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Abstract

Despite significant advances in Deep Neural Networks
(DNNs), these models often fall short in real-world scenar-
ios, particularly when faced with a scarcity of training data.
In this paper, we introduce a novel method that capitalizes
on the power of Generative Adversarial Networks (GANs)
to enhance performance in image classification tasks. Our
approach specifically involves training the classifier by en-
forcing a consistency rule across generated unlabeled data
synthesized from unconditional GANs. Through the imple-
mentation of our proposed methodology, we observed a sub-
stantial increase in accuracy - approximately 8.68% on the
CIFAR-10 dataset compared to the baseline (which had an
accuracy of 54.54%) trained with 500 real images. This
notable enhancement in accuracy demonstrates the superi-
ority of our method using class unconditional GANs over
the previous techniques aiming to enhance accuracy using
class Conditional GANs.

1. Introduction

Deep Neural Networks (DNNs) have achieved signifi-

cant success across various domains. However, these mod-

els are data-hungry, often requiring large volumes of train-

ing data for optimal performance. With limited data, DNNs

may excessively rely on specific features in the training

data, i.e. overfitting, leading to diminished performance
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Figure 1: Illustration of our method. Initially, the GAN is

trained from the Dataset, then keeps frozen. The classifier

is then trained using two types of losses: 1) The classifi-

cation loss, which is obtained by sampling an image x and

its corresponding label y from the Dataset. 2) The consis-

tency loss between the pair of images generated from two

latents, where a latent z is sampled from the latent space

and a transformed latent Tz(z) is derived.

[40, 20]. The model fails to accurately predict data that fall

slightly outside the distribution of the training set. To mit-

igate these problems, techniques such as dropout [35], data

augmentation [5], and semi-supervised learning [39, 33] are

employed.

Leveraging generative models such as Generative Adver-

sarial Networks (GANs) to address these issues would be a

quick remedy, but there is a scarce number of research that

has shown successful outcomes with GANs in classifica-

tion tasks. The work [11, 27, 19] reports that there barely

exists prior work that achieves improvement in classifica-

tion accuracy by utilizing GANs. Ealier works [32, 29, 30]

conducted experiments to enhance classification accuracy

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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by using GANs but reported only negligible improvements.

Conventional approaches [25, 42] managed to enhance ac-

curacy using GANs but their methodologies lack scalability.

In contrast, the potential of representations learned from

GANs to aid classification tasks is immense. Numerous pa-

pers [3, 4, 31, 22, 38, 13, 8, 24, 36, 17, 41, 37, 14] have

reported successful outcomes using GANs in various tasks.

Furthermore, several studies [28, 7, 9] suggest that repre-

sentations learned from GANs could benefit DNNs. Hence,

we aim to utilize the representations learned by GANs for

classification tasks.

Our proposed technique to improve classifier perfor-

mance using GANs focuses on two key points: 1) Using

class-unconditional GANs, and 2) Developing the learn-

ing strategy leveraging generated unlabeled images with-

out altering the GANs training process. The employment

of class-unconditional GANs is motivated by the poten-

tial risk of generated data falling into the convex hull of

classes with class-conditional GANs, as Kong et al. [19]

pointed out. Employing class-unconditional GANs may

facilitate the generation of samples situated closer to the

decision boundary, effectively filling the sparse region be-

tween the dense clusters of the training data that correspond

to classes. Moreover, even if there are generated samples

from class-conditional GAN that are near the classifier’s

decision boundary, it remains uncertain whether these sam-

ples have been correctly created corresponding to the con-

ditioned class, i.e. the label of the generated sample can be

wrong. We provide empirical evidence of the superiority

of our technique over traditional methods using conditional

GANs, demonstrating its effectiveness in enhancing classi-

fication accuracy.

Furthermore, the reason we do not manipulate the GANs

training process is that the application of additional tech-

niques to the GANs can easily destabilize its training, and

there exists no relationship between the performance of the

GANs and that of the classifier. Ravuri et al. [30] has

pointed out that generated images from GAN with higher

Fréchet Inception Distance (FID) do not necessarily lead

to enhanced accuracy. Dai et al. [6] argue that utilizing

relatively underperforming GANs, i.e. GANs that gener-

ate samples deviating from the training data distribution,

is rather beneficial to enhance the performance of DNNs.

They further substantiate this claim by providing mathemat-

ical proof. Hence, enhancing the performance of GANs is

not our objective.

The images generated via an unconditional GAN lack

class labels, necessitating learning methods other than con-

ventional supervised learning. In the representation learn-

ing scenario, Jahanian et al. [14] provides the method which

leverages only generated data from class-unconditional

GANs (which will be referred as GenRep in the paper),

successfully managing to achieve the performance of Sim-

CLR [2] using real data. GenRep trains the model by back-

propagating the contrastive loss between pairs of images

generated from latent codes and from their perturbed coun-

terparts. Based on the success of GenRep, we expand the

idea to classification tasks. We devise a technique utilizing

the classification loss of real labeled data and the consis-

tency loss of unlabeled generated data pair. We use the con-

sistency loss of FlexMatch [39] for our proposed method.

Consistency loss of FlexMatch undergoes a thresholding

procedure, which effectively inhibits the influence of low-

quality generated data on the learning process. This in turn

stabilizes the training and contributes to higher accuracy.

We provide empirical evidence for these assertions. To the

best of our knowledge, we are the first to employ a class-

unconditional GAN for the purpose of enhancing classifica-

tion accuracy. This novel approach takes us one step closer

to achieving our goal of enhancing classifier performance

with generated data.

We summarize our contributions as follows:

• We successfully improve the accuracy of the classifier in

a limited data setting using GANs.

• We propose a novel method to utilize unlabeled gener-

ated images from class-unconditional GANs based on the

consistency rule.

• We demonstrate that utilizing class-unconditional GANs

may offer superior performance enhancement for classi-

fiers compared to employing class-conditional GANs.

2. Related Work

There exists a large number of studies demonstrating

the effectiveness of GANs in improving the performance

of DNNs. These include applications in Semantic Segmen-

tation [3, 31, 22], Human Pose Estimation [13, 38], Op-

tical Flow [36, 8, 24], and Representation Learning [14].

Recent studies [41, 37] propose methods to enhance the

performance of semantic segmentation by utilizing Style-

GAN [17]. GenRep [14], the foundational work for our

study, successfully leverages StyleGAN2 [18] in represen-

tation learning. We use StyleGAN2-ADA [16] for our base

model, which was designed for limited data scenarios that

align with our experimental setting.

While there have been attempts to leverage generated

images to enhance the performance of classifiers, most of

these methods are fundamentally archaic and lack scalabil-

ity. Zhu et al. [42] improves classification accuracy by sup-

plementing rare classes of the imbalanced dataset. Cycle-

GAN trained to generate rare classes from sufficient classes

is used for supplementing. On the other hand, this method

is limited to imbalanced datasets. Mun et al. [25] proposed

a technique to sequentially select generated images closer
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to the SVM hyperplane. Nonetheless, this approach is con-

fined to SVMs, necessitates a validation set, fails to utilize

the entire training dataset, and possesses a complex training

process that renders it non-scalable.

Two recent papers [27, 19] utilizing class-conditional

GANs have conducted experiments in a practical setting. As

noted in Sec. 1, the direct application of class-conditional

GANs risks falling into the convex hull. Therefore, both

papers aim to resolve it by incorporating uncertainty into

the GAN’s loss function, which results in generated sam-

ples being closer to the decision boundary. Uncertainty is

defined in terms of Margin [15] or Confidence [23] calcu-

lated by the classifier output of generated images. Since

the methods possess numerous hyperparameters related to

uncertainty, improving classifier performance considering

the stability of the GANs training process needs a lot of

effort. Contrary to these two approaches that train the class-

conditional GAN to generate images closer to the decision

boundary, our method employs a class-unconditional GAN,

which naturally generates a large number of samples closer

to the decision boundary without additional training. This

allows GANs to be trained independently of the classifier,

which makes the training process to be stable. We opt to uti-

lize work [27] as our benchmark, given that work [19] relies

on a Support Vector Machine (SVM) for its classifier, which

lacks scalability and is not suitable for a fair comparison.

Recently, with the surge of interest in diffusion mod-

els [12, 34], research [1] that enhances classification per-

formance through these models has been reported. Never-

theless, the method is unsuitable for classification tasks of

specific domains, since the method is based on pre-trained

diffusion models. Furthermore, training diffusion models

in a limited data setting is inappropriate since the generated

samples tend to overfit the training data. We empirically

validate this phenomenon in the experiment section. Hence,

we opt for StyleGAN2-ADA over the diffusion model.

3. Method

3.1. Problem definition

The primary objective of our study is to improve the

performance of the classifier C in a limited labeled data

D = {xi,yi}Ni=1, using class unconditional GAN. Gen-

erator model G is initially trained on D without label infor-

mation, i.e. only utilizes {xi}Ni=1 as train data. After initial

training, the generator G is not trained further. We denote

the unlabeled generated data created by G as G(z), where

z is a variable drawn from a standard normal distribution

N (0, σ). Our goal is to train the classifier C using the fol-

lowing two losses: 1) the classification loss given by the

pair x,y sampled from D, and 2) the consistency loss be-

tween G(z) and G(Tz(z)) sampled from G, where Tz is

latent transformation.

3.2. Background

GenRep For contrastive learning, the infoNCE loss [26] is

commonly used, which is defined as follows:

LNCE = −E

[
log

eτF (xa)
TF (xp)

eτF (xa)TF (xp) +
K∑

k=1

eτF (xa)TF (xK
n )

]

where xa is an anchor image, F (x) is the model output of

the input image x, {xa,xp} is a positive pair of images

that should be entangled in feature space, and {xa,x
K
n }

is a negative pair of images that should be disentangled in

feature space. SimCLR [2], an outstanding self-supervised

learning technique, generates a positive pair from a batch of

images through the application of two separate pixel-wise

transformations to each image in the batch. The rest of the

data in the batch, barring the positive pair, is treated as neg-

atives.

GenRep is a technique designed to effectively perform

representation learning using only images generated from a

pre-trained generator, without the need for real data. Gen-

Rep employs the infoNCE loss as well. Remarkably, it

achieves comparable performance to SimCLR solely lever-

aging synthesized data, negating the need for real data sam-

ples. To elucidate further, GenRep treats a certain latent

code z and a transformed version of the same latent code

Tz(z) as a positive pair. In contrast, images generated from

a different latent code are treated as a negative pair. This

method allows GenRep to leverage the infoNCE loss effec-

tively.

GenRep successfully achieves high performance in rep-

resentation learning scenarios without real data, utilizing la-

tent transformation Tz . We adapt the concept into the lim-

ited data scenario, that image pairs generated from latent

z and transformed latent Tz(z) should be entangled in the

feature space. For Tz , we use small Gaussian perturbations

where GenRep reported that among various methods, Gaus-

sian perturbation performed the best.

FlexMatch loss FlexMatch [39] is one of the techniques

employed in semi-supervised learning, a task that aims to

train a neural network using both labeled data D and un-

labeled data U = {ui}Mi=1. The typical loss function of

semi-supervised learning is defined as follows:

q(x) = pC(y|x),

q̂i(x) =

{
1 if i = argmax q(x)

0 otherwise
,

Lu =
1

μB

μB∑
b=1

I(q(ub)) ·H
[
q̂(ub), q(Tx(ub))

]
. (1)
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where pC(y|x) is output of classifer C, and I(·) is indica-

tor function. To clarify the notation, q(x) is the prediction

of the classifier for input x, and q̂(x) is the pseudo label

for the prediction of input x. The main idea of the loss is

to regulate the model to make the same prediction of Tx(u)
as that of u, based on the theorem that label information

must be maintained. The indicator function I(q(u)) dic-

tates whether to include a sample u in the learning process

based on its corresponding output of the classifier. A com-

mon strategy is to apply a thresholding mechanism. The

concept behind the threshold indicator function is based on

the idea that the model should only pseudo-label and learn

from the unlabeled data when it is sufficiently confident

about it. For instance, the renowned FixMatch approach

sets the value of I(·) to 1 when the maximum confidence

value surpasses a 0.95 threshold, and to 0 otherwise. Flex-

Match modifies this method slightly, as follows:

I(u) = �(max(q(u)) > T (argmax(q(u))) · τ), (2)

T (c) = β(c)

max
c

β
,

β(c) =
M∑
i=1

�(max(q(ui)) > τ ∧ argmax(q(ui)) = c).

The idea of FlexMatch stems from the limitations of the

FixMatch technique, which applies the same threshold to

samples from all classes. Considering that the difficulty can

vary among classes, FlexMatch introduces the key idea of

applying different thresholds to each class.

The distinguishing aspect between semi-supervised

learning and our scenario is that unlabeled data {ui}Mi=1

is replaced by generated data from G. Our choice of us-

ing FlexMatch as a consistency loss function is not only

because it currently holds state-of-the-art performance in

semi-supervised learning, but also due to its beneficial

attributes in our scenario that we found experimentally.

While training with generated data tends to be considerably

more unstable, the thresholding approach of FlexMatch en-

ables stable learning. We present experiments using var-

ious threshold indicator functions including FixMatch in

Sec. 4.4.

3.3. Consistency loss for generated unlabeled data

Building upon the methodology presented, we introduce

a consistency loss for the generated unlabeled data, in-

spired by GenRep [14] and FlexMatch [39]. While Gen-

Rep optimizes infoNCE loss between original and latent-

transformed image, our method optimizes FlexMatch loss

between those images. Integrating G and latent transforma-

tion into Flexmatch loss (Eq. 1 and Eq. 2), the formulation

is given by:

Lz =
1

μB

μB∑
i=1

I(G(zi)) ·H
[
q̂(G(zi)), q(G(Tz(zi)))

]
,

(3)

where each zi is the latent code sampled from N (0, σ2),
and Tz(zi) is also the latent code sampled from N (zi, ε ·
σ2). One additional consideration is necessary when ap-

plying the FlexMatch technique to generated data. In the

case of FlexMatch, all the predictions of the classifier for

unlabeled data {ui}Mi=1 are tracked when calculating β(c).
While in our approach, the unlabeled data is replaced with

samples generated by G, and the count of these generated

samples is infinite, making it impractical to track all of

them. To address this issue, we compute β(c) based on sam-

ples generated during the recent training batches. Finally,

we can formulate the loss of our method as the weighted

combination of supervised and consistency loss:

LGenMatch = Ls + λLz, (4)

where Ls is the supervised loss on labeled data:

Ls =
1

B

B∑
i=1

H[yi, q(xi)]. (5)

The Eq.4 implies that our methodology contemplates the

cross-entropy loss of real labeled data and the consistency

loss of the unlabeled generated data which would result in

entanglement of generated data in the classification space

of C. The threshold indicator function in FlexMatch serves

a dual purpose: it assists in filtering out the generated data

that would contribute positively towards stabilizing the clas-

sifier, while also helping to even out the class distribution

of the generated data being trained. This approach thereby

harnesses the representations learned by the generator. The

expected outcomes include an enhancement in model gen-

eralization and stability. We designate this method as Gen-

Match.

We experimentally confirmed that the performance of the

classifier trained with GenMatch loss (Eq. 4) surpasses the

performance of the classifier trained with traditional classi-

fication loss (Eq. 5). Despite this, Eq. 4 presents an area

that needs refinement: there’s no inherent justification for

the model’s prediction on G(Tz(zi)) to follow the pseudo-

label of G(zi). In Flexmatch, the prediction for the hard

perturbed sample is guided to follow the original sample’s

prediction, as there is a higher probability that the original

sample’s prediction is accurate. Although the possibility

of Tz(z) being out-of-distribution compared to z increases

due to its broader latent space (pTz(z) = N (0, (1 + ε) · σ2)
compared to pz = N (0, σ2)), it remains uncertain whether

the sampled z would yield better classifier predictions than
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(a) (b)

Figure 2: This plot illustrates the correlation between con-

fidence, GiQA, and accuracy. The analysis made use of

a WideResnet-28 model, which was trained on 500 actual

samples from the CIFAR-10 training dataset, and leveraged

samples from the CIFAR-10 test dataset. In Figure (a), con-

fidence intervals are divided into increments of 0.1, and the

corresponding accuracy of the test samples within each in-

terval is calculated. In Figure (b), GiQA intervals are di-

vided into deciles based on percentiles, and the correspond-

ing accuracy for the test samples within each decile is again

calculated.

Tz(z). In other words, it is uncertain whether encouraging

the prediction of the classifier for Tz(z) to conform to the

prediction for z would positively influence the performance

improvement of the classifier.

To address this uncertainty, we define the samples in

the classification space of the classifier that are more in-

distribution as ze, and the out-of-distribution samples as zh.

The purpose is to train a classifier regulating the prediction

of zh to follow that of ze.

zh =

{
z, if ξ(G(z)) > ξ(G(Tz(z))

Tz(z), otherwise
,

ze =

{
Tz(z), if ξ(G(z)) > ξ(G(Tz(z)))

z, otherwise
,

Lz =
1

μB

μB∑
i=1

I(G(zi,e)) ·H
[
q̂(G(zi,e)), q(G(zi,h))

]
.

(6)

For the uncertainty measures ξ we consider using, it

is required that they contain information about whether

the given sample is in-distribution, and that lower uncer-

tainty indicates the classifier making more accurate predic-

tions for the given sample. Considering these two condi-

tions, the chosen measures of uncertainty are the maximum-

confidence value and the Generated Image Quality Assess-

ment (GIQA) [10]. The maximum confidence value and the

GIQA can be formulated as:

ξconf (x) = −max(q(x)), (7)

ξgiqa(x) = −p(x|λ∗) = −
M∑
i=1

wig(fC(x)|μi,Σi), (8)

where fC(x) denotes the features derived from the

classifier model C, λ = {wi, μi,Σi}Mi=1 and λ∗ =
argmaxλ Ex∼p(D) log p(fC(x)|λ). GIQA is a metric de-

signed to evaluate how well a generated image adheres to

the training data distribution. It is known for its robust

calibration performance. While GIQA typically employs

a pre-trained network as the feature extractor in Eq. 8 for

assessing generated image quality, we utilize fC to evaluate

the extent to which the generated image is in-distribution

in the classification space with respect to the original train-

ing data. Despite its usefulness, GMM modeling is a time-

consuming process that can potentially lengthen training

times. To counteract this, we opt to perform GMM mod-

eling once every 100 iterations. We denote the formula

obtained by substituting confidence (Eq. 7) into Eq. 6 as

GenMatch-Conf, and the formula obtained by substituting

GIQA (Eq. 8) into Eq. 6 as GenMatch-GIQA. As shown in

Fig. 2, it is clear that samples with higher levels of confi-

dence or GIQA values tend to be more accurate. This in-

sight has guided our choice of these two metrics for further

exploration. Indeed, GenMatch-Conf and GenMatch-GIQA

function as we intended, providing improved accuracy com-

pared to GenMatch, which we elaborate on in Sec. 4.

4. Experiments
4.1. Dataset and Training Details

We conduct our experiments on the CIFAR-10 dataset,

which includes 32×32 images corresponding to 10 classes

and is comprised of 50,000 training data images and 10,000

test data images. For the limited data scenario, we randomly

sample just 500 images from the training data for the exper-

iment, and the test is conducted on the entire test data.

We use StyleGAN2-ADA as the generator G and Wide-

Resnet-28 as the classifier C. The learning rates for the

generator and discriminator were carefully set at specific

values, with a batch size chosen to maintain a balance be-

tween memory usage and the performance of the model.

Another critical parameter, the Ada target, is adjusted to

attain an equilibrium between image diversity and image

quality. The StyleGAN2-ADA is trained with the logis-

tic adversarial loss. We use Adam for optimization, with

a learning rate of 0.0025 for both generator and discrimi-

nator, and settings of β1 = 0 and β2 = 0.99. Given the

limited data size of only 500 instances, there exists a po-

tential risk of the discriminator overpowering the genera-

tor, which could adversely impact the training process. To
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Method Number of Accuracy
Synth Images (%)

Baseline
Supervised None 54.54

Class-conditional GAN
Supervised 500 54.63

1000 53.85

GAN Distillation ∞ 54.84

Unconditional GAN
Ours (GenMatch-GIQA) ∞ 63.22

Table 1: Results in CIFAR-10. Our approach shows an

8.68% improvement in performance compared to the tra-

ditional supervised method, while other techniques utiliz-

ing class-conditional GANs show minimal performance im-

provements.

mitigate this effect, we update the generator twice for each

single update of the discriminator, successfully preventing

such undesired occurrences. ADA is employed with an ini-

tial augmentation probability of zero, and Ada target prob-

ability of 0.6 throughout training. The augmentation policy

is updated every 500 thousand images, with a frequency of

every 4 training steps.

Following the training of StyleGAN2-ADA, the clas-

sifier is subsequently trained with GenMatch loss, using

sampled image pairs from the generator where ε = 0.25.

Stochastic gradient descent (SGD) with a momentum of 0.9

is employed as the optimizer of the classifier. The learn-

ing rate starts from 0.03 and decays with a cosine learning

rate schedule. The batch size on the labeled data is set to

64, while the batch size on the generated unlabeled data is

set to 448. The weight between the supervised loss and the

consistency loss, denoted as λ in Eq. 6, is 1. The parameter

in the threshold indicator function, denoted as τ , is set to

0.95. For the GenMatch-GIQA, the feature dimensionality

is diminished to 32 via PCA. For GMM, we use 10 com-

ponents, which is the same number as the class number of

CIFAR-10. During training, the exponential moving aver-

age of the GenMatch model is computed with a momentum

of 0.999 and is used for the evaluation.

4.2. Main Experiments

We compare our technique with three baselines. The

first baseline is the classifier trained by a standard super-

vised technique with 500 training data. The second base-

line is also the classifier trained by standard supervised

technique but with generated labeled data created by the

class-conditional StyleGAN2-ADA to the origin training

data. Two experiments were performed: the first utilizes

500 pieces of generated labeled data, and the second uses

Method Accuracy

(%)

GenMatch 61.57

GenMatch-Conf 62.59

GenMatch-GIQA 63.22

Table 2: Experiments with selection of different uncertainty

1000 pieces, which include the initial 500 and an additional

500 generated labeled data. The third baseline is the ex-

perimental result of GAN Distillation [27], the most recent

paper that improves the performance of the classifier using

a class-conditional GAN. The version of our method used

for comparison with other techniques is GenMatch-GIQA.

The StyleGAN2-ADA used for the second and third base-

lines is class-conditional, while the StyleGAN2-ADA used

for our method is class-unconditional. The hyperparame-

ters used to train both GANs are set to be the same. GAN

Distillation and our technique do not train the classifier with

a fixed number of generated images, but an infinite number

of those.

As shown in Table 1, adding images generated by a class-

conditional GAN hardly makes any difference in perfor-

mance, and in fact, it slightly lowers it. This aligns with the

results provided in prior works [32, 29, 30], implying that

merely employing a class-conditional GAN without any ad-

ditional techniques is insufficient to enhance accuracy. Fur-

thermore, GAN Distillation only slightly improves the ac-

curacy compared to a classifier trained solely on real data.

In contrast, our method yields an improvement of 8.68%,

which is notable.

4.3. Effect of Uncertainty Selection

In Sec. 3.3, we proposed uncertainty as a method to ef-

fectively integrate GenRep and Flexmatch. In this para-

graph, we provide experiments on how the accuracy varies

depending on different uncertainty selections. We compare

the following three approaches: 1) applying Eq. 3 directly

without considering uncertainty, 2) using confidence as the

uncertainty in Eq. 4, and 3) utilizing GIQA as the uncer-

tainty in Eq. 4. All hyperparameters and training schemes

are set as same as the main experiment. As shown in Ta-

ble 2, considering uncertainty improves performance com-

pared to not considering it, and using GIQA as the uncer-

tainty is better than using confidence. Nevertheless, Gen-

Match exhibits a 7.03% higher accuracy compared to stan-

dard supervised learning, indicating that the application of

a consistency rule to generated data alone is sufficient to

transfer the representations learned by the GAN to the clas-

sifier. The superior performance of GenMatch-Conf and

GenMatch-GIQA over GenMatch suggests, as we antici-

1062



Method Accuracy

(%)

Pseudo-Label 52.17

FixMatch 60.61

GenMatch-GIQA 63.22

Table 3: Experiments with the selection of different Thresh-

old Indicator Function. “Pseudo-Label” denotes the re-

sult of substituting Eq. 9 into GenMatch-GIQA, and “Fix-

Match” denotes the result of substituting Eq. 10 into

GenMatch-GIQA.

pated, that it is beneficial to configure the classifier to follow

the prediction of the generated data that has a higher proba-

bility of being correct. In the following section, we provide

empirical evidence demonstrating the premise that the clas-

sifier renders more precise predictions when dealing with

samples with higher Confidence and GIQA values.

4.4. Effect of Threshold Indicator Function

The method we propose, GenMatch, is grounded on

the threshold indicator function of FlexMatch (Eq. 2). In

Sec. 3.2, we argued the choice of the FlexMatch indicator

function was due to the stability it offers in learning. In this

section, we present experimental results using different in-

dicator functions. Semi-supervised techniques encompass a

wide variety of threshold indicator functions, and we con-

duct additional experiments on two of them: one being a

Pseudo-Label [21] technique that always sets the threshold

indicator function to 1, and the other being a FixMatch [33]

technique that sets the threshold indicator function to 1 only

when max-confidence exceeds 0.95, and to 0 otherwise. We

provide experimental results for these two cases. The two

cases can be expressed in the form of equations as follows:

IPseudo(u) = 1, (9)

IFixMatch(u) = �(max(q(u)) > τ). (10)

where τ is set to 0.95. We provide the results when the

indicator function of GenMatch-GIQA is replaced with the

indicator function of Pseudo-Label, i.e., integrating Eq. 6,

8, and 9, and when the indicator function of GenMatch-

GIQA is replaced with the indicator function of FixMatch,

i.e., integrating Eq. 6, 8, and 10. The results are shown

in Table 3. As shown in Table 3, we confirm that the per-

formance is poorest when the indicator function of Pseudo-

Label is used. In fact, the performance is even worse than

that of the conventional supervised method presented in Ta-

ble 1, which does not use any generated data at all. This

suggests that the threshold indicator function not only sta-

bilizes the learning process but also serves to filter out the

Model Train FID Test FID

Unconditional StyleGAN2-ADA 84.59 35.33

Conditional StyleGAN2-ADA 86.94 37.66

Unconditional DDPM 81.52 55.84

Table 4: Measurement of FID across various generative

models. The train FID refers to the FID measured on a

sample of 500 images taken from the CIFAR-10 train set,

which was used in our experiments. The test FID refers to

the FID measured on the entirety of the CIFAR-10 test set.

The reason for the relatively lower test FID compared to the

train FID is because the sample size of the train data is 500,

whereas the test data comprises 10,000 images.

generated data that are not beneficial for learning. The accu-

racy is lower when using the indicator function of FixMatch

compared to our method. This is likely due to the tendency

of FixMatch to focus on learning the easier classes.

4.5. FID Comparison

In this section, we validate the justification for our

main experiment and the selection of class-unconditional

StyleGAN2-ADA over class-unconditional DDPM through

FID measurements. As shown in Table 4, the FID of

class-unconditional GAN and class-conditional GAN are

measured similarly in both the train and test sets. This

indicates that there is not a significant performance dif-

ference between the class-unconditional GAN and class-

conditional GAN used in our main experiment, suggest-

ing that the results of the main experiment are not dictated

by the performance difference between the GANs. Com-

paring the results of class-unconditional GAN and class-

unconditional DDPM, the train FID is relatively lower for

class-unconditional DDPM while the test FID is much

higher. This indicates that class-unconditional DDPM in-

duces significant overfitting in the limited data scenario,

which is why we chose StyleGAN2-ADA over DDPM as

the base model for our technique.

5. Conclusion
We have proposed a method to enhance the accu-

racy of classifiers in limited data scenarios by leveraging

class-unconditional GANs. The method integrates the la-

tent transformation and the consistency loss, serving as a

way for classifiers to learn rich representations with class-

unconditional GANs. To better apply the FlexMatch loss to

generated data, we further introduce uncertainties by GIQA

and max-confidence. We demonstrate that effective uti-

lization of class-unconditional GANs can improve classi-

fier accuracy, yielding better results than those using class-

conditional GANs. The limitation is the time consumption
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required for training, caused by continuous image genera-

tion by the GAN and the inherently slow speed of semi-

supervised techniques. In future research, it would be an in-

teresting direction to address these issues to develop a more

practical and scalable technique.
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Häusser, Caner Hazirbas, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. In IEEE Inter-
national Conference on Computer Vision (ICCV), 2015.

[9] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier

Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron

Courville. Adversarially learned inference. In International
Conference on Learning Representations (ICLR), 2017.

[10] Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Giqa:

Generated image quality assessment. In European Confer-
ence on Computer Vision (ECCV), 2020.

[11] Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing

Zhang, Philip Torr, Song Bai, and Xiaojuan Qi. Is synthetic

data from generative models ready for image recognition?

arXiv preprint arXiv:2210.07574, 2022.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

[13] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6m: Large scale datasets and predic-

tive methods for 3d human sensing in natural environments.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 36(7):1325–1339, 2014.

[14] Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola.

Generative models as a data source for multiview representa-

tion learning. In International Conference on Learning Rep-
resentations (ICLR), 2022.

[15] Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopou-

los. Multi-class active learning for image classification. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009.

[16] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,

Jaakko Lehtinen, and Timo Aila. Training generative ad-

versarial networks with limited data. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[18] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improving

the image quality of stylegan. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020.

[19] Quan Kong, Bin Tong, Martin Klinkigt, Yuki Watanabe,

Naoto Akira, and Tomokazu Murakami. Active generative

adversarial network for image classification. In AAAI Con-
ference on Artificial Intelligence (AAAI), 2019.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2012.

[21] Dong-Hyun Lee. Pseudo-label : The simple and efficient

semi-supervised learning method for deep neural networks.

In International Conference on Machine Learning Work-
shops(ICMLW), 2013.

[22] Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba,

and Sanja Fidler. Semantic segmentation with generative

models: Semi-supervised learning and strong out-of-domain

generalization. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[23] Mingkun Li and Ishwar K. Sethi. Confidence-based active

learning. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 28:1251–1261, 2006.

[24] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] Seongkyu Mun, Sangwook Park, David K. Han, and

Hanseok Ko. Genrative adversarial network based acous-

tic scene training set augmentation and selection using svm

hyperplane. In In Detection and Classification of Acoustic
Scenes and Events Workshop, 2017.

[26] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

1064



[27] Matteo Pennisi, Simone Palazzo, and Concetto Spampinato.

Self-improving classification performance through gan dis-

tillation. In IEEE International Conference on Computer Vi-
sion Workshops (ICCVW), 2021.

[28] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. In International Conference on
Learning Representations (ICLR), 2016.

[29] Suman Ravuri and Oriol Vinyals. Classification accuracy

score for conditional generative models. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2019.

[30] Suman Ravuri and Oriol Vinyals. Seeing is not necessar-

ily believing: Limitations of bigGANs for data augmenta-

tion. In International Conference on Learning Representa-
tions Workshops (ICLRW), 2019.

[31] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M. Lopez. The synthia dataset: A

large collection of synthetic images for semantic segmen-

tation of urban scenes. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[32] Konstantin Shmelkov, Cordelia Schmid, and Karteek Ala-

hari. How good is my gan? In European Conference on
Computer Vision (ECCV), 2018.

[33] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao

Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,

Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simpli-

fying semi-supervised learning with consistency and confi-

dence. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020.

[34] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-

hishek Kumar, Stefano Ermon, and Ben Poole. Score-based

generative modeling through stochastic differential equa-

tions. In International Conference on Learning Represen-
tations (ICLR), 2021.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal
of Machine Learning Research (JMLR), 15(56):1929–1958,

2014.

[36] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun

Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih,

William T Freeman, and Ce Liu. Autoflow: Learning a bet-

ter training set for optical flow. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

[37] Nontawat Tritrong, Pitchaporn Rewatbowornwong, and Su-

pasorn Suwajanakorn. Repurposing gans for one-shot se-

mantic part segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[38] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-

mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.

Learning from synthetic humans. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[39] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-

dong Wang, Manabu Okumura, and Takahiro Shinozaki.

Flexmatch: Boosting semi-supervised learning with curricu-

lum pseudo labeling. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[40] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning re-

quires rethinking generalization. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[41] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-

Francois Lafleche, Adela Barriuso, Antonio Torralba, and

Sanja Fidler. Datasetgan: Efficient labeled data factory with

minimal human effort. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[42] Xinyue Zhu, Yifan Liu, Jiahong Li, Tao Wan, and Zengchang

Qin. Emotion classification with data augmentation using

generative adversarial networks. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, 2018.

1065


