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Abstract

We present a method for learning multiple scene rep-
resentations given a small labeled set, by exploiting the
relationships between such representations in the form of
a multi-task hypergraph. We also show how we can use
the hypergraph to improve a powerful pretrained VisTrans-
former model without any additional labeled data. In our
hypergraph, each node is an interpretation layer (e.g., depth
or segmentation) of the scene. Within each hyperedge, one
or several input nodes predict the layer at the output node.
Thus, each node could be an input node in some hyperedges
and an output node in others. In this way, multiple paths
can reach the same node, to form ensembles from which
we obtain robust pseudolabels, which allow self-supervised
learning in the hypergraph. We test different ensemble mod-
els and different types of hyperedges and show superior per-
formance to other multi-task graph models in the field. We
also introduce Dronescapes, a large video dataset captured
with UAVs in different complex real-world scenes, with mul-
tiple representations, suitable for multi-task learning.

1. Introduction
Learning robustly multiple interpretations of the com-

plex world, such as segmentation, depth, and surface in-

formation, with minimal human supervision is one of the

great challenges in vision today. In this work, we exploit

the consensus that naturally appears between such inter-

pretation layers in order to learn them self-supervised. We

construct a multi-task hypergraph, in which nodes represent

the layers, while the hyperedges (or edges) group them to-

gether and capture their relationships. Each hyperedge has

one or multiple input nodes that are transformed, through

a neural network, into a single output one. Thus, the set

of hyperedges forms multiple pathways through the hyper-

graph that could reach a given node. This gives the pos-

sibility to form ensembles from which robust pseudolabels

can be extracted for the output node when supervised data

is not available. Such pseudolabels, along with the available

*Primary contact: Marius Leordeanu at leordeanu@gmail.com

ground truth, are then used as a supervisory signal to distill

self-supervised single hyperedges for the next learning cy-

cle. With each cycle, we add novel unlabelled data in order

to follow a scenario which is often met in practice, when

more data is easily available but annotations are not.

In our extensive experiments, we demonstrate the effec-

tiveness of our contributions: we show that more complex

hyperedges bring a strong boost over simple pairwise edges.

We also show that by adding an unsupervised learning cy-

cle on unlabeled data from new scenes, we improve gener-

alization and performance on those scenes. Moreover, we

demonstrate that the multi-task consensus, which improves

during the unsupervised learning stages, also brings the de-

sired temporal stability and consistency, even though no ex-

plicit temporal information is used in our framework and all

processing is done at the level of single frames. Last but not

least, we show that our self-supervised hypergraph learn-

ing can be used to improve in both accuracy and temporal

consistency over a heavily trained transformer expert when

such an expert is used to initialize our hyperedge (edge)

nets. This result is even more surprising when we consider

the fact that our neural nets are lightweight U-Nets with two

orders of magnitude fewer parameters.

Our main contributions are:

• We introduce, to the best of our knowledge, the first

multi-interpretation hypergraph model that consid-

ers higher-order relationships between multiple world

views and learns to find consensual pseudolabels from

multiple pathways in the hypergraph. In extensive ex-

periments, we show that our model is superior to re-

lated multi-task self-supervised graph models, which

consider only simple edges and do not learn the en-

sembles that form pseudolabels.

• We introduce Dronescapes, a large video dataset with

annotations for semantic segmentation, odometry, and

3D information. This represents a very complex

real-world test bed, with a wider variety of scenes,

which distinguishes our work with respect to the self-

supervised multi-task literature, which is limited to

synthetic or simpler real-world contexts (e.g., indoors).

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Our self-supervised multi-layer hypergraph in the

context of real-world UAVs. We use kinematics and video

drone data for offline 3D scene reconstruction and sparse

manual labeling as an initial data collection and annota-

tion for three dense prediction tasks: semantic segmenta-

tion, depth and surface normals estimation. We define the

hypergraph structure in terms of input nodes (from sensors)

and output nodes (those that will be predicted). We train

in a self-supervised manner over multiple cycles, which im-

proves both accuracy and temporal consistency. The hyper-

graph is also able to adapt to novel scenes and improve over

initial powerful experts used for initialization.

• We demonstrate a solid generalization capability, by

learning multiple tasks, with human supervision avail-

able only for the segmentation task for approximately

1% of all training data. Moreover, our hypergraph

uses lightweight neural nets which can significantly

improve both the accuracy and the temporal consis-

tency over powerful, heavily pretrained experts, even

though no temporal information is used.

2. Related work

Consensus-based learning: Recent works [27, 12] exploit

clustering-based consensus from different transformations

of the same image, but our goal is to consider meaningful

scene representations (tasks), not just representation clus-

ters. Also, focusing on a single task degrades the perfor-

mance of others. It is difficult to achieve all-around im-

provements, as we aim here. In order to better balance the

tasks, some approaches assign them weights [21]. Other

works [31] take a step further towards holistic scene un-

derstanding by learning together, and self-supervised, depth

and motion alongside semantics. Our model is more general

and can accommodate in principle any number of tasks.

Graph-based learning: Work on hypergraph neural net-

works is scarce and uses a single label for a node [8, 32].

Iterative graph-based semantic segmentation is also related,

but it considers only one or two representations [23, 42].

Other semi-supervised multi-task approaches do not con-

sider higher-order relations between tasks and do not learn

the ensembles used for generating pseudolabels [17, 14].

Other works do not have a semi-supervised learning com-

ponent, but focus on robustness instead, with two-hop

graphs [36] or larger multi-task ones [37]. Other related

work [38] shows there is a strong relationship between mul-

tiple complementary tasks and that simultaneously exploit-

ing the common and distinctive features between these tasks

is effective for generalizing to out-of-distribution scenes.

Unsupervised multi-task learning: There are several im-

portant advances in unsupervised learning that are based on

constraining together several specific tasks such as relative

pose, depth and even semantic segmentation [6, 43, 26, 2,

10, 35, 31, 13, 4, 29]. There are also approaches that com-

bine inputs from multiple senses for cross-modal prediction

learning [16, 19, 39, 25, 15, 41].

Knowledge Distillation: The Teacher-Student paradigm is

one of the most popular approaches in which smaller net-

works have been shown to be very effective in learning

from large networks [22]. However, it is very rare that

the smaller Student outperforms the Teacher [33]. A few

methods perform knowledge distillation from multiple rep-

resentations but without the graph structure [3]. Feeding

pseudolabels for retraining the Student or Teacher is known

as self-distillation [11]. Some methods perform distilla-

tion to yield compact models suitable for real-time infer-

ence [34]. Others attempt to use network architecture search

(NAS) to design better models that achieve the same ob-

jective [5]. Nevertheless, the best-performing models are

trained from scratch, either by developing a lighter version

of top-performing architectures [40] or by optimizing older

architectures suitable for parallel operations [9].

Our work in context: we put together and advance over

many previous ideas, with demonstrated benefits. We do

self-distillation, as we train single hyperedges at the next

iteration by ensemble teachers from the previous one. We

propose a hypergraph structure, as the only way to consider

many tasks and capture their complex relationships, and

also form supervisory ensembles for each, within a single

system. We do self-supervised learning, by letting the graph

teach itself, through such unsupervised ensembles, after an

initial stage of learning either from experts or strictly super-

vised with limited labeled data.

3. Multi-task Self-supervised Hypergraphs
We present an overview of the proposed hypergraph

model in Fig. 1. Hypergraph nodes represent different in-

terpretation layers of the scene (e.g. RGB, semantic seg-

mentation, depth, camera normals, etc.). Hyperedges cap-

ture relations between two or more nodes. Thus, in a k-th

order hyperedge, a neural net takes k-1 node layers as in-

put and learns to output the k-th node layer. In this manner

we obtain, in the same hypergraph, multiple paths (by go-

ing through intermediate hyperedges) from the sensor input

nodes (e.g. RGB images) to any output node. In principle,
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any node could play simultaneously the role of an output or

an input, in different hyperedges. Thus, for a given output

node, we have several candidate layers, coming from dif-

ferent paths, which are used to form an ensemble. We use

these ensembles, at the current learning cycle, to produce

pseudolabels to distill (retrain) the edges and hyperedges in

the next iteration. In experiments, we observed that when

more unlabeled data is added, each self-supervised learning

cycle improves not only accuracy but also temporal consis-

tency, which, as discussed in Section 4, could be interpreted

as a measure of trustworthiness.

3.1. Structure of Hyperedges

In our hypergraph, each hyperedge (often referred to as

“edge“ in the 2nd order case) has a set of one or multiple

input nodes and a single output one. Input nodes could be

either known (from sensors) or pseudolabels estimated by

ensembles as explained in Sec. 3.2. Hyperedges are mod-

eled by lightweight U-Nets [28], with the same structure

of 1.1M parameters, but independently learned. Below we

present the different types of hyperedges that we introduce

(also see Fig. 2):

• Edges (E) - they learn a transformation between an in-

put node to an output node through a neural net, simi-

lar to recent work on self-supervised multi-task graph

models [17, 14, 37, 38]. We name each edge based on

its input and output node layers (e.g., rgb → sseg refers

to the edges that have the RGB image as input and the

segmentation layer as output). Such direct edges from

RGB input are the main ones we aim to improve dur-

ing hypergraph learning. They are light and can be

deployed at a small cost in practice (e.g., on UAVs).

• Dual-hop Edges (DH-E) - they use intermediate pre-

dicted representations. For example, the dual-hop edge

rgb→depth→sseg refers to the path that takes RGB as

input, it produces the depth layer, and from that depth

layer, it outputs the segmentation layer.

• Aggregation Hyperedges (AH) - they concatenate all

input representations and learn the mapping from the

aggregated volume of input nodes to each output node.

We denote AH-ufo as the hyperedge that includes at

input the prediction of UFODepth, an off-the-shelf

purely unsupervised depth estimation method [20], to

better understand the impact of such methods, concate-

nated with the RGB image.

• Cycle Hyperedges (CH) - they start from the concate-

nation of all input nodes together with the outputs of all

AH hyperedges (including the AH output for the cur-

rent node) and predict the output at the current node.

Figure 2: Types of edges and hyperedges in the hypergraph.

Previous works use only edges, while we introduce two

types of hyperedges to capture more complex relations be-

tween different layers.

3.2. Learning Hyperedge Ensembles

As data passes from all input nodes (Ni) to all out-

put nodes (No) through the hypergraph G(Ni, No) via the

edge/hyperedge neural nets, various paths are created. At

the end of the message passing process (MP ), each output

node has a list of messages, one for each such path. These

messages can be seen as candidates in an ensemble learning

process to compute a final response. Traditionally, ensem-

bles are formed by simply averaging the candidates, in the

regression case, or taking the majority, in the classification

case. We study whether this ensemble mechanism can be

improved by adding a secondary learning process, one at

each output node, on top of the pathway-independent can-

didates. This can be seen as a special case of the aggregate
function in Graph Neural Networks (GNNs): Yagg(no) =
fagg(Yno), where Yno = MP (ni −→ ... −→ no), for each

pathway defined in the graph structure, with data XNi
pro-

vided only at input nodes.

We introduce 2 types of parameterized ensemble mod-

els: Linear Ensembles and Neural Network Ensembles.

Note that all individual edges are pretrained and frozen.

The second optimization is done only on the results of

each pathway, on the labeled training set, for which we

have access to ground truth (denoted with gt). The ten-

sor shape of each output node before aggregation is Yno ::
(pno

, n, cno
, h, w), where pno

represents the number of

pathways, n is the train set size and (cno
, h, w) represents

the shape of each output representation.

Linear Ensembles: We want to learn a vector of weights

w, with one wi per pathway i, using the train set, which is

going to be used later on, to produce pseudolabels on the

semi-supervised set. The weights are learned using linear

regression. For the semantic segmentation node, we opti-

mize using logistic regression. The aggregation function be-
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Figure 3: Proposed Neural Network Ensembles: Version
1 produces directly a final output map. Version 2 outputs

one weight per each candidate input, then adds the weighted

inputs. Version 3 outputs one weight per each pixel for each

candidate input, then adds the weighted inputs.

comes the weighted sum: Yagg = w�Yno . We repeat this

process for each output node, resulting in a fixed weights

matrix W which is then used for generating pseudolabels.

Neural Network Ensembles: Instead of learning a set of

fixed weights, as before, in this case we train a separate

neural net (NN ) for each output node. Thus, each new

input will dynamically produce, through this neural net, a

new way of combining the set of candidate outputs Y (de-

fined as before). The loss function is min|(NN(Y)− gt)|
and the NN model is optimized using iterative gradient

descent. We propose three types of neural net ensembles

(as also shown in Fig. 3): Version 1). NN produces di-

rectly a final output map: Yagg = NN(Y). Version
2). Dynamic weights, one for each candidate layer, ag-

gregated by weighted mean: yNN :: (p, ) = NN(Y);
Yagg = yNN

TY. Version 3). Dynamic weights, a sepa-

rate one for each pixel in each candidate layer, followed by

point-wise multiplication: YNN :: (p, c, h, w) = NN(Y);
Yagg = YNN �Y.

3.3. Self-supervised iterative hypergraph learning

Learning in the hypergraph requires an initial set of an-

notations, which is either given by humans, automatically

generated (by an offline analytical method) or provided by

a pretrained expert. These annotations are used to initial-

ize the individual edges and hyperedges and then learn the

ensemble functions. Once the initialization stage is com-

pleted, we can proceed with the semi-supervised learning

stages (iterations), in which we first produce pseudolabels

on newly added data, then retrain the individual edges and

hyperedges on the new pseudolabels (including all the other

labels and pseudolabels available from previous iterations).

Succinctly, each self-supervised learning iteration consists

of 1) adding new unlabeled data; 2) producing pseudolabels

for the new data; 3) retraining the hyperedges by including

the new pseudolabeled data in the training set.

3.4. Dronescapes Dataset

We introduce a large-scale UAV video dataset with auto-

matic odometry and 3D information for all frames and semi-

automatic semantic segmentation annotation for a subset of

frames, as explained later in this Section. All video se-

quences include GPS information, linear and angular ve-

locities, and absolute camera angles. The total length is

about 50 minutes. Videos have 3840x2160 30 FPS images,

while the odometry is provided at 10 Hz. We collect a to-

tal of 10 widely varied scenes that we split into 7 training

and 3 test scenes. A visual representation for each scene

from our dataset is shown in Figure 4. We highlight the

variety in landscapes, altitudes, and object scales between

each of the rural (Atanasie, Gradistei, Petrova, Barsana,

Comana), urban (Olanesti, Herculane, Slanic) and seaside

scenes (Jupiter, Norway). For the test scenes we chose three

different kinds: one (Barsana) with a more similar seman-

tic class distribution to at least one of the training scenes,

one (Comana) that is less similar to the training scenes and

a third one (Norway), that is very different from any of the

training scenes.

Dataset split. Exclusively for the task of semantic segmen-

tation, we sparsely manually annotate frames. Based on

their number we divide the scenes in weakly-labeled scenes
(Gradistei, Herculane, Jupiter, Petrova, Olanesti, Barsana

and Comana) and strongly-labeled scenes (Atanasie, Slanic

and Norway). For the strongly labeled scenes, we sam-

ple frames every 2 seconds covering the whole video. For

the weakly-labeled scenes, we uniformly sample triplets of

frames from each scene, such that the frames in each triplet

are 2 seconds apart (or 60 frames between the triplet lim-

its), while the triplets are at least 26 seconds apart and have

significant changes in pose (viewpoint). We divided our

dataset into 4 sets, in a suitable manner for multiple train-

ing iterations with the addition of novel data every iteration.

In Tab. 1 we present these splits and the total number of

frames per scene, alongside the number of manually labeled

frames. Half of the triplets/frames from the training scenes

are included in Train Unlabeled (iter 1), whilst the other

half is in Train Unlabeled (iter 2). The frames from all the

test scenes are included in Train Unlabeled (iter 3). We note

that the only manually-labeled frames used in learning the

hypergraph are the frames from Train Labeled set, whilst

the rest are used for evaluation purposes only.

Semantic segmentation annotation. Every pixel in a

frame is labeled with one of the 8 classes - land, forest, res-
idential, road, little-objects, water, sky and hill. The anno-
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Figure 4: Sample frames from each of the 10 scenes from the Dronescapes dataset. The scenes framed with green borders

represent training scenes for which we have access to a small fraction of manual annotations during training. The others

depict unseen, test scenes with semantic distributions that are closer to the training set (in blue) or out-of-distribution (red).

There is a large variation in spatial distributions of classes among the different Dronescapes scenes, which range from rural

(Atanasie, Gradistei, Petrova, Barsana, Comana), to urban (Olanesti, Herculane, Slanic) and seaside (Jupiter, Norway), while

also being geographically far apart.

Table 1 Dronescapes dataset split. For each training scene

we report the number of frames used for purely super-

vised training (Train Labeled set), and also for iterative self-

supervised training (Train Unlabeled iterations 1, 2 and 3

sets). In parenthesis we show the number of frames for

which we have manual segmentation annotations. Except

for the Train Labeled set on the training scenes, all the other

annotations are used strictly for evaluation.

Scene
Name

Train
Labeled

Train
Unlabeled

(iter 1)

Train
Unlabeled

(iter 2)

Train
Unlabeled

(iter 3)

Atanasie 76 4501 (76) 4500 (75) -

Gradistei 18 726 (18) 484 (12) -

Herculane 12 484 (12) 363 (9) -

Jupiter 21 847 (21) 605 (15) -

Olanesti 18 726 (18) 484 (12) -

Petrova 12 484 (12) 363 (9) -

Slanic 76 4501 (76) 4500 (75) -

Barsana - - - 1452 (36)

Comana - - - 1210 (30)

Norway - - - 2941 (50)

TOTAL 233 12269 (233) 11299 (207) 5603 (116)

tations process was difficult, especially due to the fact that

some objects are too small to be seen clearly, while other

larger regions can fall into multiple categories (e.g., an area

can be labeled as hill, land, and forest at the same time).

Depth annotation. The drone trajectory computed with

structure from motion (SfM) [1] is aligned automatically

with the trajectory from GPS, by a similarity transformation

(translation, rotation and scale), which is then applied to the

SfM 3D model. By combining it with the known 6D pose

(from GPS and odometry) and camera intrinsic parameters,

we obtain accurate metric depth maps (less than 2% error

in our extensive offline tests). The generated metric depth

maps are used for training only during Iteration 1, otherwise

used for evaluation purposes.

Surface normals annotation. We automatically processed

the SfM 3D meshes in Blender and obtained surface nor-

mals at every pixel w.r.t world coordinates, which, multi-

plied with the inverse of the camera rotation matrix give

normals w.r.t camera (aka. ”camera normals”).

Hypergraph learning on Dronescapes: We focus on sce-

narios where exact ground truth or human annotations are

very scarce or simply not available, which is a very com-

mon case in practice. Such an example is the case of learn-

ing from UAV videos, which is representative for our sce-

nario and also extremely difficult due to the wide variety

and complexity of scenes and camera viewpoints. As ex-

plained in the theoretical section, in each self-supervised

learning cycle we add new unlabeled data. We first pro-

duce pseudolabels for each output task by using ensembles

of edges and hyperedges and then retrain (distill) the next

generation of edges and hyperedges by including the pseu-

dolabeled data during training. For clarity, we detail further

how we use the current dataset split in our iterative learning

procedure: Iteration 1) Using the Train Labeled dataset,

we employ a semi-automatic label propagation method [23]

to annotate intermediate frames from adjacent manually la-

beled ones and obtain Train Unlabeled (iter 1). For depth

and normals, we use the automatically generated labels as

described before. For Iteration 2) we used the fully-trained

hypergraph from Iteration 1 and generate pseudolabels for

frames in Train Unlabeled (iter 2) set, using the hypergraph

ensembles for all the predicted tasks. We join the two sets

Train Unlabeled (iter 1 + 2) and retrain the hypergraph. For

Iteration 3) we repeat the steps from Iteration 2 and gen-
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erate pseudolabels on the Train Unlabeled (iter 3) set, to

expand the set to Train Unlabeled (iter 1 + 2 + 3).

4. Experimental Analysis

We focus on learning three complementary tasks (output

nodes): semantic segmentation, depth estimation and sur-

face normals prediction. First, we study the impact made

by each of our contributions w.r.t previous self-supervised

graph multi-task methods, such as the addition hyperedges

vs. simple edges (Sec. 4.1) and learning parameterized

multi-path ensemble models (linear and deep neural nets)

vs. non-parametric ones (Sec. 4.2). We also test the ability

of the hypergraph to improve self-supervised over an initial

state-of-the-art expert for semantic segmentation, which is

used for distillation at different stages (Sec. 4.4).

Performance metrics. We report mean IoU (% - higher

is better (↑)) for semantic segmentation and L1 error * 100

(lower is better (↓)) for depth and normals estimation.

Temporal consistency metrics. Even though we process

single frames without any temporal information, we ob-

served that the hypergraph self-supervised learning process

significantly improves the prediction consistency between

nearby frames (for pixels that belong to the same physical

point), which is more than just improving average accuracy

per frame. We designed a special consistency metric, which

uses optical flow [30] to establish temporal chains that con-

nect corresponding pixels across frames. For segmentation,

the consistency for a given pixel measures the percentage

of votes received by the winning class along the 5-frames

temporal chain centered at that pixel. For depth and camera

normals, we measure consistency using the variance var of

predictions along the same chain, as e−var (to map it be-

tween 0 and 1 and increase with quality). Note that if the

optical flow works well, there is no occlusion (which is of-

ten the case) and the predictions are correct, then the consis-

tencies for all three tasks should be 1. We found this metric

to be highly valuable, as it is complementary to the average

accuracy: a predictor could have good accuracy on aver-

age per frame (low bias), but lack sufficient temporal con-

sistency (high variance). Temporally inconsistent, highly

fluctuating predictions, generally indicate higher levels of

uncertainty and lower reliability.

Input representations. We consider, besides the main

RGB input node, other input nodes that are mathematically

derived from RGB, such as HSV color, soft edges [18] and

soft segmentation [18]), which are effective by expanding

the number of edges and indirectly improving the power of

the ensembles that they form at the output nodes. We also

tested the possibility of adding to the pool of input nodes

an unsupervised metric depth map, such as UFODepth [20],

but found it did not bring a significant boost in performance.

We show examples of each of the input layer types in Fig. 1.

Table 2 Evaluation of edges and hyperedges for multiple

tasks: 1 - semantic segmentation (sseg); 2 - depth estimation

(depth); 3 - surface normals (norm). We report mean IoU

(% - higher values are better (↑) for the task of semantic seg-

mentation and L1 error * 100 (lower is better (↓)) for depth

and normals estimation. The layers in the Type column, de-

note the input node (for edge type E) and the intermediate

node (for edge type DH-E, for which RGB is always the in-

put node). We evaluate exclusively on the manually anno-

tated frames and report mean performance over all scenes

from the Train Unlabeled (iter 2) set and also on Barsana

and Comana test scenes from Train Unlabeled (iter 3) (see 1

for more details). Bolded results highlight the mean perfor-

mance gain of training hyperedges over edges.

Type
Train

Unlabeled (iter 2)
Train

Unlabeled (iter 3)

(1) (2) (3) (1) (2) (3)

E
d

g
es

E: rgb 42.85 5.04 10.37 32.79 21.66 12.40

E: hsv 41.70 4.69 10.54 33.51 19.90 12.48

E: softedges 32.47 6.26 11.56 27.28 18.61 13.53

E: softseg 30.71 5.97 11.14 24.68 22.70 12.76

E: ufo 20.77 7.19 11.69 16.93 17.55 12.89

DH-E: sseg - 6.25 11.39 - 19.00 12.93

DH-E: depth 29.24 - 12.22 24.11 - 13.79

DH-E: norm 30.56 6.17 - 26.35 21.15 -

mean 32.61 5.94 11.27 26.52 20.08 12.97

H
y

p
er

ed
g

es

AH 41.80 5.33 10.37 33.63 23.96 12.24

AH-ufo 41.96 5.16 10.78 33.82 21.10 12.72

CH 44.63 4.93 10.32 36.92 20.36 12.23

mean 42.80 5.14 10.49 34.79 21.81 12.40

4.1. Impact of Hyperedge Complexity

Related work tackled multi-task learning through multi-

path consensus [14, 17] but did not exploit higher-order re-

lations between tasks. We test the performance of each in-

dividual hyperedge type on all three tasks (in Tab. 2) and

show that the higher-order ones are on average significantly

stronger than the pairwise edges. With one exception: the

case of metric depth, which is much more scene dependent

than the other tasks and for which the more complex hy-

peredges overfit more easily. However, for the other two

tasks, hyperedges bring a significant advantage over the

simpler edges, while the dual-hop edges (DH-E), heavily

used in [17], have poor performance (since errors accumu-

late along the two-hops path).

988



Table 3 Comparison to previous multi-task graph-based

methods. We show considerable improvements by adding

the proposed hyperedges (denoted with HE in the table) on

top of existing work that uses only edges within their graph

structure. We further report performance improvements by

learning the proposed types of ensembles on top of both

edges and hyperedges predictions (denoted by Ours). For

this experiment, we considered solely the task of semantic

segmentation. We report mean IoU (% - higher values are

better and bolded). The evaluation was done on each scene

from the testing set and overall. LR stands for Logistic Re-

gression (see Section 3.2 for details).

Method
IoU(↑)

Barsana Comana Norway Mean

NGC [17] (Mean) 41.53 40.75 27.38 36.55

NGC (Mean) + HE 42.61 42.17 27.96 37.58

NGC [17] (Median) 39.25 37.41 27.01 34.56

NGC (Median) + HE 44.34 38.99 22.63 35.32

CShift [14] (Mean) 43.91 42.13 29.68 38.57

CShift (Mean) + HE 44.71 43.88 30.09 39.56

CShift [14] (Median) 43.30 40.62 29.51 37.81

CShift (Median) + HE 46.27 43.67 29.09 39.68

LR (Ours) 46.51 45.59 30.17 40.76

NN (v1) (Ours) 45.53 42.92 28.37 38.94

NN (v2) (Ours) 45.48 43.25 26.36 38.36

NN (v3) (Ours) 48.21 44.85 28.94 40.67

4.2. Impact of Different Ensemble Models

We train all edges and hyperedges on the Train Unla-

beled (iter 1) set and test different ensemble models for

the task of semantic segmentation. Being the only task for

which we have manually annotated ground truth, we fo-

cused on it for validating different ensembles. Our results

are showcased in Table 3.

Both NGC [17] and CShift [14] models use only edges

and relatively simple non-parametric ensemble models at

nodes (NGC - simple average and CShift - non-parametric

pixel-wise kernel weighted average). We bring a perfor-

mance boost by adding hyperedges and also by allowing the

ensembles to learn. As discussed in Sec. 3.2, we propose

one linear and 3 types of non-linear (neural nets) ensembles

(Fig 3). Our experiments show that learning parametric en-

semble models, even a simple linear one, improves signif-

icantly (above 2% on average) over previously published

work. Performance is reported on the Train Unlabeled (iter

3), which includes only the test scenes.

Table 4 Iterative learning performance on the single task

links. The evaluation was done on the test scenes. The re-

ported performance is averaged.

Type Semantic Depth Normals

IoU (↑) Cons. (↑) L1 (↓) Cons. (↑) L1 (↓) Cons. (↑)

rgb-sup. 25.04 88.85 - - - -

rgb-iter1 32.79 94.04 21.66 5.89 12.40 98.32

rgb-iter2 37.26 95.72 17.34 7.06 11.93 98.87

rgb-iter3 40.31 98.13 16.64 30.26 11.71 99.30

4.3. Impact of Iterative Self-supervised Learning

To further highlight the benefits of learning through mul-

tiple iterations in a self-supervised manner, we test by pro-

gressively adding novel unlabeled data (learning iterations

that are explained in Sec. 3.4 and Sec. 3.3). After training

each link in the hypergraph (Tab. 2) for each of the output

tasks, we form multi-path consensus ensembles (Tab. 3), to

produce pseudolabels for the second, self-supervised learn-

ing iteration, when we retrain all the edges and hyperedges

on an expanded set of labels, which includes the supervised

labels from Train Labeled, and the automatically generated

labels from Train Unlabeled (iter 1) and Train Unlabeled

(iter 2). We use again the newly retrained edges and hyper-

edges to form ensembles and pseudolabels for the additional

Train Unlabeled (iter 3) set and continue retraining the sin-

gle edges (rgb → task) for a third self-supervised learning

iteration. The results show considerable and consistent im-

provement at the level of the distilled edge rgb → task
in both accuracy and temporal consistency, on all 3 tasks

(Tab. 4). We denote by rgb−sup. the fully-supervised edge

trained exclusively on the Train Labeled set.

4.4. Adapting to Novel Scenes

We want to test the ability to improve over an initial

state-of-the-art Expert Teacher and also adapt to novel test

scenes. We focus on semantic segmentation and use the re-

cent Mask2Former [7] as the SoTA Expert, pretrained on

Mapillary Vistas [24]. Being a similar scenario, we easily

map the Mask2Former set of classes to ours.

We consider three phases of learning in this setup, de-

pending on the moment we use our self-supervised hyper-

graph learning. Phase 1 denotes training the single rgb →
seg edge, as presented so far, in two iterations of learn-

ing (before seeing any data from the test scenes). Phase 2
refers to distilling rgb → seg edge (fine-tuning after Phase

1 or from scratch when Phase 1 is missing) on the output

of Mask2Former on the test scenes. Phase 3 refers to train-

ing rgb → seg during one iteration of self-supervised hy-

pergraph learning, only on unlabeled data from test scenes,

after Phase 2. In essence, Phase 1 and Phase 3 represent
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Table 5 Distilling a VisTransformer-based Expert’s knowledge into the hypergraph. Experiments were done on novel scenes

(test) for the task of semantic segmentation. Experiments show the advantages of using our hypergraph procedures in multiple

learning phases and using an off-the-shelf method for the task of semantic segmentation. Performance evaluation was done

at the level of the distilled direct edges. Bolded numbers are best.

Method Barsana Comana Norway Mean

Phase 1 Phase 2 Phase 3 IoU (↑) Cons. (↑) IoU (↑) Cons. (↑) IoU (↑) Cons. (↑) IoU (↑) Cons. (↑)

Mask2Former [7] - - - 56.77 95.48 59.84 97.26 41.71 98.23 52.77 96.99

rgb → sseg (1) (Ours) � � � 57.86 98.46 57.82 98.88 42.95 99.51 52.88 98.95

rgb → sseg (2) (Ours) � � � 58.02 98.22 60.14 98.70 42.55 99.42 53.57 98.78

rgb → sseg (3) (Ours) � � � 59.16 98.58 60.49 99.06 43.14 99.55 54.26 99.06

Figure 5: Qualitative results on images from the testing set using Mask2Former labels as starting point for distillation. Even

on a very dissimilar test scene w.r.t all other scenes (Norway), we obtain improved results over the baseline, and overall our

method yields favorable numbers on all scenes, for both accuracy and temporal consistency, as shown in Tab. 5

.
the same type of hypergraph learning with different starting

points (initialization) for rgb → seg, separated by Phase 2

of fine-tuning on Mask2Former output. Our goal is to eval-

uate the impact of the hypergraph model when applied at

different stages, before and after Expert distillation. The re-

sults, presented in Tab. 5 and Fig. 5, demonstrate the added

value of the hypergraph in each case, with maximum effect

when applied in both Phases 1 and 3. Interestingly, exper-

iment 2 (hypergraph pretraining) is more effective than ex-

periment 1 (hypergraph post-training), probably due to the

additional data from the other scenes available in experi-

ment 2. Also note that the added benefit of the hypergraph is

significant at the level of temporal consistency (more results

in the appendix), which suggests that the self-supervised

consensus among multiple tasks strongly reduces classifier

variance, potentially increasing reliability and trustworthi-

ness. Moreover, the improvements are obtained by an edge

that is two orders of magnitude smaller, in terms of the num-

ber of parameters, than the SoTA Mask2Former.

5. Conclusions
We introduced a novel multi-task self-supervised hy-

pergraph model for learning in the case of very limited

training data. Our theoretical contributions include the ad-

dition of hyperedges and parameterized ensemble learn-

ing, with proven experimental benefits. We also introduce

Dronescapes, a large-scale video dataset for UAVs, which

brings our experiments into the real world, different from

the synthetic datasets used by prior works. With almost

all annotations being automatically generated (except for

a very small set of manually annotated frames for seman-

tic segmentation) we show that by using hyperedges and

learning ensembles of such hyperedges, we improve both

accuracy and temporal consistency even though no tempo-

ral information is given. Our model is also effective when

it uses as initial annotations the output of a state-of-the-art

expert, as demonstrated by experiments on three different

novel scenes, with no ground truth available for training.
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[36] Teresa Yeo, Oğuzhan Fatih Kar, and Amir Zamir. Ro-

bustness via cross-domain ensembles. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 12189–12199, October 2021. 2

[37] Amir R Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri,

Zhangjie Cao, Jitendra Malik, and Leonidas J Guibas. Ro-

bust learning through cross-task consistency. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11197–11206, 2020. 2, 3

[38] Amir R Zamir, Alexander Sax, William Shen, Leonidas J

Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3712–3722, 2018. 2, 3

[39] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain

autoencoders: Unsupervised learning by cross-channel pre-

diction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1058–1067, 2017. 2

[40] Wenqiang Zhang, Zilong Huang, Guozhong Luo, Tao Chen,

Xinggang Wang, Wenyu Liu, Gang Yu, and Chunhua. Shen.

Topformer: Token pyramid transformer for mobile semantic

segmentation. Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition (CVPR), 2022. 2

[41] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-

drick, Josh McDermott, and Antonio Torralba. The sound

of pixels. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 570–586, 2018. 2

[42] Mingmin Zhen, Jinglu Wang, Lei Zhou, Shiwei Li, Tianwei

Shen, Jiaxiang Shang, Tian Fang, and Long Quan. Joint se-

mantic segmentation and boundary detection using iterative

pyramid contexts. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

13666–13675, 2020. 2

[43] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1851–1858, 2017. 2

992


