
G2L: A High-Dimensional Geometric Approach for
Automatic Generation of Highly Accurate Pseudo-labels

John R. Kender
Columbia University
jrk@cs.columbia.edu

Parijat Dube
IBM Research

pdube@us.ibm.com

Zhengyang Han
New York University

zh2033@nyu.edu

Bishwaranjan Bhattacharjee
IBM Research

bhatta@us.ibm.com

Abstract

Transfer learning is a deep-learning technique that ame-
liorates the problem of learning when human-annotated la-
bels are expensive and limited. In place of such labels,
it uses instead the previously trained weights from a well-
chosen source model as the initial weights for the train-
ing of a base model for a new target dataset. We demon-
strate a novel general technique for automatically creating
such source models. We generate pseudo-labels according
to an efficient and extensible algorithm that is based on a
classical result from the geometry of high dimensions, the
Cayley-Menger determinant. This G2L (“geometry to la-
bel”) method incrementally builds up pseudo-labels using
a greedy computation of hypervolume content. We demon-
strate that the method is tunable with respect to expected
accuracy, which can be forecast by an information-theoretic
measure of dataset similarity (divergence) between source
and target. The results of 560 experiments show that this
automatic technique generates base models that have simi-
lar or better transferability compared to a baseline of mod-
els trained on extensively human-annotated ImageNet1K la-
bels, decreasing error in most divergent datasets tested.

1. Introduction

In the field of supervised deep learning, one often ends

up with very little labeled training data. To alleviate this

problem, a well-known technique used is Transfer Learn-

ing [39]. It uses trained weights from a source model as the

initial weights for training a target dataset. A well-chosen

source with a large amount of labeled data leads to signifi-

cant improvement in accuracy for the target.

The task we address is the scenario of providing an

efficient machine learning service for clients whose data,

particularly image data, varies greatly from the “natural

scenes” that typically populate the image databases on

which off-the-shelf classifiers are trained. Typically, these

clients will present a rather small dataset taken from special-

ized environments, often industrial, which have been cap-

tured under unforeseen circumstances and parameters. Our

method creates pseudo-labels for this data by determining

their geometric relationships to the feature space of existing

labeled data.

In this work, we therefore develop a content-aware la-

beling technique. First, we take data points such as im-

ages, and compute labels for them by calculating distances

of these data points from a set of named anchor data points

representing known and labeled categories, like animal,
plant, tool, etc. Second, pseudo-labels are then constructed

for the incoming data points based on these distances, or,

more accurately, based on “contents”, which is the high-

dimensional generalization of distances, calculated using

a geometric approach. Each pseudo-label then consists of

a sequence of semantically descriptive names: for exam-

ple, 〈tool, plant〉, could be the pseudo-label for data from

a previously unseen category like rake. Finally, we train a

source model using these automatically labeled labels. We

show that when an incoming dataset has a high divergence

from the data on which a classifier has been trained, this

method helps to focus transfer learning on the most relevant

aspects of the training data, and the resultant model is more

accurate than the original “vanilla” classifier.

Applying this G2L (“geometry to label”) method, we

evaluate workloads from the Visual Decathlon [41] and

other labeled datasets, comparing how well our pseudo-

labeling scheme performs in generating sources for transfer

learning against ImageNet1K data [32] using standard hu-

man annotated labels. We show that our purely automatic

approach wins in many circumstances and that we can spec-

ify those circumstances.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Our contributions are: (1) a disciplined extensible algo-

rithm to create semantically interpretable pseudo-labels, de-

rived from methods in the geometry of high dimensions; (2)

an analysis of the effects of algorithm hyperparameters on

the amount and quality of these pseudo-labels; (3) a char-

acterization of the relationship of source-to-target similar-

ity (divergence) vs. pseudo-label variety, optimal transfer

learning rate, and final accuracy; and (4) a discussion and

visualizations of 560 experiments on a wide variety of trans-

fer tasks to evaluate the efficacy of G2L.

2. Related Work
Several well-established approaches attempt to assign

labels to unlabeled images automatically. Some utilize

feature clusters to predict labels [16] or augment image

data with linguistic constraints from sources such as Word-

Net [1, 17]. They address tasks by pretraining models using

larger unlabeled data-sets.

Pretraining approaches have also improved results when

attempting a target task with a limited amount of ac-

curately labeled training data [24], by using weakly la-

beled data, such as social media hashtags, which are very

plentiful. Again, however, effectiveness only appears to

grow as the log of the image count. Some methods uti-

lize a teacher model to generate labels to unlabeled data

points [37, 18, 38], subsequently guiding the student model

to discern underlying class relationships and more nuanced

behaviors of the teacher. However, this approach may lead

to the student model inheriting biases from the teacher.

Other approaches use generative models such as

GANs [31] to explore and refine category boundaries be-

tween data clusters, which exploit the rich statistical struc-

tures of both real and generated examples, sometimes aug-

mented with labels or linguistic constraints. These auto-

matic approaches use the structures present in large unla-

beled datasets to extend the expressivity of known labels

and augment the raw size of training sets.

More broadly, various approaches attempt to learn a rep-

resentation of a class of data and later use that represen-

tation in service of a target task. For example, [15] clus-

tered images in an embedding space and developed a meta-

learner to find classifications which distinguished various

clusters within this embedding. Other approaches to map-

ping the feature space have used autoencoders [4]. Knowl-

edge distillation techniques [26] teach a student an accurate

but more compact feature space, similar in spirit to the work

presented here.

Approaches like CLIP [30] trains an image encoder to

align images with corresponding textual descriptions in a

shared embedding space using a contrastive loss function.

However, using natural language descriptions as pseudo la-

bels is challenging as there is no control on the stability and

distribution of labels during the training process.

The above existing literature attempts to find hybrid ap-

proaches that find productive ways to leverage machine-

learned distributions of examples to find new ways of char-

acterizing unlabeled data. The current work presents a novel

approach in this domain.

3. Approach
In this section we give an overview of the conceptual

flow of our method, discuss the feature space of one applica-

tion of it to a computer vision task, and suggest a real-world

analogy that illustrates some of the semantic considerations

behind its central geometry-based algorithm.

3.1. Labeling Method

Generating rich pseudo-labels from models trained on

distributionally similar data involves a trade off between

an expressive, long label, and a generalizable, short label.

Longer labels (obtained by concatenating multiple labels)

carry more information about similarity between previous

models and the target image, and differences between the

previously trained models could be critical for adequately

labeling new examples. For example, an incoming set of

data including pictures of household objects might be well

described by combining the labels of “tool, fabric, furni-

ture.”

However, domains that possess substantial differences

from previous data might be better defined by the magnitude

and direction of such a difference. For example, a “flower”

dataset would share some features with “plant,” but it is per-

haps better defined by statements such as “flowers are very

unlike furniture”. In other, ambiguous cases, negative fea-

tures may be necessary to distinguish between overlapping

cases: a suit of armor might have similarities with the body

shapes of people but could be contrasted with these cate-

gories by its dissimilarity with “sport,” a category otherwise

close to “person.”

3.2. Labeling Example

We illustrate our method using a specific case study

involving images, and with source datasets created by

vertically partitioning ImageNet22K [6] along these dis-

tinct subtrees: animal, building, fabric, food, fruit,
fungus, furniture, garment, music, nature, person,

plant, sport, tool, tree, weapon, illustrated later in Fig. 2.

These subtrees vary in their number of images (from 103K

images for weapon to 2,783K images for animal) and in

their number of classes (from 138 for weapon to 4,040K for

plant). These 16 subtrees were used since they were easy

to partition from Imagenet22K, but our method could also

be used with any other labeled data ontology.

We represent each such source dataset by a single aver-

age feature vector. This study generates this vector from

the second to last layer of a reference VGG16 [33] model
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trained on ImageNet1K, with the average taken over 25%

of all the images in the dataset.

To label a new image, we first calculate its own feature

vector, then compute its Euclidean distance from each of

the representatives of the datasets. Together with other ge-

ometric computations in this high dimensional space, these

distance measures are then used for a full pseudo-labeling

process described in Sec. 4.

3.3. An Analogy

Our G2L approach for pseudo-labeling an image can be

understood as being similar to the “Blind Men and the Ele-

phant” parable, where blind men, who have never learned

about an elephant, try to categorize an elephant just by

touching it, then relating it to something that they already

know. Their categorizations of Elephant then include Fan

(ear), Rope (tail), Snake (trunk), Spear (tusk), Tree (leg),

and Wall (flank). Basically, by touching and feeling an ele-

phant, the blind men are measuring its closeness to things

known by them. Our approach also measures the closeness

of an unknown image, in feature space, to existing known

categories and then generates a pseudo-label for it.

3.4. Analogy Extended

However, additionally, our work extends this analogy in

three critical ways. First, we also compare unknown im-

ages to the existing categories that are farthest from them:

the elephant is “not Feather”. Second, we observe a strong

predictive relationship between (a) the measurement of the

similarity of unknown imagery to existing categories, and

(b) the computation of the number of pseudo-labels nec-

essary to derive good transfer performance: the elephant

could also use “Curtain, Leather, Bark, Mud”. Third, we

also observe a strong predictive relationship between mea-

sured similarity and optimal learning rate: the elephant is

most easily described starting from “Manatee”. The signifi-

cance and computational advantages of these extensions are

detailed in Sec. 4 and 6.

4. Geometric Pseudo-labels
In this section we present the main algorithm for generat-

ing semantically meaningful geometric pseudo-labels. We

first start with five motivating principles and some necessary

math background. Then we walk through the algorithm, and

discuss some of its properties and results.

4.1. Motivation

Pseudo-labels for a target dataset can be generated by us-

ing a large labeled dataset organized within a semantic hi-

erarchy such as ImageNet22K, and an off-the-shelf robust
classifier, such as VGG16 trained on ImageNet1K. (The

robust classifier need not be trained on the same labeled

dataset.) Our algorithm exploits these two tools in a way

that promotes five desirable properties for pseudo-labels,

to ensure that the pseudo-labels have an easily understand-

able meaning, and that their computation are reasonable ef-

ficient.

First, the pseudo-labels should be easily interpretable to

humans. As an example, we can start by partitioning Ima-

geNet22K into 16 non-intersecting sets, each of which car-

ries the name of an object category, such as in Sec. 3.

Second, the pseudo-labels should therefore also follow a

simple grammar. We refer to the 16 subsets that comprise

the above partition as the source subsets. Then, a pseudo-

label for an incoming target data item can be defined as

the concatenation of some number of source subset names,

such as the sequence 〈person,music, tool〉. This produces

an informative natural language description of the incoming

target data item.

Third, to make comparisons possible, these pseudo-

labels should be geometrically interpretable within the

space of feature vectors. Distances between pseudo-labels

can be defined by various metrics: L1 (city-block), L2 (Eu-

clidean),
√
JS (the square root of Jenson-Shannon diver-

gence [11]), or others. This can be tricky; the feature vec-

tor spaces used in machine learning are difficult to visual-

ize, and such high-dimensional spaces generate geometric

paradoxes even at relatively low dimensions [13]. For ex-

ample, each feature vector of a dataset is very likely to be

on the convex hull of that dataset’s representation in that

space [40]. Nevertheless, by methods like that of barycen-

tric coordinates [19], particular “anchor” vectors can be

used to represent regions within these spaces.

Fourth, the computation of pseudo-labels should lever-

age known efficient geometric algorithms that localize in-

coming data. Metrics defined over these spaces can be

used to partition the space into cells that form equivalence

classes of locations based on individual anchor points (“1st-
order Voronoi diagram”). These locations are character-

izable by geometric properties such as “the nearest point

to this cell is P ”; see Fig. 1(a). These cells can be effi-

ciently determined [9]. Further, these metrics can also par-

tition the space into cells that form equivalence classes of

locations based on sets of points (“nth-order Voronoi di-

agram”), characterizable by geometric properties such as

“the n-nearest points to this cell are {P1, P2, . . . , Pn}; see

Fig. 1(b). The extreme case for N points is the (N−1)th-

order partition (“farthest-point Voronoi diagram”); see

Fig. 1(c). However, general farthest-point algorithms are

provably hard, and the only efficient algorithms are approx-

imate [29].

Fifth, the concepts of lengths and distances in these

spaces should be further generalized to all measures of

higher-dimensional “content”, following the progression of

polytopes [3], as point, length, area, volume, hypervolume,
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etc., to arbitrarily high dimension. Elegant algorithms ex-

ist for computing such content, in particular, the Cayley-

Menger determinant [35].

Therefore, pulling these observations together, we seek

to devise a method that composes a small number of

semantically-named anchor vectors derived from the source

datasets, into a sequence that defines location descriptions

for target data items, based on the generalization of clos-

est and farthest (Voronoi) distances into minimal and maxi-

mal (Cayley-Menger) contents. These location descriptions

then become the pseudo-labels for the incoming data.

4.2. Mathematical Foundation

Some necessary mathematical preliminaries now follow.

Cayley-Menger determinant. Our method depends on

the generalization of the concept of a single distance be-

tween a target and a single source, to that of the content of a

d-dimensional simplex defined by the target and d sources.

The computation of content is a well-studied algorithm

based on the Cayley-Menger determinant (“CM”). The

determinant itself generalizes several earlier classic algo-

rithms, including the familiar Heron formula for the area of

a triangle, and the less familiar Piero formula for computing

the volume of a tetrahedron.

Cayley-Menger computation. For an d-simplex, com-

posed of d+1 anchors, the math to compute content Cd pro-

ceeds in three steps. The derivation of these steps is tedious,

and is explained in [2].

First, it forms Md, a particular symmetric

(d+2)×(d+2) matrix. It incorporates a symmetric

submatrix that expresses the squares of all pair-wise

distances, that is, Di,j=distance(i, j)2.

Md =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 · · · 1
1 0 D0,1 D0,2 D0,3 · · · D0,n

1 D1,0 0 D1,2 D1,3 · · · D1,n

1 D2,0 D2,1 0 D2,3 · · · D2,n

1 D3,0 D3,1 D3,2 0 · · · D3,n

...
...

...
...

...
. . .

...

1 Dn,0 Dn,1 Dn,2 Dn,3 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second, it computes the coefficient ad =
(−1)d+12d(d!)2, which records the effects that vari-

ous matrix operations have had on the determinant of Md,

during its simplification from more complex geometric

volume computations into its above form. This coefficient

also defines the integer sequence A055546 at [34], where it

has an imaginative interpretation involving roller coasters.

Third, it solves for the value of Cd implicitly expressed

by adC
2
d = detMd.

The complexity of computing the determinant, by the

usual and reasonably efficient method of LU decomposi-

tion, is O(d3). No simpler approach involving the reuse

of previously computed subdeterminants appears feasible,

as the determinant has been proven to be irreducible for di-

mensions greater than 3 [10]. Nevertheless, in the context of

our overall machine learning problem, this cost has proven

to be negligible with respect to training costs.

4.3. Pseudo-label Creation

Now, we give an overview of the algorithm. An incom-

ing data point is compared at each step against a collection

of named category anchor points. The name of the anchor

point that minimizes (or maximizes, depending on a pol-

icy) its distance to the incoming point is chosen as the first

component of an evolving sequence of names. Thereafter,

the process repeats, and at each step the sequence is ex-

tended with the name of the anchor point that best extrem-

izes the content—the area, volume, hypervolume, etc.— of

the evolving polytope formed by these selected points. Af-

ter a stopping criteria, this sequence gives the pseudo-label.

The full G2L algorithm is summarized in Algorithm 1.

The algorithm requires a number of hyperparameters that

are set by experiment. An example is shown for each of

these choices, in the pseudocode of the precondition (“Re-

quire”) preamble. These examples use image classification

as the domain, and record the exact configuration that is

used in the experiments.

Most of the parameters (and hyperparameters) are

straightforward. The indicator Layer is the choice of a par-

ticular layer within the data representation of f , usually but

not necessarily the second-last. The function Met is the

choice of a distance function that has been derived from an

inner product, as required for the derivation of CM . The

remaining three hyperparameters are more complex.

Parameters needing explanation. The method Aggr is

the choice of an aggregation method that represents a set of

Layer vectors in a sparser form. This can be as trivial as

using a single mean vector, or as more elaborate as using a

set of representatives derived from clustering methods. For

example, as Fig. 2 suggests, the source food is probably

adequately represented by a single aggregate vector, but the

source fruit probably is better represented by a pair of ag-

gregate vectors fruitplant and fruitfood.

The integer dmax determines the number of dimensions

to be explored using CM during the creation of the output

pseudo-label name sequences. It also bounds the length of

the pseudo-label name sequence plsi, by dmax ≤ |plsi| ≤
2dmax. The exact length of plsi, which is constant over a

given execution of the complete algorithm, is determined by

Pol.

Extremizing policies. The extrema decision sequence

Pol, and its summarizing notation, are best explained by a

walkthrough of the algorithm.

At d=1, the algorithm considers the length of the line

(the 1-simplex) formed from the target data item ti, and a
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(a) 1st-order (b) 2nd-order (c) 3rd-order (d) 1st ∩ 3rd-order

Figure 1: Voronoi tessellation regions in two-dimensions generated by the N=4 points shown in red. Colored regions depict

equivalence classes of points that share: (a) “closest point” (policy c), (b) “top 2 closest points”, (c) “farthest point” (policy

f), (d) “closest and farthest points” (policy C or F), the intersection of (a) and (c). Policies are explained in Sec. 4.3

Figure 2: The 16 sources, using 1NN under Euclidean met-

ric to define “closest”. Arrow a→b means “a includes a b
subcluster”; thickness is subcluster weight.

representative vector sourj,k from the source representation

Sourj . (If Aggr was a simple mean, then each Sourj will

be a singleton set.) Each sourj,k is examined, and the con-

tent (here, the length), computed by CM , is recorded in

conti,j,k.

Now we can choose the first dimension’s extremizing

pseudo-label sequence pls1 for ti, from one of four short

sequences: (1) the source name of the closest vector, if

Pol starts with 〈c〉, as shown in Fig. 1(a); or (2) the source

name of farthest vector, if Pol starts with 〈f〉, as shown in

Fig. 1(c); or (3) the source name of the closest vector fol-

lowed by the source name of the farthest vector, if Pol starts

with 〈C〉, as shown in Fig. 1(d); or (4) the source name of

the farthest vector followed by the source name of the clos-

est vector, if Pol starts with 〈F 〉, as shown in Fig. 1(d) again

(the repeat is expected in this case).

For example, if Pol=〈c〉, one possible pseudo-label

pls1 for a particular ti could be the sequence 〈fruitfood〉.
Whereas, if Pol=〈F 〉, it could be 〈fungus, fruitfood〉
instead. The four choices of extremizing policy at any

dimension are therefore captured by the quaternary al-

phabet {c, f, C, F}. And in particular, the policy 〈C〉
is the special case already explored in prior work [7],

which forms pseudo-labels consisting of the names of

〈closest, farthest〉 pairs.

Proceeding to d=2, the algorithm considers the areas,

computed by CM , of the triangle (2-simplex) formed by

the target data item ti, a representative vector sourj,k, and

a single prior extremizing vector, chosen according to the

first dimension’s policy. This single vector would be the

length-minimizing vector if the policy had been 〈c〉 or 〈C〉;
or the length-maximizing vector if the policy had been 〈f〉
or 〈F 〉. At this point, again we can efficiently choose

one of four short sequences that capture the names of the

area-extremizing sources for this dimension’s pseudo-label,

which we then append to the evolving sequence plsi.
At two dimensions, there are therefore 16 total poli-

cies, ranging from 〈c, c〉 to 〈F, F 〉. These 16 policies

create 4 different name sequences of length 2, 8 differ-

ent name sequences of length 3, and 4 different name se-

quences of length 4. By establishing and solving straight-

forward recurrence relations that are similar to those de-

scribing Pascal’s triangle, we find that the number of pos-

sible name sequences at dimension d with length l is given

by P (d, l)=2l · ( d
l−d

)
, and that the total possible sequences

at dimension d is given by
∑

l P (d, l)=4d.

The algorithm proceeds likewise for each higher dimen-

sion, up to dmax, by first building simplices that extend

the prior dimension’s simplex, and then selecting names ac-

cording to this higher dimension’s policy.

4.4. Empirical Properties of Pseudo-labels

In what follows, we have used VGG16 trained on Ima-

genet1K as classifier f , and we have partitioned the Full
ImageNet22K dataset into a Part collection of the 16 non-

intersecting semantic subsets given in Sec. 4.1. We will

now refer to policies without angle brackets or commas;

〈C, f, f, f〉 becomes simply Cfff.

Outliers and tractability. We note that a few of our 16

mean vectors, particularly fungus, sport, and furniture,
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Algorithm 1 G2L pseudo-label algorithm, in pseudocode

Require: Tar ← target dataset of data items, Tar= ∪ ti
Require: Full ← semantically-partionable labeled dataset

{e.g. ImageNet22K}
Require: Part ← partition of Full, Part= ∪ {Pj}
Require: f ← classifier {e.g. VGG16 on Imagenet1K}
Require: Layer ← feature vector layer {e.g. second-last}
Require: Aggr ← feature vector aggregator {e.g. mean}
Require: Met ← feature vector metric {e.g. Euclidean}
Require: dmax ← max simplex dimension {e.g. 4}
Require: Pol ← extrema decision sequence {e.g. Cfff}
Ensure: pseudo-label sequence plsi for each ti

1: INITIALIZATION

2: for each data item ti ∈ Tar do
3: represent ti by verti ← Layer vector of ti within f
4: end for
5: for each subset Pj ∈ Part do
6: represent Pj by set Sourj= ∪ {sourj,k} ← aggre-

gation of Layer vectors of Pj within f , using Aggr
7: end for
8: PROCESS

9: for each ti ∈ Tar do
10: plsi ← 〈〉
11: for d=1 to dmax do
12: for each Sourj do
13: for each sourj,k ∈ Sourj do
14: Xi,j,k ← simplex, using verti, plsi, sourj,k
15: for each vertex pair in Xi,j,k do
16: compute edge distance, using Met
17: end for
18: conti,j,k ← content of Xi,j,k, using CM
19: end for
20: end for
21: ed ← argextremej,k of conti,j,k, using Pol
22: namesd ← names of sourj,k, using 〈ed〉
23: plsi ← plsi concat namesd
24: end for
25: end for

repeatedly show up as outlier vertices in the polytopes un-

der construction, as suggested by their relations shown in

Fig. 2. They therefore tend to occur early in the output

pseudo-label sequences.

We observe empirically, as suggested in [10], that the

search for these maximal and minimal simplicies has to be

done exhaustively. For example, through exhaustive search

on our test dataset, we find that the 1-simplex with min-

imal content is 〈plant, tree〉, yet the minimal 2-simplex

is 〈fabric, garment, person〉, and then the minimal 3-

simplex is 〈fabric, garment, plant, tree〉.
Impact of the first policy. We illustrate an important

statistical property of the resulting pseudo-labelings in the

heatmap of Fig. 3, which displays the entropy of pseudo-

labels generated for Part under the 256 possible policies

of order d=4.

What is visually apparent is that the variability depends

primarily on the initial policy in the sequence. The left half

of the diagram shows policies that begin with c or C (first

policy decision is “closest”); the right half begins with f.or

F (first policy decision is “farthest”). The top half shows

policies that begin with c or f, which produce a single

source name at d=1; the bottom half begins with C or F,

which produce two source names at d=1.

The diagram shows that diversity of pseudo-labels in-

creases roughly from upper left, cccc, to lower right,

FFFF. The general progression is c, f, C, F, in the pattern

of

[
c f

C F

]
. Closer examination shows that the diagram is

fractal, and that it follows this pattern at all scales.

The major anomaly is fccc, at position (1, 9), colored

strongly dark, which can be interpreted as “apply the 4-

simplex consisting of the worst outlier source and its three

nearest neighbors”—which for many different inputs is ex-

actly the same, giving minimal entropy. In contrast, the

rightmost column of the diagram, which traces policies

from ffff at (1, 16) to FFFF at (16, 16), shows a monotonic

and nearly linear increase in entropy to the global maxi-

mum.

Growth and predictability. The G2L algorithm cre-

ates pseudo-label sequences that are combinations of source

names. The number of potential sequences of any given

length can be very large, for example,
(
16
4

)
=1, 820,(

16
6

)
=8, 008 and

(
16
8

)
=12, 870. However, when the algo-

rithm was applied to the ImageNet22K training dataset, the

number of unique sequences were typically much less, as

shown in Fig. 1. Even FFFF of length 8 in the prolific ex-

treme lower right corner produced only 2,644. This slower

growth reflects the non-random correlated semantic cluster-

ing of the data.

5. Experimental Evaluation
Using our geometric technique, we created a number of

pseudo-labeled datasets for the images in ImageNet1K, as

shown in Table 1. We then trained both ResNet27 and

ResNet50 models using six pseudo-labeled datasets, cre-

ating base models for further transfer learning. These six

were: cccc, Cfff, Ffff, FCCC, cccccc, cfffff.

These six were chosen because they represent a broad spec-

trum of unique label counts, they explore policies starting

with different initial extremizing decisions, and they show

the effect of increased dimensions. We observe that the CFA

policy introduced in [7] can be obtained from our approach;

by our notational convention it would be, simply, policy C.

We also created a baseline model using the vanilla Im-

ageNet1K dataset of images and human-annotated labels.
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(a) Entropy of all 256 policies for d=4.

1 cccc cccf ··· cfff fccc fccf ··· ffff
2 cccC cccF ··· cffF fccC fccF ··· fffF
3 ccCc ccCf ··· cfFf fcCc fccF ··· ffFf

...
...

. . .
...

...
...

. . .
...

8 cCCC cCCF ··· cFFF fCCC fCCF ··· fFFF

9 Cccc Cccf ··· Cfff Fccc Fccf ··· Ffff
10 CccC CccF ··· CffF FccC FccF ··· FffF
11 CcCc CcCf ··· CfFf FcCc FcCf ··· FfFf

...
...

. . .
...

...
...

. . .
...

16 CCCC CCCF ··· CFFF FCCC FCCF ··· FFFF
1 2 8 9 10 16

(b) Policies corresponding to the heatmap at left.

Figure 3: Heatmap showing the entropy of the pseudo-labels generated for d=4 policies applied to ImageNet22K data.

Policy #P-L Policy #P-L Policy #P-L

cccc* 41 ffff 226 vanilla* 1000

cccccc* 104 Cccc 346 Ffff* 1142

fccc 128 CCff 503 FCff 1391

cfffff* 160 Cfff* 527 FCCC* 1808

C* 202 Fccc 544 FFFF 2644

Table 1: Several base model datasets, sorted by number of

pseudo-labels generated under ResNet27. The models with

asterisks were used for transfer learning experiments.

This model attained a top-1 average accuracy of 65.6% and

80.2%, which is representative for a ResNet27 model and

a ResNet50 model, respectively. The same hyperparame-

ters and training setup was used for all the pseudo-labeling

models. We chose these two architectures because resid-

ual networks [14] are considered state of the art, and having

two networks enabled us to better evaluate the robustness

and efficacy of G2L for improving transferability using un-

labeled data during pretraining.

To evaluate the usefulness of these base models, we fo-

cused on eight target workloads taken from the Visual Do-

main Decathlon [41] and other fine-grained visual classifi-

cation tasks. The choice of target datasets was made to have

sufficient diversity in terms of number of labels, number of

images, number of images per label, and divergence with

respect to ImageNet1K. Divergence is here computed by

first normalizing the representative vectors of each dataset

so that their components (which are all non-negative) sum

to 1, then computing Kullback–Leibler divergence [22].

Since we want to compare the performance of pseudo-

labeling with respect to vanilla ImageNet1K, we selected

only those datasets whose transfer learning accuracy under

vanilla were not close to 1. This ensures that the comparison

with vanilla is not trivial (otherwise, all policies also have

accuracies very close to 1). The target workloads evaluated

included Aircraft [25], CIFAR100 [21], Describable Tex-

tures (DTD) [5], Omniglot [23], Street View House Num-

ber (SVHN) [27], UCF101 [20], Oxford VGG Flowers [28],

and Caltech-UCSD Birds (CUBS) [36]. These span a range

of divergence from ImageNet1K, and possess different la-

bels and dataset sizes.

These target workloads were then learned from pseudo-

labeled and human-annotated (vanilla ImageNet1K) source

models over five different learning rates. The inner layers

were set to learning rates ranging over 0.001, 0.005, 0.010,

0.015, and 0.020, and the last layer was set to a learning rate

ten times that.

In order to evaluate the performance of G2L policy

across frameworks, we implement and train ResNet27 us-

ing Caffe1 and ResNet50 using Pytorch. Each model was

trained using SGD for 900K iterations, with a step size of

300K iterations, an initial learning rate of 0.01, a momen-

tum of 0.9 and weight decay of 0.1. The target models were

trained with identical network architecture but with a train-

ing method with one-tenth of iterations (90K) and step size

(30K). A fixed random seed was used throughout all train-

ing. Thus a total of 560 transfer learning experiments (2 net-

works, 8 targets, 7 policies, 5 learning rates) with the same

set of hyperparameters were conducted and compared.

6. Observations
Overall Accuracy. Table 2 compares the top-1 accu-

racy of vanilla transfer learning with our pseudo-labeling

approach, for both ResNet27 and ResNet50 models. Table 2

shows that the divergence measure closely tracks the accu-

racy of both vanilla and G2L. For the five datasets whose

divergence is above 0.6, G2L beats vanilla four times for

ResNet27, and nearly four times for ResNet50. Where G2L

underperforms, its performance is similar to vanilla.

Divergence vs. Number of Labels. Both the output
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Dataset Div. Vanilla27 G2L27 Vanilla50 G2L50

DTD 0.32 0.4388 0.4282 0.6691 0.6176

CUBS 0.46 0.3485 0.2825 0.7106 0.6344

CIFAR100 0.51 0.7320 0.7065 0.7530 0.7437

UCF101 0.69 0.7500 0.7546 0.7637 0.7643
Oxford 0.70 0.7585 0.7628 0.9518 0.9513

Aircraft 0.71 0.4882 0.4744 0.7870 0.7694

SVHN 0.82 0.9351 0.9385 0.9465 0.9527
Omniglot 0.98 0.7961 0.7975 0.8334 0.8357

Table 2: The 8 target workloads tested, their divergence

from ImageNet1K, and their accuracies. VanillaNN rep-

resents the accuracy obtained from ResNetNN under the

vanilla policy, as does G2LNN for the G2L policy. Accura-

cies are the maximum over five learning rates, and for G2L,

the maximum over six policies, as described in Sec. 5.

of ResNet27 and ResNet50 demonstrate that, as diver-

gence from Imagenet1K increased for the targets, pseudo-

labeling schemes with a lesser number of unique labels per-

formed better; see Fig. 4 which displays the output obtained

from the ResNet50 model. In cases where pseudo-labeling

schemes did better than the vanilla ImagNet1K labels, the

label count was under 250, in contrast to 1,000 with vanilla.

Figure 4: Divergence from ImageNet1K vs. number of

labels in winning pseudo-label scheme under ResNet50,

showing increasing G2L efficiency as divergence increases.

Divergence vs. Learning Rates. Both the output of

ResNet27 and ResNet50 demonstrate that, as divergence

from Imagenet1K increased for the targets, higher learn-

ing rates were better for the pseudo-labeling schemes;

Fig. 5 illustrates the output from ResNet50. In the cases

where pseudo-labeling schemes did better than vanilla Im-

ageNet1K, learning rates between 0.015 and 0.02 did best.

Even for the vanilla ImageNet1K labels, a higher learning

rate was generally better for high divergent workloads.

Empirical observations reveal that the fine-tuning of

models using pseudo-labeling schemes can yield compara-

ble outcomes to the vanilla approach, and can exhibit better

performance when conducting fine-tuning on datasets that

relatively diverge from ImageNet1K. This improvement is

Figure 5: Divergence from ImageNet1K vs. average of the

top-2 (sorted by accuracies) learning rates under ResNet50,

across 30 fine-tuning configurations (5 learning rates for

each of the 6 pseudo-labeling policies) for each dataset.

often accompanied by employing policies with a smaller

number of unique labels and higher learning rates. Note that

in our experiments the size of pseudo-labeled dataset was

same as vanilla. Achieving similar performance as vanilla

on transfer learning tasks with G2L substantiates the (hu-

man labeling) cost savings achievable with our approach.

7. Limitations and Future Work
Theory Limitations. The initial partitioning of the Im-

ageNet22K dataset into 16 categories is currently heuristic.

It known that the use of the second-last vector as a represen-

tative is not helpful if incoming data is significantly differ-

ent on the signal level [12], and that vectors of other layers

are. The aggregation method to aggregate the representative

vectors of the sources relies on a simple mean. An efficient

method for selecting the probable best policy is currently

unexplored.

Practice Limitations. How well a given initial partition

spans the available high-dimensional feature space has not

been quantified. Learning rates for each inner layer in these

experiments were identical. Policies were applied accord-

ing to a fixed script. The value of dmax is a completely free

meta-parameter.

Future Work. A method for optimizing the initial par-

tition according to some figure of merit would be useful,

particularly since human-annotated labels are quite sensi-

tive to fine details such as color, texture, shape, etc. A more

appropriate selection of learning rates for different layers

of network can significantly improve accuracy during fine-

tuning [8]; a thorough exploration, coordinated with knowl-

edge of specific policy strengths and weaknesses, should be

attempted. Search techniques other than greedy should be

explored, that more intelligently select the best policy to ex-

ecute next, and that stop without requiring a value for dmax.

The G2L approach, particularly since it generates descrip-

tive pseudo-labels, can be applied to the problem of data

augmentation, and to human label error correction.
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