster centres p¢ = [u§, . . ., 15 _1]-
13: fori=1,2,...,K do
14: Calculate d(z%?, u$) from (3).
15:  end for
16:  Select Dy from (4) using d(z¢, u°).
17: end for
18: Update BN parameters of f’ using LCCS and Dy from
(5). R
19: Output: Evaluate A on Dyp.

as a rule of thumb K < 10. Instead of randomly selecting
the target samples, we present a support set selection algo-
rithm that improves the adaptation performance compared
to random selection. The size of f)T issetto KC.

To reach our goal, we learn features of the target domain
data by training the backbone network of the source model
on state-of-the-art self-supervised tasks, namely, contrastive
learning task [15, 3]. Next, we get pseudo-labels of the
target domain data using the features of both the source
backbone and the backbone trained using self-supervision.
Afterwards, we perform per-class clustering using the fea-
tures learned from the self-supervised task and select the
target samples according to our scoring function, which is
the minimum Euclidean distance to the cluster centre. In
the end, we adapt the model to the target domain using our
selected support set and evaluate the adapted model on the
target test set. We present our algorithm in detail below.

3.2. SelectNAdapt Algorithm

As previously stated, we assume access to the pre-trained
source model hg and the target domain D of size M con-
taining unlabelled images denoted by X. We summarise
the steps of our approach in algorithm 1. Moreover, a visual
explination is provided in Fig. 2.
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Figure 2. The complete pipeline of our SelectNAdapt algorithm at K = 1-shot. First, we utilise self-supervision for adapting the source
features to the target domain data. Then, we generate pseudo-labels with the source classifier for the target domain using the features from
the backbone of the pre-trained source model and the backbone trained using BYOL task. Next, we do per-class clustering and calculate
the cluster centre (represented by ”X”) using /-means algorithm where the support set samples are selected using the Euclidean distance

as the scoring metric. Finally the model is adapted using selected the support set.

3.2.1 Feature Adaptation

We argue that source-extracted features of target domain
data may prohibit an effective selection of support sam-
ples in the per-class clustering step due to the shifted target
domain. To alleviate this issue, we train the source back-
bone f — f’ using self-supervision to learn target-related
features, which provisions a better feature clustering com-
pared to using the source backbone and, thus, better support
set selection. Contrastive learning [5, 3, 15] have gained a
wide reputation over the past years for their ability to learn
useful representation. In this context, the objective of the
learning task is to train the backbone of a DNN with a pro-
jection head attached to it to learn an embedding space that
pulls similar data pairs together while pushing dissimilar
ones apart. Afterwards, the backbone is fine-tuned on a par-
ticular downstream task. Accordingly, we use contrastive
learning tasks to train the source backbone using the tar-
get domain data Dp. After training we keep the trained
backbone f’ and the projection head g, which projects the
features extracted by f” onto a d-dimensional feature space
where d < D.

3.2.2 Pseudo-labels generation

A few-shot classification task is defined as C-way, K-shot
i.e. the support set should contain K -shots for every class
¢ € C. To construct the support set from unlabelled tar-
get data, we first generate pseudo-labels for X by using the
features of f and f’ along with the source classifier. To
obtain the pseudo-labels, we follow an ensemble prediction
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model [33] where we average the output probability distri-
butions of the source classifier g using the features of f and
f’. The assigned pseudo-label is based on the maximum
output probability over the distribution of classes which we
define as follows:

Y = arg max
1,2,...,C

o(9(f(X))) +a(g(f(X)))
2 b

(1

where Y = [0,1]**¢ is a matrix that holds one-hot en-
coding vectors of length C for all the target sample and
o is a softmax activation function [1]. Afterwards, we
group the target samples according to their pseudo-labels

into C' categories, ie. X = [x°,...,x“71], with x® =
[x§,. .. ,chxc‘], ¢ € Y and extract their features z¢ using
f/.

z¢ = q(f'(x%)), Vx°eX, (2)

where x¢ is the set of all target domain samples with
pseudo-label ¢, z° is a matrix containing d-dimensional fea-
ture vectors of x¢, and q is the projection network retained
from the self-supervised learning task. It is noteworthy that
adding a projection head in contrastive learning frameworks
empirically performs better than relying on the raw features
of the backbone network [5]. Therefore, we leverage the
output features of the projection network in the clustering
step.



3.2.3 Per-Class Clustering and Selection

We rely on a scoring function to rank and select target
data samples per class. To this end, we cluster z¢ into K-
clusters. Note that K is the number of shots per class c.
We calculate the cluster centres u¢ = [u§, ..., u5] based
on the K-means algorithm [29] and score the target sam-
ples according to the distance of their features to the clus-
ter centres. We make use of the Euclidean distance as our
scoring function that measures the distance between the fea-
tures assigned to cluster ¢ and their cluster centre 1§, where
i €l,..., K], we define the distance metric:
(2", pi7) = 12" = pilla- ©)
The features of the target samples with the minimum dis-
tance to their corresponding cluster centre are included in
the support set 757, hence, our selection metric becomes:

C-1K-1

Dr = argmin Do D dE )

c=0 i=0 z¢€us

)
s.t.|Dp| = KN.

Next, the selected samples to be included in the sup-
port set are associated with their true labels i.e. we do not
use their pseudo-labels at adaptation time, hence, Dr =
{(x;,y;) 1. where y; is the true label of x;.

3.2.4 Model adaptation

Eventually, we use Dr to update the BN parameters of the
pre-trained source model where its backbone network is re-
placed with f’. We follow the approach of linear combina-
tion coefficients for batch normalisation statistics (LCCS)
[46] to update the BN parameters using the cross-entropy
loss [1]1 Lee(g, f/, Dr) , hence the update BN parameters
are optimised as:

0" = argmin Lop(g, 0y, Dr), (5)
f/

where 0y denote the BN parameters of the backbone

trained on BYOL and 6* are the updated BN parameters.

Finally, we evaluate the updated model (hr) on the target
test set Dy = Dr \ Dr.

4. Experiments

Dataset PACS VisDA Office-31
Backbone | ResNet-18 | ResNet-101 | ResNet-50
Table 1. Backbone architectures used in our experiments.
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4.1. Datasets

We conduct our experiments using three domain adapta-
tion benchmarks for image recognition. Namely, we use
PACS (4 domains with 7 classes) [22], Office-31 (3 do-
mains with 31 classes) [32], and VisDA datasets (2 domains
with 12 classes) [30]. Each of these datasets incurs do-
main shifts in the form of different image styles (PACS and
VisDA) or images captured with different cameras (Office-
31). We adopt the same evaluation metrics used in [46],
in particular, we adopt accuracy as an evaluation metric for
PACS, average-per-class accuracy for Office-31, and aver-
age precision for VisDA. The evaluation protocol for PACS
and VisDA follows a leave-one-domain-out cross validation
[10] where one domain is left out as the target domain and
the rest is treated as the source domain(s). On the other
hand, the evaluation protocol for Office-31 splits the dataset
into 6 pairs, each pair contains one source domain and one
target domain.

4.2. Implementation Details

Source Models We use different backbone networks for
each dataset as shown in Tab.1. Our source models are
trained on the source domain(s) using empirical risk min-
imisation (ERM) [17]. However, we use the publicly avail-
able pre-trained model CSG ResNet-101 [6] on the source
domain of VisDA. As for PACS and Office-31 we reproduce
the training on the source domains following the implemen-
tations of [47, 48].

Feature Adaptation As previously stated, we rely on
contrastive learning, namely BYOL, a regressive self-
supervised task. BYOL is a well-known self-supervised
contrastive learning framework that does not require neg-
ative samples and is less sensitive to hyper-parameter
changes. In BYOL, two networks with identical back-
bones, namely, online and target networks interact and learn
from each other. In particular, the online network learns
to regress the features of the target network under differ-
ent augmentations of the same image. Hence, it enforces
consistent representations. We initialise the backbones of
the online and target networks with the parameters of f and
learn the BYOL task. For PACS dataset, we train for 100
epochs using a LARS optimiser [44] with initial learning
rate of 0.2 and cosine annealing scheduler [26]. As for the
remaining datasets, we use an Adam optimiser [21] with
learning rate of 0.0001. Moreover, we train for 100 epochs
for the target domains of Office-31. However, for VisDA
we empirically observed that 10 epochs are sufficient for
the training to converge on the BYOL task. For all target
domains, we use a mini-batch size of 256. Upon complet-
ing the learning task we keep the backbone and the projec-
tion head of the online network and use them for extracting



. Office-31
Support Set Selection Method | g4 =5 T S5A TW 5D [ D5 W [ D SA | Average
Random [46] 928 | 918 | 751 | 999 | 985 | 754 | 889
Entropy 884 | 877 | 723 | 977 | 973 | 719 | 859
MC-dropout 875 | 858 | 738 | 1000 | 982 | 719 | 859
Ours 950 | 974 | 764 | 1000 | 997 | 759 | 90.7

Table 2. A comparison of adaptation test results using random, entropy, MC-dropout and SelectNAdapt algorithm (Ours) for Office-31
dataset at K = 5-shot.

. PACS VisDA
Support Set Selection Methods 1-shot | 5-shot | 10-shot | 1-shot | 5-shot | 10-shot
Random [46] 81.6 86.1 87.6 67.8 76.0 79.2
Entropy 79.6 86.2 86.1 61.0 73.8 74.2
MC-dropout 80.3 86.1 86.8 68.1 73.1 74.1
Ours 84.5 87.9 87.9 73.0 78.0 78.0

Table 3. A comparison of averaged few-shot adaptation test results using different selection approaches, namely, random, entropy, MC-
dropout and SelectNAdapt algorithm (Ours) for PACS and VisDA datasets. Note that we average adaptation results over the target domains

of PACS.

features of target domain data.

Support Set Selection We compare our selection against
random, entropy, and MC-dropout selection approaches.
For random selection, following [46], the target domain
data are chosen according to a uniform probability distri-
bution. Note that the support set in [46] is class-balanced
i.e. there is an equal number of support samples for ev-
ery class in the target domain. As for entropy, we calculate
Shannon’s entropy using the softmax output of the source
model [36]. For each class in the target data, we select the
top-K samples with the highest entropy loss. Similarly, for
MC-dropout we average Shannon’s entropy over 10 forward
passes using hg with a dropout layer of probability 0.5 in-
serted at the final layer of the backbone [11]. This setting
has been shown to yield the best result. We also compare
our selection approach to few-shot transfer learning base-
lines, which adapts the pre-trained source model in different
ways.

Model adaptation The BN parameters are adapted based
on LCCS method of [46] using an Adam optimiser for 10
epochs with 0.001 learning rate with mini-batch size of 32.
During adaptation on datasets PACS and VisDA we use
a nearest-centroid classifier [43] for K > 5 [37], other-
wise, we use the pre-trained source classifier. However, for
Office-31, the source classifier is fine-tuned after adapting
the BN parameters for 200 epochs using the same Adam
optimiser settings for adapting the BN parameters. We av-
erage the test results over at least 3 different seeds.

4.3. Support Set Selection Comparison

We present our averaged numerical test results for ran-
dom, entropy, MC-dropout and our selection approach in
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Tab. 3 and 2. For PACS datasets, we also average the
test results over the target domains for better comparison
of different selection approaches. Results per domain could
be viewed in the supplementary material. Clearly, our ap-
proach mainly dominates all other selection approaches on
all the benchmarks which supports our claim that careful se-
lection of support set samples from the target is vital for an
effective adaptation performance. Although our approach
may result in a class-imbalanced support set due to false
pseudo-labels that do not align with the real labels of target
samples, we notice that adaptation performance remains ro-
bust and still performs better compared to the random se-
lection, which is yet an additional reason that highlights
the importance of representative support set samples over
a randomly selected and class-balanced support set. Fur-
thermore, we observed in several cases that random selec-
tion could have a better performance than entropy and MC-
dropout approaches. We attribute this behaviour to the ten-
dency of entropy to select samples that lie close to the de-
cision boundaries of per-class clusters, which result in high
prediction uncertainty. These samples are less beneficial for
the adaptation performance as they are biased towards a spe-
cific region i.e. the boundaries of the decision space. Hence,
they are considered poor representative candidates for the
adaptation task of BN parameters. On the other hand, our
approach that learns target features and then performs per-
class clustering to select target domain samples that fall near
the cluster centres, i.e. samples that represent each cluster,
positively impacts the adaptation performance.

4.4. Few-Shot Learning Comparison

In Tab. 4, we report the results of few-shot transfer learn-
ing approaches tailored to fit the setting of few-shot adap-
tation, which neglects the presence of source domain data



. PACS VisDA
Few-Shot Adaptation Methods I-shot | 5-shot | 10-shot | 1-shot | 5-shot | 10-shot
Ada-BN [24] 82.9 85.5 85.8 56.5 60.9 61.8
fine-tune BN [24] 79.0 84.3 85.4 59.1 70.9 74.9
fine-tune classifier [24] 82.5 83.7 83.8 67.6 69.7 77.4
fine-tune feat. extractor [24] 83.6 86.0 86.1 67.3 68.4 74.7
L2 [41] 84.4 85.8 85.6 66.0 66.4 69.6
L2-SP [41] 84.4 85.8 85.6 66.0 66.4 69.6
DELTA [23] 84.4 85.8 85.6 65.9 66.5 70.1
Late Fusion [19] 83.2 83.6 83.6 67.2 69.8 74.5
FLUTE [37] 73.4 85.8 88.1 48.3 67.1 65.7
LCCS [46] 84.4 87.1 88.8 67.8 76.0 79.2
Ours 88.2 89.3 89.5 73.0 78.0 78.0

Table 4. We report test results averaged over PACS target domains, as well as the test results of VisDA for KX = 1-, 5-, 10-shots. In this
table, we compare against different few-shot transfer learning approaches tailored to the setting of source-free few-shot domain adaptation.
Note that the pre-trained source model f has been trained with MixStyle domain generalisation approach [48] on PACS dataset.

at adaptation time and adapts the pre-trained source model
using a randomly selected support set. These approaches
include AdaBN [24] for replacing BN statistics using a ran-
domly selected support set from the target domain. Later on
either the BN parameters of the source model or the back-
bone network or classifier layer are fine-tuned. Moreover,
other approaches like L2, L2-SP [41], DELTA [23] that fine-
tunes the entire source model using an additional regulari-
sation term are shown. Finally, we have FLUTE [37] that
adapts BN parameters using nearest-centroid classifier and
Late Fusion [19] which averages classification results using
source and target classifier. We employ the source model
trained using the MixStyle approach [48] for a fair compar-
ison with the random selection baseline, . We observe that
our selection method can still show quite significant results
compared to the random selection and the few-shot learn-
ing baselines, which highlights the significance of proper
support set selection compared to using different adapta-
tion techniques. In the following section, we conduct more
ablation studies using the PACS dataset to analyse various
components of our approach.

4.5. Ablation Study

Class-balanced support set and model adaptation As
previously mentioned, the random selection baseline [46]
ensures a class-balanced support set following the few-shot
classification protocol of C'-way, K-shot. To achieve this,
prior knowledge of target domain data ground-truth is es-
sential to select K -shots randomly from the set of target
samples belonging to a particular class ¢ € C. Accord-
ingly, we carry out an experiment assuming a prior knowl-
edge of target domain ground-truth. In this case, we skip the
pseudo-labelling step and use directly the self-supervised
model f’ to extract target data features and perform per-
class clustering to find representative target samples to be
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included in the support set. The averaged results on the
PACS datasets are shown in Tab. 5 where it is noticeable
that a class-balanced support set widens the performance
gap between our approach and random selection. Hence,
we deduce from this experiment that applying our selec-
tion for finding representative target samples is more effi-
cient compared to random selection even in the presence of
ground-truth data. Additionally, we analyse the impact of
our selection approach against random selection using f’ as
the backbone to be adapted. We notice the overall perfor-
mance remains better using our selection approach, espe-
cially at K = 1-shot, implying a more efficient selection
mechanism compared to random selection. On the other
hand, the performance of random selection also increases
relative to using the pre-trained source backbone since the
self-supervised pre-trained backbone yields a better initial-
isation of network parameters due to the learned represen-
tation on the target domain. Finally, we observe the perfor-
mance gap between the random selection and our approach
is reduced as K increases due to the availability of sufficient
training data.

Source model for pseudo-label generation, per-class
clustering and selection In Tab.6, we document the re-
sults of neglecting the self-supervision step. Specifically,
we use the source backbone for generating pseudo-labels,
per-class clustering, and selecting support set samples from
target domain data, and adapting it using the selected sup-
port set. From the results, we notice a significant difference
between using the backbone of the source model alone and
the backbone trained on the BYOL task. This clearly indi-
cates the impact of self-supervision in the selection process
as it bridges the domain shift gap between source and tar-
get domains by learning useful target features for a robust
selection of the support set. Furthermore, in Tab. 8, we



] PACS

Selection Method | Adapted Model | Bal T-shot T 5=shot | 10-shot
f v 81.6 86.1 87.6

Random [46] 7 V4 843 85.9 87.9

ours f’ X 84.5 87.9 87.9
f v 85.6 88.4 88.6

Table 5. A comparison of few-shot adaptation test results for random selection and our approach under different settings of adapting BYOL
trained backbone, i.e., f’ and the source backbone f, in addition to, class-balanced (Bal) support sets.

SelectNAdapt PACS
f 1 I-shot | 5-shot | 10-shot
v X 79.6 85.5 87.6
v v 84.5 87.9 87.9

Table 6. We compare the few-shot adaptation results of using only
the backbone of the pre-trained source model (f) for pseudo-label
generation, per-class clustering, and model adaptation against us-
ing additionally self-supervision i.e. the backbone trained using
BYOL (f).

. PACS
Self-Supervision - s 3 T 10 shot
BYOL [15] 845 | 879 | 879
SWAV 3] 861 | 877 | 882

Table 7. A comparison of averaged few-shot adaptation test re-
sults for training the source backbone with BYOL and SwAV in
our support set selection pipeline on the target domains of PACS
dataset.

Pseudo-labelling PACS
f I’ 1-shot | 5-shot | 10-shot
v X 84.6 87.5 87.7
X v 84.3 87.4 87.9
v v 84.5 87.9 87.9

Table 8. We show a comparison of averaged few-shot adaptation
test results for using different combinations of source f and self-
supervised (BYOL) backbones f’ to generate pseudo-labels.

study the effect of using different combinations of source
and self-supervised (BYOL) backbones i.e. f and f’, to
generate pseudo-labels. Combining the former with the lat-
ter to form an ensemble prediction has a slightly better per-
formance across all K-shot adaptation cases compared to
using each backbone individually. Ensemble models are
well-known to yield more accurate predictions than indi-
vidual model predictions [18] since individual models may
be prone to bias/variance errors.

Performance with SWAV self-supervised task We con-
duct an experiment to analyse the performance of our sup-
port set selection, however, using a different contrastive
learning self-supervised task, namely, SWAV [3]. SwAV
is a classification self-supervised task that enforces con-
sistent cluster assignment prediction for each data sample
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under different augmentations. This experiment aims to
demonstrate that our support set selection is agnostic to the
selected self-supervision objective. To this end, we con-
duct an experiment using PACS dataset, where we train the
source backbone f using the target domain data on the task
of SWAV following the implementation of [3]. Like BYOL,
we use the backbone model f’ and the projector network ¢
from SwAV in the remaining steps of the selection pipeline.
Tab. 7 shows that SWAV yields even improved performance
in the few-shot adaptation. The results show improvement
at K=1-shot compared to BYOL and on-par performance at
5 and 10-shots. These results imply that our selection mech-
anism does solely depend on BYOL and can still function
well using other self-supervision methods.

4.6. Discussion

Our SelectNAdapt algorithm yields effective few-shot
adaptation results compared to other selection baseline in
the context of image recognition. However, as a part of the
future work, support set selection for few-shot adaptation
tasks such as image segmentation could be a investigated.

5. Conclusion

We presented a support set selection approach from the
target domain data for few-shot domain adaptation. Our
approach by leveraging self-supervision, pseudo-labelling,
per-class clustering and the Euclidean distance as a scoring
metric has effectively boosted the adaptation performance
and dominated random selection as well as loss-based se-
lection approaches, namely, entropy and MC-dropout. Fur-
thermore, our selection approach avoids the need to access
ground-truth of target data making it more practical com-
pared to prior work. We have also compared to few-shot
transfer learning baselines where again, our selection has
demonstrated that proper selection of support samples is
sufficient to improve the adaptation performance. We ob-
served on three image recognition benchmarks that careful
selection of the support set from the target domain data sig-
nificantly impacts on few-shot domain adaptation.

Acknowledgment

G.C. was supported by Australian Research Council
through grant FT190100525.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Christopher M Bishop and Nasser M Nasrabadi. Pattern
recognition and machine learning, volume 4. Springer, 2006.
Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-
bara Caputo, and Tatiana Tommasi. Domain generalization
by solving jigsaw puzzles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2229-2238, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. Ad-
vances in neural information processing systems, 33:9912—
9924, 2020.

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna
Ebrahimi. Contrastive test-time adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 295-305, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597-1607. PMLR, 2020.

Wuyang Chen, Zhiding Yu, SD Mello, Sifei Liu, Jose M
Alvarez, Zhangyang Wang, and Anima Anandkumar. Con-
trastive syn-to-real generalization. 2021.

Youssef Dawoud, Arij Bouazizi, Katharina Ernst, Gustavo
Carneiro, and Vasileios Belagiannis. Knowing what to label
for few shot microscopy image cell segmentation. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 3568-3577, 2023.

Youssef Dawoud, Julia Hornauer, Gustavo Carneiro, and
Vasileios Belagiannis. Few-shot microscopy image cell seg-
mentation. In Machine Learning and Knowledge Discovery
in Databases. Applied Data Science and Demo Track: Eu-
ropean Conference, ECML PKDD 2020, Ghent, Belgium,
September 14-18, 2020, Proceedings, Part V, pages 139—
154. Springer, 2021.

Aditya Deshpande, Jason Rock, and David Forsyth. Learn-
ing large-scale automatic image colorization. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 567-575, 2015.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic
learning of semantic features. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
pages 1050-1059. PMLR, 2016.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180-1189. PMLR, 2015.
Amir Gholami, Shashank Subramanian, Varun Shenoy,
Naveen Himthani, Xiangyu Yue, Sicheng Zhao, Peter Jin,
George Biros, and Kurt Keutzer. A novel domain adaptation
framework for medical image segmentation. In International
MICCAI Brainlesion Workshop, pages 289-298. Springer,
2018.

981

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. arXiv preprint arXiv:1803.07728, 2018.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271-21284, 2020.

Hao Guan and Mingxia Liu. Domain adaptation for medical
image analysis: a survey. IEEE Transactions on Biomedical
Engineering, 69(3):1173-1185, 2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learn-
ing Representations, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Judy Hoffman, Eric Tzeng, Jeff Donahue, Yangqing Jia,
Kate Saenko, and Trevor Darrell. One-shot adaptation of
supervised deep convolutional models. 2013.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Haupt-
mann. Contrastive adaptation network for unsupervised do-
main adaptation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542-5550, 2017.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao,
Liping Liu, Zeyu Chen, and Jun Huan. Delta: Deep learning
transfer using feature map with attention for convolutional
networks. arXiv preprint arXiv:1901.09229, 2019.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and
Xiaodi Hou. Revisiting batch normalization for practical do-
main adaptation. arXiv preprint arXiv:1603.04779, 2016.
Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation net-
works. In International conference on machine learning,
pages 2208-2217. PMLR, 2017.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In International Conference
on Learning Representations, 2017.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv preprint arXiv:2006.10963,
2020.

Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and
In So Kweon. Unsupervised intra-domain adaptation for se-
mantic segmentation through self-supervision. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.



[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. the Journal
of machine Learning research, 12:2825-2830, 2011.
Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge, 2017.

Pedro O Pinheiro. Unsupervised domain adaptation with
similarity learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 8004—
8013, 2018.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-
rell. Adapting visual category models to new domains. In
European conference on computer vision, pages 213-226.
Springer, 2010.

Omer Sagi and Lior Rokach. Ensemble learning: A survey.
Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 8(4):¢1249, 2018.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate
Saenko. Universal domain adaptation through self supervi-
sion. Advances in neural information processing systems,
33:16282-16292, 2020.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsu-
pervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Claude Elwood Shannon. A mathematical theory of commu-
nication. The Bell system technical journal, 27(3):379-423,
1948.

Eleni Triantafillou, Hugo Larochelle, Richard Zemel, and
Vincent Dumoulin. Learning a universal template for few-
shot dataset generalization. In International Conference on
Machine Learning, pages 10424-10433. PMLR, 2021.
Dequan Wang, Shaoteng Liu, Sayna Ebrahimi, Evan Shel-
hamer, and Trevor Darrell. On-target adaptation. arXiv
preprint arXiv:2109.01087, 2021.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201-7211, 2022.

LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit
inductive bias for transfer learning with convolutional net-
works. In International Conference on Machine Learning,
pages 2825-2834. PMLR, 2018.

Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Her-
ranz, and Shangling Jui. Generalized source-free domain
adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8978-8987,
October 2021.

Donghyun Yoo, Haoqi Fan, Vishnu Boddeti, and Kris Ki-
tani. Efficient k-shot learning with regularized deep net-

982

[44]

[45]

[46]

[47]

(48]

works. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd
batch size to 32k for imagenet training. arXiv preprint
arXiv:1708.03888, 6(12):6, 2017.

Liheng Zhang, Guo-Jun Qi, Ligiang Wang, and Jiebo Luo.
Aet vs. aed: Unsupervised representation learning by auto-
encoding transformations rather than data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2547-2555, 2019.

Wenyu Zhang, Li Shen, Wanyue Zhang, and Chuan-Sheng
Foo. Few-shot adaptation of pre-trained networks for do-
main shift. In Lud De Raedt, editor, Proceedings of the
Thirty-First International Joint Conference on Artificial In-
telligence, 1JCAI-22, pages 1665-1671. International Joint
Conferences on Artificial Intelligence Organization, 7 2022.
Main Track.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization: A survey. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
2022.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main adaptive ensemble learning. /IEEE Transactions on Im-
age Processing, 30:8008-8018, 2021.



