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Abstract

The design of personalized cranial implants is a chal-
lenging and tremendous task that has become a hot topic
in terms of process automation with the use of deep learn-
ing techniques. The main challenge is associated with the
high diversity of possible cranial defects. The lack of ap-
propriate data sources negatively influences the data-driven
nature of deep learning algorithms. Hence, one of the pos-
sible solutions to overcome this problem is to rely on syn-
thetic data. In this work, we propose three volumetric vari-
ations of deep generative models to augment the dataset
by generating synthetic skulls, i.e. Wasserstein Generative
Adversarial Network with Gradient Penalty (WGAN-GP),
WGAN-GP hybrid with Variational Autoencoder pretrain-
ing (VAE/WGAN-GP) and Introspective Variational Au-
toencoder (IntroVAE). We show that it is possible to gen-
erate dozens of thousands of defective skulls with compat-
ible defects that achieve a trade-off between defect hetero-
geneity and the realistic shape of the skull. We evaluate ob-
tained synthetic data quantitatively by defect segmentation
with the use of V-Net and qualitatively by their latent space
exploration. We show that the synthetically generated skulls
highly improve the segmentation process compared to using
only the original unaugmented data. The generated skulls
may improve the automatic design of personalized cranial
implants for real medical cases.

1. Introduction

Cranioplasty is a surgical action where either bone defect

or deformity is repaired with the use of cranial implants.

Figure 1: Examples of synthetically generated defec-

tive skulls with their compatible defects with the use of

VAE/WGAN-GP.

The range of differences among cranial defects seems im-

measurable due to irregularities in pathological conditions,

especially in size, shape, and position. The main objec-

tive related to cranioplasty from the engineering perspective

is the way the implants are designed. Two main concerns

of the design pipeline are data gathering and the compu-

tational design procedure itself. When it comes to design

techniques, most commonly it is performed with computer-

aided design (CAD) methods. However, the process is

rather complicated and time-consuming. It requires profes-

sional software tools and the experience of the designer. On

the other hand, in opposition to the expertise-driven CAD
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techniques, great success has been achieved by the data-

driven deep learning approaches [8, 21, 20]. However, their

main difficulty is associated with the first step of the design

pipeline, which is the lack of data. It originates from the fact

that most of the available datasets of defective skull scans

are scarce and the general process of acquisition is rather

time-consuming. The amount of possible cranial defects is

infinite, while the amount of patients with these diseases

is highly limited. Hence, one of the directions to overcome

these problems lies in the capabilities of augmenting the ex-

isting datasets by using generative models to synthesize new

training samples.

In recent years, generative deep learning has strongly

influenced the world of synthetic data, especially the do-

main of computer vision. Generative algorithms impact

task-specific areas of research, such as medical imaging [5].

Moreover, implant design automation is broadly impacted

by the growth and scalability of deep learning algorithms.

Due to huge demands for cranial implants, deep learning-

based solutions arose to be a crucial part of the automation

processes [8, 21, 20]. The key objective of this automation

is the design of the models and frameworks capable of gen-

erating the desired and personalized implants solely relying

on the defect present in the skull. However, deep learning

methods require huge amounts of data to work effectively.

This is one of the main challenges current approaches face

as datasets of defective skulls in computer tomography (CT)

or magnetic resonance (MR) modalities are relatively lim-

ited. This leads to a question: can the defective skulls and

the respective implants be further augmented by deep gen-

erative models?

Contribution: In this work, we address the above ques-

tion by developing a method that can generate dozens of

thousands of unique skulls with heterogenous defects. Fur-

thermore, we evaluate the proposed approach by performing

the automatic defect reconstruction, where synthetic data

significantly improves the results compared to only using

the unaugmented data. We confirm that the synthetically

generated data improves the model’s generalizability.

2. Related Work
Automatic cranial implants design Novel approaches

for automatic cranial implant design strongly rely on deep

learning capabilities, as most of them use encoder-decoder

architectures and their variations [18, 3, 21, 28]. Other tech-

niques are based on the nature of the data used which is due

to the fact that CT scans of skulls have binary format. This

leads to a significant imbalance between informative voxels

that represent the bone and the uninformative voxels that

represent the background, thus techniques such as sparse

convolutional neural networks (CNNs) [19] are found to be

valuable. Finally, data augmentation techniques turned out

to be highly beneficial for the whole design process, as it

commonly occurs in deep learning-based solutions. Start-

ing from the simple operations, such as permutation, scal-

ing, and translation, and going into more advanced ones,

such as inter-patient skull registration [8], to finally point

out the ones that use synthetic data created with generative

networks [33].

3D Generative models Generative Adversarial Networks

(GANs) [9] and Variational Autoencoders (VAEs) [15] have

been successfully applied to many research areas such as

image synthesis [27], text generation [32], audio genera-

tion [4], object detection [25], pose estimation [36] and

others. Hence, with their ability to learn to generate com-

plex patterns and features, these techniques have also shown

great potential in 3D modeling and generation tasks, such as

creating realistic 3D objects [34, 26]. Potential architectures

and design flows have to be chosen concerning the 3D data

representations, as they may differ between tasks. The most

widely used representations are point clouds, meshes, neu-

ral fields, and voxel grids. The last one is most widely used

in medical data representations, however, applying gener-

ative models for volumetric medical data poses additional

difficulties, as they have to face very strict requirements of

highly advanced accuracy and reliability, and what’s most

important, extremely detailed spatial structures [17]. To

overcome both potential issues, the architecture design and

training pipeline has to be carefully established. For exam-

ple, in the field of fluid dynamics, Xie et al. [35] proposes

two discriminators, spatial and temporal, as in this setup

the model can precisely capture details of turbulent flows.

The approach presented by Guan et al. [10] addresses the

concept of latent manifolds meaningfulness and is a sort

of hybrid that combines Autoencoder loss with Generalized

Autoencoder loss, together with Chamfer distance to cre-

ate a robust volumetric generative model. Moreover, [17]

also builds their model in a hybrid manner by combining α-

GAN with an additional code discriminator and Wasserstein

GAN to generate synthetic 3D magnetic resonance images

of the brain.

Generative models in synthetic cranioplasty The idea

of creating synthetic skulls with the use of deep learning

techniques is still only partially explored, as most of the

approaches are focused on generating implants rather than

whole skulls. Furthermore, even the GAN-based or VAE-

based methods are not as popular in this field as the U-Net-

based or pure encoder-decoder ones [18, 28]. The work

presented in [29] combines statistical shape modeling with

GANs to produce cranial implants. The GAN component

of the framework is trained on 2D slices of complete skulls

and its generator part produces anatomically-plausible la-

bels when 2D slices of defective skulls are inputted. SSM is

responsible for defect localization and reconstruction, and
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Figure 2: Detailed architectural building blocks for WGAN-GP, VAE/WGAN-GP, and IntroVAE. IntroVAE uses an encoder

as the inference model part and a decoder as the generator part, however without sigmoidal nonlinearity.

GAN has a role as a postprocessing tool for defect refine-

ment. The work that directly targets the use of genera-

tive models to obtain synthetic skulls is the one presented

in [33]. In this work, the VAE model serves as a crucial

component of the implant generation pipeline, playing a key

role in generating additional 100,000 training instances of

defective skulls and their compatible implants. Neverthe-

less, the authors do not explore different types of generative

networks.

3. Methods

In this work, we propose three robust generative net-

works able to produce highly detailed defective skulls with

compatible defects (which are the missing parts of the cra-

nial bone based on which the implant is designed) that can

positively influence the process of automatic cranial im-

plant design based on the U-Net framework. Firstly we

present a volumetric variation of Wasserstein GAN with

Gradient Penalty (WGAN-GP) [2, 11], then we compose

its hybrid with VAE, by creating a training routine in which

the WGAN-GP as an input takes a latent manifold gener-

ated by the VAEs encoder part and finally, we introduce a

volumetric version of Introspective VAE (IntroVAE) [13].

3.1. Wasserstein GAN with Gradient Penalty

Wasserstein GAN (WGAN) [2] and specifically its Gra-

dient Penalty form (WGAN-GP) [11] is a highly ro-

bust model with extensive generative capabilities which

overcomes typical problems occurring in GAN training

pipelines such as mode collapse or vanishing gradient. The

core concept behind the WGAN is to redefine the loss func-

tion by basing it on Earth-Mover (EM ) distance also called

Wasserstein-1 (W ) distance. By definition, it is formulated

as:

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ [ ‖ x− y ‖ ], (1)
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where Π(pr, pg) is a set of all joint distributions between

real data distribution pr and distribution of generated exam-

ples pg . By applying this formulation to GANs methodol-

ogy WGAN loss is meant to measure the W distance be-

tween these distributions:

W (pr, pg) = max
w∈W

Ex∼pr
[fw(x)]− Ez∼p(z)[fw(gθ(z))],

(2)

where we assume that f is from the parameterized by w
family of 1-Lipschitz functions fw∈W . This yields to the

final formulation of so-called critic C that computes a dis-

tance between pr and pg . The smaller this distance gets, the

closer the generated examples of pg are to pr. What’s cru-

cial in the training framework of WGAN is the attainment of

Lipschitz continuity. Its enforcement is classically achieved

through gradient clipping or penalization. Gradient penalty

is a more powerful approach as it provides higher training

stability. Thus, the final formulation of the loss function for

WGAN-GP training has a form of:

L = Ex̃∼pg
[C(x̃)]− Ex∼pr

[C(x)]

+λ Ex̂∼px̂
[(‖ ∇x̂C(x̂) ‖2 −1)2],

(3)

where px̂ is a distribution sampled uniformly along straight

lines between distributions pr and pg , which can be done as

a linear interpolation between data from these two distribu-

tions.

3.2. VAE pretraining of WGAN-GP

In the training framework of WGAN-GP and many other

GANs, an input to the generator is a random noise of some

distribution, most commonly Gaussian or uniform. On the

other hand, in the models that follow the encoder-decoder

manner like VAE, a generative process performed by the de-

coder works on the output of the encoder part. Thus, as the

whole architecture has insight into the real data distribution

and both encoding and decoding components work jointly, a

latent manifold created in the model’s bottleneck is a highly

accurate low-dimensional representation of the data, VAEs

tend to generate coherent and meaningful data more quickly

than GANs. However, VAEs have their own problems, like

blurry samples generation and lack of diversity in the gener-

ated data. Following that we combine the strengths of both

VAE and WGAN-GP, i.e. VAE accurate and informative la-

tent manifold and WGAN-GP robust generator, to create a

hybrid framework of VAE/WGAN-GP. Hence we compose

a three-step training pipeline of this hybrid model. Firstly,

short-term training of the VAE is performed to obtain an

outline of the encoder’s low-dimensional manifold. In the

second step, short-term training of the WGAN-GP is con-

ducted, where the mentioned VAE’s latent manifold serves

as a generator’s input for just a few learning epochs. Finally,

WGAN-GP is trained in its standard manner, with sampling

from a latent normal distribution. However, it now has a

preliminary knowledge of the desired real data distribution,

and its training processes exhibit enhanced robustness, sta-

bility, and improved speed.

3.3. Introspective VAE

Finally, we dive further into hybrid models and com-

pose a volumetric variation of Introspective VAE (In-

troVAE) [13]. In comparison to common hybrids of GANs

and VAEs that use 3 components, i.e. encoder, discrimina-

tor, and decoder (or generator) [7, 22], IntroVAE uses only

encoder (the inference model) and generator. The training

pipeline of the IntroVAE framework is done as follows: the

encoder part of VAE serves as the discriminator of GAN and

the generator (decoder) part of VAE serves as the generator

of GAN. What’s more, the adversarial properties of GANs

are maintained as the encoder and generator are trained

jointly. This setup allows the model to discriminate between

the real and generated data and generate as realistic data as

possible. IntroVAE’s loss captures all requirements of both

VAE and GAN as it combines ELBO objective and mini-

max game. Encoder loss has a form of:

LE = DKL(qφ(z|x) ‖ p(z))
+α

∑

s=rec,p

max (0,m−DKL(qφ(ng(zs)|xs) ‖ p(ng(zs))))

−β Eqφ(z|x)[log pθ(xrec|z)],
(4)

where DKL stands for Kullback-Leibler divergence, rec,
and p indexes indicate reconstruction and new samples re-

spectfully, ng(·) term stands for no backpropagation of gra-

dients at that point, m is a positive margin and α and β are

weighting parameters. The generator loss is defined as:

LG = α
∑

s=rec,p

DKL(qφ(zs|xs) ‖ p(zs)))

−β Eqφ(z|x)[log pθ(xrec|z)].
(5)

IntroVAE has the property of stable training and no mode

collapse occurrences, thus it is one of the most robust hybrid

architectures.

4. Experiments
4.1. Dataset

We use the SkullBreak dataset [16], which is adapted

from a public head CT collection CQ500 [6] and consists

of 114 skulls for training and 20 skulls for testing. We

motivate this selection by its high heterogeneity and diver-

sity. A total of 570 training cases and 100 testing cases

are created by introducing five defects for each skull inde-

pendently. The defect types are as follows: bilateral, fron-

toorbital, parietotemporal, random of type 1, and random of

1069



(a) (b)

(c) (d)

Figure 3: Overview of deep generative models: (a) WGAN-GP, (b) VAE, (c) VAE/WGAN-GP, and (d) IntroVAE.

type 2. Data has a binary format where 1 corresponds to

the skull and 0 corresponds to the background. The original

data resolution is 512 x 512 x 512 however, for the purposes

of this work, and to match the requirements of memory us-

ability and training efficiency, the skulls are downsampled

to a lower resolution of 128 x 128 x 128. It is found that

this resolution still captures most of the structural and ge-

ometrical properties, and provides a better computational

performance. We note that the original 512 x 512 x 512

resolution, would admittedly improve the results, however,

the purpose of the work is to examine the impact of the aug-

mentation itself, hence the impact of using higher resolution

may be a subject of further work.

4.2. Implementation details

To implement the WGAN-GP, we utilize volumetric

CNNs to construct both the critic and the generator. The

critic is built with the use of 4 convolutional blocks com-

posed of 3D convolution layers followed by layer normal-

ization and LeakyReLU, which decrease the resolution and

increase the number of channels. Its input is a 2-channel

volumetric representation of the skull, meaning it has a

shape of 128 x 128 x 128 x 2 where the 1st channel rep-

resents a defective skull and the 2nd channel represents its

compatible defect. The generator mirrors the critic, but in

its convolutional blocks, 3D transpose convolution layers

are used, followed by batch normalization and ReLU non-

linearity, and it increases the spatial resolution together with

decreasing the number of channels. As an input, it takes a

200-dimensional latent vector of Gaussian distributed val-

ues. To compose the VAE/WGAN-GP relation we build

the VAE component similarly to the WGAN-GP, as con-

volutional blocks of the encoder are the same as the ones

in the critic. However, group normalization is used instead

of layer normalization, also in the decoder. The output of

the bottleneck further proceeds into the generator part of

the WGAN-GP. Finally, the architectural design of the vol-

umetric IntroVAE is also similar to its predecessors in terms

of convolutional blocks, as the inference model mimics the

VAEs encoder and the generator mimics the VAEs decoder.

We show the detailed architecture of every network com-

ponent in the Figure 2 and the way the building blocks are

combined together to construct the desired models in the

Figure 3.

4.3. Experimental setup

All the code related to this work is implemented in

Python with the main use of the TensorFlow framework [1].

The training setup for each model is presented as follows.

WGAN-GP is trained with the ADAM optimizer [14] with

β1 equal to 0.5, β2 equal to 0.9, learning rate set to 2 · 10−4

and gradient penalty λ set to 100. Additionally based on

the settings from [2, 11] for every iteration of the generator,

there are 5 iterations of the critic. For the VAE/WGAN-GP,

the VAE component is also trained with ADAM optimizer

and its standard hyperparameters, i.e. β1 equal to 0.9, β2

equal to 0.999 and learning rate of 10−3. The training pro-

cedure lasts for 10 epochs to obtain an outline of the latent

manifold and then it is fed to the WGAN-GP. In the sec-

ond stage, WGAN-GP is trained for 15 epochs by feeding a

generator with VAEs reparametrized latent vector. Finally,

the training procedure is continued in the classic manner

of WGAN-GP as discussed previously. For the IntroVAE

we also use Adam with standard hyperparameters, however,

we carefully select the rest of the model’s hyperparameters,

i.e. α, β and m from the Equations 4 and 5. As sug-

gested in [13], firstly the model is trained for just a couple

of epochs in the VAE manner (α = 0) to find the most conve-

nient values for β and m, where m should be a little larger

than Kullback-Leibler divergence value of VAE. Thus, we

experimentally find the following values: α = 0.25, β = 1.0,

and m = 10.0. Finally, we also train a classic VAE with

the same setup of ADAM optimizer and training flow as the

one in the preliminary stage of IntroVAE and treat it as a
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baseline model.

All the models were trained until convergence was de-

termined by the quality of the generated samples. A batch

size of 8 was used consistently across all setups. All exper-

iments were conducted on the NVIDIA Tesla V100 GPU.

4.4. Postprocessing

Additionally, we perform small three stages of postpro-

cessing to polish some imperfections that might have oc-

curred in the generative process. Firstly, as the default

data type of neural networks’ weights is a single-precision

floating-point, the desired binary skulls’ data format is not

always perfectly affordable. Thus, additional binarization is

applied to ensure a zero-one data character. Secondly, to en-

sure separability between the defective skull and the defect

the following morphological operation is used:

I = XOR(I, AND(I, S)), (6)

where I is a generated defect and S is a generated defected

skull. Finally, as some generative networks might sometime

produce small artifacts in the form of voxel grains or dust, it

is an appropriate approach to remove them. One of the ways

of achieving that is by performing connected components

analysis. With the use of it objects that have a fewer number

of voxels than a predefined value are simply removed.

5. Evaluation
With the use of pretrained generative networks described

in the previous chapters, we generate 40 000 skulls per each

model (including baseline VAE). This results in a total of

120 000 pairs of defective skulls and their compatible de-

fects.

Model name Instances
Train

Synthetic data

Validation

SkullBreak - train

Test

SkullBreak - test

WGAN-GP

500 0.957 0.745 0.612

1000 0.970 0.784 0.675

3000 0.939 0.817 0.727

40000 0.941 0.898 0.796

VAE

500 0.934 0.513 0.398

1000 0.922 0.551 0.410

3000 0.873 0.771 0.628

40000 0.832 0.895 0.728

VAE/WGAN-GP

500 0.961 0.751 0.660

1000 0.935 0.797 0.703

3000 0.890 0.833 0.757

40000 0.941 0.867 0.782

IntroVAE

500 0.974 0.718 0.589

1000 0.916 0.784 0.656

3000 0.937 0.822 0.678

40000 0.934 0.926 0.751

Without Augmentation 570 - 0.928 0.742

Table 1: Mean Sørensen–Dice coefficient obtained on dif-

ferent sizes of datasets along with different origins of data

and visibility in training processes: Train (synthetically

generated), Validation (seen by generative model and un-

seen by V-Net), Test (unseen by generative model and un-

seen by V-Net).

5.1. Quantitative analysis - defect reconstruction

From the quantitative perspective of the analysis, syn-

thetic skulls should be able to be used in the same tasks as

the real ones. In the field of cranial implant design, a cru-

cial part is the process of segmenting the defect from the

defective skull to design a suitable implant. For this part of

the evaluation, we use the volumetric segmentation network

V-Net [24] in a slightly shallower variant. For each model,

a subset of 500, 1 000, 3 000, and 40 000 instances are used

to train the V-Net, where the input to the network is a de-

fective skull and the desired output is a segmented defect.

The objective of V-Net’s training is to minimize a Dice loss

defined as:

LDice = 1− 2 · A ∩B

A+B + ε
, (7)

where A is a segmented defect, B is a ground truth defect

and ε is a smoothing factor. This approach should provide

an overview of the capabilities of the synthetic datasets as

in theory the larger the number of instances, the broader the

dynamics and diversity should be captured. In other words,

it is expected that the larger and more heterogeneous the

dataset is, the greater the similarity of the synthetic distri-

bution to the real, underlying distribution. The pretrained

V-Nets are used for defects segmentation on real data of

the SkullBreak dataset [16]. We highlight three types of

data: (i) train, which are the skulls synthetically generated

by the previously mentioned techniques (used to train the

V-Nets); (ii) validation, which are the real, training cases of

SkullBreak, hence they have been seen by generative net-

works in their training processes, but they have not been

seen by the V-Nets themselves; (iii) test, which are the test-

ing cases of SkullBreak and they have not been seen in the

training processes of either generative models or V-Nets.

Following that, the evaluation comes down to computing

the Sørensen–Dice coefficient expressed as:

DSC = 2 · I ∩D

I +D
, (8)

between the real implants compatible with the defects I and

segmented defects D, both upsampled to the original 512

x 512 x 512 resolution of SkullBreak. The results of this

evaluation are presented in the Table 1 concerning the char-

acteristics of the data, together with the results of the V-Net

segmentation trained only on the SkullBreak train data.

5.2. Qualitative analysis - latent manifold analysis

Learned distribution can be also analyzed from a qual-

itative perspective. There is a strong intuition behind this

approach as it is possible to judge visually whether the syn-

thetic skulls match the real ones in terms of shape, structure,

defect orientation, etc. However, to perform this compari-

son in a more global manner that will jointly include all the
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(a)

(b)

Figure 4: (a) t-SNE and (b) UMAP projection of the real

data and data generated by the various models.

real and generated data, it’s more appropriate to focus on

the latent representations. It comes from a fact that if the

data samples are similar in high dimensionality, they should

be close to each other in low dimensions. This property can

be viewed from both a global and local perspective, hence

we analyze t-Distributed Stochastic Neighbor Embedding (t

SNE) [31], together with Uniform Manifold Approximation

and Projection (UMAP) [23]. t-SNE pays more attention to

the local structures’ preservation and is presented in the Fig-

ure 4a, while UMAP is mainly focused on maintaining the

global structure 4b.

6. Discussion

This work studied and analyzed several crucial aspects

of deep generative networks used for cranial implant de-

sign. The first and key takeaway is that with the use of

the proposed methods it is possible to synthetically gener-

ate realistic defective skulls together with their compatible

defects. The V-Net defect segmentation task produced the

best results on SkullBreak test data when trained with the

use of WGAN-GP and VAE/WGAN-GP generated skulls

as it is shown in Table 1. The promising outcome of the

quantitative analysis is that pretraining the WGAN-GP with

the VAEs latent manifold for even just a few epochs, can

have a very positive influence on the synthetic data qual-

ity and hence, improve defect segmentation results (higher

Sørensen–Dice coefficient), and provide similar results as

WGAN-GP, however with faster convergence. For each

generative model, it is visible that the V-Net generalizes

better into the real data as the amount of synthetic data in-

creases. Thus, we find that the larger the size of the syn-

thetic dataset is, the better the segmentation results on real

data are, and less overfitting occurs. We also observe that

for the relatively smaller synthetic datasets, the results of

segmentation are worse in comparison to training on the real

SkullBreak training set directly. It is caused by the fact that

original train and test datasets are derived from the same

data distribution, while synthetic samples are more hetero-

geneous, hence a larger amount is required to enable test set

generalizability. Specifically, while the size of the training

set composed of synthetic skulls reaches the amount of 40

000 samples, V-Nets trained on these samples produce seg-

mentation results on their validation set (SkullBreak train)

almost comparable with the ones obtained from the V-Net

trained typically on the SkullBreak training set. We have

shown that training V-Nets with each of the proposed gen-

erative networks’ large datasets (without using any real ex-

amples from the SkullBreak) results in better performance

on the test data when compared to training only on the real

skulls from the initial training set. The improvement in

Sørensen–Dice coefficient is as large as 0.05 for WGAN-

GP and 0.04 for VAE/WGAN-GP. Furthermore, we also ob-

served that these networks achieved better results than sim-

ple models like the mentioned classic VAE, which didn’t

outperform training on real SkullBreak data and its latent

representation stands apart from the rest. The exemplary re-

sults of the segmentation task performed on the SkullBreak

test set are presented in the Figure 6. From the qualitative

point of view, the latent manifold on which data from Skull-

Break lies is accurately approximated by the proposed net-

works. It is clearly shown in the t-SNE and UMAP analysis,

that both local and global structures preserve the SkullBreak

data distribution and lie very close to it in the latent space.

This is an informative property of these networks’ genera-

tive processes, as it shows that they managed to learn the

real data distribution and sample from it. Thus, they sat-

isfy the main objective of training robust generative mod-

els. Figure 5 also demonstrates the capabilities of the la-

tent space as the interpolation process between two latent

vectors results in realistic defective skulls obtained in the

generative process.

What’s important we also note several limitations of our

work, where one of them is the fact of training the gener-

ative networks on a lower resolution compared to the orig-

inal resolution of the skulls. We believe that training on

the higher resolution might positively influence the segmen-

tation task and additionally be more useful for real med-
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Figure 5: Interpolation between two skulls in their latent space using VAE/WGAN-GP for a generation.

Figure 6: Results of defect segmentation on a skull from SkullBreak test set with the use of V-Nets trained on data from

different sources.

ical studies, although it also requires more computational

resources. We also note, that deeper dive into the hyper-

parameters of the networks, as well as training pipelines,

might reduce the need for postprocessing steps and have a

positive impact on the robustness of the models.

Bringing it all together, the work presents that with the

use of deep generative networks, it is possible to generate

highly realistic defective skulls which can be used to im-

prove automatic cranial defect reconstruction. Moreover,

the generated skulls fully capture the dynamics and hetero-

geneity of cranial defects, as the models correctly learn the

distribution of real data and provide diverse latent spaces.

In the future work, we will explore more recent genera-

tive models like diffusion [12] or latent diffusion frame-

works [30], and increase the volumetric shape of the gener-

ated skulls to capture the fine details that may be important

from the aesthetic point of view.
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[16] Oldřich Kodym et al. Skullbreak / skullfix – dataset for auto-

matic cranial implant design and a benchmark for volumetric

shape learning tasks. Data in Brief, 35, 2021. 4, 6

[17] Gihyun Kwon, Chihye Han, and Dae shik Kim. Generation

of 3d brain mri using auto-encoding generative adversarial

networks. In Medical Image Computing and Computer As-
sisted Intervention – MICCAI 2019, pages 118–126, 2019.

2

[18] Jianning Li et al. A baseline approach for autoimplant: The

miccai 2020 cranial implant design challenge. In Multimodal
Learning for Clinical Decision Support and Clinical Image-
Based Procedures, pages 75–84, 2020. 2

[19] Jianning Li et al. Sparse convolutional neural networks for

medical image analysis, 2022. 2

[20] Jianning Li et al. Towards clinical applicability and compu-

tational efficiency in automatic cranial implant design: An

overview of the autoimplant 2021 cranial implant design

challenge. Medical Image Analysis, 88, 2023. 2

[21] Hamza Mahdi et al. A u-net based system for cranial im-

plant design with pre-processing and learned implant filter-

ing. In Towards the Automatization of Cranial Implant De-
sign in Cranioplasty II, pages 63–79, 2021. 2

[22] Alireza Makhzani et al. Adversarial autoencoders. In In-
ternational Conference on Learning Representations, 2016.

4

[23] Leland McInnes, John Healy, and James Melville. Umap:

Uniform manifold approximation and projection for dimen-

sion reduction, 2018. 7

[24] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-net: Fully convolutional neural networks for volumetric

medical image segmentation. In 2016 Fourth International
Conference on 3D Vision (3DV), pages 565–571, 2016. 6

[25] Siva Karthik Mustikovela et al. Self-supervised object detec-

tion via generative image synthesis, 2021. 2

[26] Thu Nguyen-Phuoc et al. Hologan: Unsupervised learning

of 3d representations from natural images. In The IEEE In-
ternational Conference on Computer Vision (ICCV), 2019.

2

[27] Taesung Park et al. Semantic image synthesis with spatially-

adaptive normalization. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages

2332–2341, 2019. 2

[28] Shashwat Pathak et al. Cranial implant design using v-net

based region of interest reconstruction. In Towards the Au-
tomatization of Cranial Implant Design in Cranioplasty II,
pages 116–128, 2021. 2

[29] Pedro Pimentel et al. Automated virtual reconstruction of

large skull defects using statistical shape models and genera-

tive adversarial networks. In Towards the Automatization of
Cranial Implant Design in Cranioplasty, pages 16–27, 2020.

2

[30] Robin Rombach et al. High-resolution image synthesis with

latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,

pages 10684–10695, 2022. 8

[31] Laurens van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of Machine Learning Research,

9:2579–2605, 2008. 7

[32] Heng Wang, Zengchang Qin, and Tao Wan. Text generation

based on generative adversarial nets with latent variables. In

Advances in Knowledge Discovery and Data Mining, pages

92–103, 2018. 2

[33] Marek Wodzinski et al. Deep learning-based framework for

automatic cranial defect reconstruction and implant mod-

eling. Computer Methods and Programs in Biomedicine,

226:107173, 2022. 2, 3

[34] Jiajun Wu et al. Learning a probabilistic latent space of ob-

ject shapes via 3d generative-adversarial modeling. In Ad-
vances in Neural Information Processing Systems, pages 82–

90, 2016. 2

[35] You Xie et al. Tempogan: A temporally coherent, volumetric

gan for super-resolution fluid flow. ACM Trans. Graph., 37,

2018. 2

[36] Wei Yang et al. 3d human pose estimation in the wild by ad-

versarial learning. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5255–5264,

2018. 2

1074


