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Abstract

Thanks to the advances in deep learning-based computer
vision, image classification has shown great achievements.
However, it has faced a heavy class imbalance issue which
is one of the characteristics of real-world datasets. The se-
vere class imbalance makes the classifier easily biased to-
ward majority classes and overfitting to minority classes. To
address this issue, supplementing minority classes with arti-
ficially generated samples has proven effective. In addition,
contrastive learning has been introduced to improve image
classification performance recently. Motivated by recent
works, we propose feature augmentation via a contrastive
learning-based generative model for long-tailed classifica-
tion. Specifically, features are augmented using the feature
dictionary obtained by real samples and the generated con-
vex weights, which are used for learning an image classi-
fication model. Here, the model for the feature augmenta-
tion is trained based on generative adversarial learning and
contrastive learning in an end-to-end manner. The gener-
ative adversarial learning helps to generate real-like fea-
tures, and the contrastive learning improves the feature’s
discrimination power. Through extensive experiments with
various long-tailed classification datasets, we verify the ef-
fectiveness of the proposed method.

1. Introduction

The development of deep learning and the ease of us-

ing large-scale datasets have led to significant progress in

image classification [38, 10, 30]. However, since it is not

easy to collect datasets with equally distributed samples per

class, most large-scale datasets have class imbalance prob-

lems [30, 43]. A model trained based on these datasets can

learn the representation for the majority classes (i.e., head

classes) with a sufficient number of images, but features for

images from the minority classes (i.e., tail classes) could

Figure 1. Illustration of embedding space depending on the learn-

ing type for feature augmentation: (a) adversarial learning, (b)

contrastive learning, and (c) proposed method. In the case of

(a), generated features cannot be clustered to each class well, i.e.,

boundary distortion. In the case of (b), diverse features cannot

be generated, i.e., weak discrimination. However, the proposed

method can augment diverse features without the loss of feature

discrimination power.

not be effectively learned. This situation causes the clas-

sifier and the model to be trained biased toward the head

classes, resulting in degradation of overall performance.

Several studies have been conducted to deal with these

problems, which are mainly divided into two ways: re-

weighting [9, 40, 29, 3, 51] and re-sampling [2, 4, 5, 24,

32, 35, 19]. The re-weighting is to adjust the weights of

loss used in learning. This method aids learning for mi-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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nority classes by adjusting the weights for a data sample or

a specific class. As an improved version for dealing with

the class imbalance problem of cross-entropy loss, a focal

loss [29] is proposed, where it assigns greater weight to dif-

ficult or easily misclassified cases. In [3], label-distribution-

aware margin (LDAM) loss is proposed, which is moti-

vated by minimizing margin-based generalization bounds.

As the re-sampling is to handle the amount of data sam-

ples directly, there are two major sampling methods: under-

sampling and oversampling [4]. The undersampling refers

to erasing samples from the majority classes with enough

training samples. However, overall performance degrada-

tion is inevitable because it causes the loss of data samples.

In the oversampling, additional samples via generation are

supplemented for minority classes. Since a model can be

learned with enough samples for minority as well as major-

ity classes, the oversampling strategy is preferred. Recent

works [32, 34] show that generative adversarial networks

(GANs) [15, 33] are effectively used in oversampling mi-

nority classes. A generative model generates artificial data

and is used to augment data of minority classes. However,

using GANs for oversampling can lead to boundary distor-

tion [41], which ultimately results in decreased performance

on the head classes. Therefore, the generative model should

be encouraged to generate samples that do not cause bound-

ary distortion while being included within the clusters of the

minority class.

More recently, supervised contrastive learning that ef-

fectively leverages label information for better image rep-

resentation has much attention, which has been adopted

in the class imbalance problem [23, 45, 28]. Unlike con-

ventional contrastive learning strategy that utilizes only the

augmented version of an image as a positive sample, super-

vised contrastive learning takes advantage of all images in

the same class as positive samples as well as the augmented

version. According to [45], the experimental results show

that the supervised contrastive learning-based method is ef-

fective with improved performance in the long-tailed classi-

fication problem. Nevertheless, solely training a generative

model via contrastive learning results in limited diversity in

the distribution of the generated features.

In this paper, we propose Feature Augmentation method-

ology using Contrastive learning-based Generative model

(FACoG). FACoG synthesizes artificial features based on

minority samples from the training dataset. The gener-

ated features are then trained to mimic the distribution of

real features via generative adversarial learning while be-

ing clustered in the feature representation space through

supervised contrastive learning. If the generated features

are trained through generative adversarial learning and su-

pervised contrastive learning in an end-to-end manner, the

issues of boundary distortion and weak discrimination de-

scribed earlier can be avoided. Figure 1 visually demon-

strates these advantages. We newly design an augmented

supervised contrastive loss in order to embed generated fea-

tures into the real feature representation space. Also, we

propose a two-phase training scheme to prevent the learning

instability caused by adversarial learning in the generative

model.

We experiment with the proposed model on various

imbalanced benchmark datasets, including MNIST [27],

Fashion-MNIST [48], CIFAR-10/100 [25] and Ima-

geNet [10]. Experimental results show that the pro-

posed model outperforms state-of-the-art methods on var-

ious long-tailed datasets. The main contributions of this pa-

per are summarized as follows:

• We propose a novel feature augmenting method,

FACoG based on generative adversarial learning and

supervised contrastive learning for long-tailed classifi-

cation.

• To stably train the feature generation model, we pro-

pose a two-phase training strategy. Also, we propose

the augmented supervised contrastive loss to enable

effective contrastive learning between the augmented

features and real features.

• We analyze the effectiveness of our proposed model

and the individual impact of its components on several

long-tailed datasets, including large-scale datasets.

2. Related Work
2.1. Long-tailed Classification

According to the advances in deep learning-based appli-

cations, the demand for large-scale datasets is increasing.

However, due to the expensive data acquisition process and

the cost of labeling, the dataset easily has a class imbalance

problem [30]. It makes representation learning for the mi-

nority classes difficult, causing the classifier to be biased

toward the head classes. To address the class imbalance

problem, there are two typical approaches to avoiding the

class-imbalance problem: re-weighting and re-sampling.
Concerning the re-weighting, there have been many stud-

ies for modifying a loss function to mitigate the negative

impact of minority classes on learning caused by the data

imbalance [9, 40, 29, 3]. Since minority classes have a

small number of data included in the training, the minor-

ity classes are intentionally weighted more in loss, allowing

learning to be performed intensively. It artificially increases

the proportion of losses to minority classes, leading to bal-

anced learning between the majority and minority classes.

The re-sampling approach adjusts the class frequency on
the long-tailed dataset to reduce the gap between the ma-

jority and minority classes, thereby mitigating the class im-

balance [2, 4, 5, 24, 32, 19, 35]. There are two methods:
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an undersampling method that intentionally eliminates data

from head classes to match minority classes frequency, and

an oversampling method that artificially generates data from

minority classes to be comparable to head classes [14, 2].

Although the undersampling method is simple and easy to

apply, it has a disadvantage in that the overall performance

decreases because of intentional data loss. Therefore, recent

studies have adopted the oversampling method [32, 34, 24].

In [32], authors propose a network that uses the adversar-

ial training scheme to generate features depending on the

class frequency. A major advantage is that it generates sam-

ples from the given training data without requiring addi-

tional data supplementation. However, the proposed gen-

erative model can only be applied to small-sized images

and datasets, and the training process is unstable. In [19],

the plug-in approach, sample-adaptive feature augmenta-

tion (SAFA) is proposed. SAFA proposes a method to ex-

tract the diversity and transferability of majority classes and

apply them to the features of minority classes for oversam-

pling. The advantage of plug-and-play approach is that it

can be easily applied to improve the classifier, but the dis-

advantage is that the performance improvement is not sig-

nificant. In this paper, to address the limitations of recent

oversampling techniques, we propose a feature dictionary

construction and a two-phase training scheme.

2.2. Contrastive Learning

Self-supervised learning has been actively studied to re-

duce the labeling cost of data or to extract the general-

purpose features of images [44, 12, 13, 49]. It is known

that general-purpose features obtained in this way greatly

help improve the performance of various downstream tasks

(e.g., image classification, detection, segmentation, etc.). In

particular, contrastive learning-based self-supervised learn-

ing [16, 6] has shown remarkable performance improve-

ments in the downstream tasks. Basically, contrastive learn-

ing keeps positive samples close to each other in an em-

bedding space and negative samples away from each other.

Here, positive samples refer to the augmented versions of

the image and negative samples are all the remaining sam-

ples. The work in [6] presents a simple framework for con-

trastive learning of visual representations. In [16], Momen-

tum Contrast (MoCo) is proposed, which involves using a

contrastive loss to build large and consistent dictionaries

for unsupervised learning. Recently, supervised contrastive

learning that leverages label information for better image

representation has shown significant performance improve-

ment in image classification [23, 45, 28]. To construct pos-

itive samples, the authors in [23] utilize not only the aug-

mented version of the image but also all other images of the

class to which it belongs. Based on this method, the pro-

posed model in [45] shows performance improvement in the

long-tailed image classification by simultaneously perform-

ing supervised contrastive learning and classification using

the curriculum learning [50].

The supervised contrastive loss is a loss function used to

learn clustering of features extracted from real images in the

feature representation space. To embed the generated fea-

tures into the pre-clustered space, a modification of the loss

function is required. We propose an augmented supervised

contrastive loss to achieve this goal while maintaining the

learning property of the supervised contrastive loss.

3. Method
3.1. Overview of the Proposed Method

In this section, we describe the proposed feature aug-

mentation via contrastive learning-based generative model

for long-tailed classification. The proposed FACoG gener-

ates convex weights that control the combination of image

representations extracted from training images, thus gen-

erating augmented features to supplement samples for the

minority classes. And, we devise an end-to-end training

strategy to enhance the discrimination of generated features

based on supervised contrastive learning and generative ad-

versarial learning. Specifically, the proposed FACoG model

is trained in two phases: 1) learning for constructing feature

dictionary, and 2) learning for generative oversampling.

In the first phase, three modules (i.e., backbone, classi-

fier, and projection networks) are trained by supervised con-

trastive learning. Then, the features for the training dataset

are extracted with the fixed backbone network, which are

stored as a dictionary form (i.e., feature dictionary). Note

that the feature dictionary is a set of features for each class

used to generate new features by convex weights. Through

the classifier and projection networks, feature discrimina-

tion is enhanced by simultaneously learning class informa-

tion and negative samples. In the second phase, the class

selection is performed for each training iteration, which is

for ensuring that minority classes are selected frequently.

Then, features corresponding to the selected class in the

feature dictionary are sampled. With sampled features, two

modules, generator and discriminator, are trained by gener-

ative adversarial learning. Our generator generates convex

weights for interpolating sampled features. A new feature

is generated through the convex combination between the

sampled features and the generated convex weights. The

generated feature follows the distribution of the real sample

through generative adversarial learning with the discrimina-

tor. Also, we propose an augmented supervised contrastive

loss so that augmented features can be clustered into em-

bedding space for each class.

3.2. Learning for Constructing Feature Dictionary

As mentioned above, three modules are trained to con-

struct a feature dictionary. As a backbone network (fback),
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Figure 2. The overall architecture of the proposed learning process of FACoG. In the first phase, feature dictionary (L) is constructed via
the backbone network (fback). In the second phase, the class to be generated as a feature is selected through the label selection process of
selecting the class with a probability that depends on the class frequency. The generator (G) that receives the selected label and gaussian
random noise as input generates weights. For the selected label, the features are sampled in the dictionary and multiplied by convex

weights. The parameters of generator are optimized by Ladv and Lasc.

we adopt the ResNet [17], which is used for extracting a

feature vector fc = fback(xc) ∈ RDE from an input image

xc belonging to a class c in the entire class set C. Then,
the classifier fcls : R

DE → R
c with two fully connected

layers followed by nonlinear activation returns the class in-

formation from the feature vector fc. And, the projection
network fproj : R

DE → R
DP transforms fc to another fea-

ture vector zc ∈ RDP for a contrastive learning. Note that

the structure of the projection network is set identically to

that of the classifier except for the output dimension. The

three modules are trained using cross-entropy loss Lce and

supervised contrastive loss Lsc The detail of the objective

function of phase 1 is described in Section 3.4.

After training the three modules with Lph1, the parame-

ters of fback are frozen. Features fc of input images for the
c-th class are extracted by fback to construct a feature dic-
tionary, Lc = [fc,1; fc,2; · · · ; fc,Ns ] ∈ RDE×Ns , where Ns

is the number of features to be stored in the full dictionary

L for the c-th class. The full dictionary L for all classes
included in C is represented as L = [L�1 ;L�2 ; · · · ;L�C ] by
concatenating Lc’s.

3.3. Learning for Generative Oversampling

Based on the constructed feature dictionary L, we aug-
ment features f̃c for the minority classes (i.e., generative
oversampling). To learn discriminative features that are

similar to real features, we adopt generative adversarial

learning and supervised contrastive learning. For generative

adversarial learning, generator G for generating a convex
weight w and discriminator D for discriminating whether
features are from real distribution are devised. G and D
consist of three fully-connected layers and the output of G
goes through softmax to use as the weight of the convex

combination. Note that the weight generator instead of gen-

erating features itself is considered for stable learning mo-

tivated by the previous work [32]. Specifically, our gener-

ator generates w with a random noise n and desired label
c to be augmented, wc = G(n|c), where the noise follows
a standard normal distribution n ∼ PN . The augmented

feature for the desired class c can be represented as the con-
vex combination with the features obtained by samplingNs

samples in L, f̃c = wc · fc =
∑Ns

i=1 wc,ifc,i. f̃c is learned to
imitate the real feature through generative adversarial learn-

ing with D by exploiting generative adversarial loss Ladv .

In addition, f̃c should not only be similar to the features for
real samples but also preserve the discrimination power. To

this end, we propose augmented supervised contrastive loss

Lasc, which differs from Lsc in that it considers positive

samples for both real and augmented images.

We train the model for generative oversampling based on

a total loss Lph2 = λadvLadv + λascLasc, where λadv and

λasc are hyperparameters for controlling two loss functions,

respectively. During training, f are randomly sampled and
used within the dictionary for each iteration. Please refer to

the detail of Lph2 in Section 3.4.

3.4. Training Details

Objective Functions In the first phase, Lce refers to a

conventional cross-entropy loss. And, we define Lsc as the

extension of the unsupervised contrastive loss [6] like:

Lsc = −
∑

i∈I

1

|{zpi }|
∑

zj∈{zpi }
log

exp(zi · zj/τ)∑
zk,k �=i exp(zi · zk/τ)

,

(1)

where I and |·| denote the multi-viewed batch and the cardi-
nality of a set, respectively. For the readability of the equa-

tion, we omit the notation for class c (i.e. zc,i → zi) and
denote the set of same class of zi (i.e., positive samples) as
{zpi }. τ is a temperature parameter with a value greater than
0. The three modules (fback, fcls, and fprokj) are trained as
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a total loss Lph1 computed by the weighted sum of cross-

entropy loss Lce and supervised contrastive loss Lsc with

hyperparameters λce and λsc. The objective function of

Phase 1 can be written as:

Lph1 = λceLce + λscLsc. (2)

In the second phase, we compute Ladv by the least

square formulation of generative adversarial loss to prevent

gradient loss problems [31] as:

Ladv = min
G
max
D
Efc∼pdc

[(1−D(fc))
2] + Ef̃c∼pgc

[(D(f̃c))
2],

(3)

where pdc and p
g
c are the conditional probability distribution

of the real and generated features with class c, respectively.
The proposed Lasc for training G is defined as follows:

Lasc = −
∑

i∈I

1

|F (i)|
∑

zj∈F (i)

log
exp(z̃i · zj/τ)∑

zk,k �=i exp(z̃i · zk/τ)
,

(4)

where z̃i is the output of fproj with the input of f̃i, z̃i =

fproj(f̃i). z̃
p
i indicates the positive sample corresponding to

z̃i. F (i) ≡ {zpi } ∪ {z̃pi } is the set of positive samples of
zi and z̃i. The overall objective function of phase 2 (Lph2)

can be written as:

Lph2 = λadvLadv + λascLasc. (5)

In training, the parameter update for G and D, and the
fine-tuning of the parameter of fcls are alternately per-
formed. To fine-tune fcls, we calculate the cross-entropy
loss for the augmented features and update the parameters

of fcls accordingly.
Label Selection When learning G, features for each

class are chosen with the same probability because it must

be able to infer convex weights well for all classes. On the

other hand, because the oversampling is required only for

minority classes in fcls learning, more supplementation is
required in inverse proportion to the class frequency. There-

fore, the class with a small number of data should be se-

lected frequently . To this end, the label selection process

proceeds differently between G learning and fcls learning.
In this paper, we adopt the way that calculates the probabil-

ity of selecting a label suggested in [32].

4. Experiments
4.1. Datasets

In this paper, we conducted extensive experiments

on various benchmark datasets: MNIST [27], Fashion-

MNIST [48], CIFAR-10/100 [25], and ImageNet [10].

Following the experimental setting in [30], we con-

structed long-tailed version of each dataset (i.e., MNIST-LT,

Fashion-MNIST-LT, CIFAR-10/100-LT and ImageNet-LT).

MNIST-LT and Fashion-MNIST-LT Since the original
MNIST and Fashion-MNIST datasets are balanced datasets,

we constructed imbalanced datasets by sampling data by

class according to the method in [32]. For comparison, we

measured the performance with Average Class Specific Ac-

curacy (ACSA) [47, 20] and Geometric Mean (GM) [26, 1],

the metric used in works in [32] under the same experimen-

tal setting.

CIFAR-10-LT and CIFAR-100-LT As the original
CIFAR-10 and 100 datasets are also balanced datasets, these

consist of 50,000 training images and 10,000 validation im-

ages. And, each class contains the same number of images.

As shown in [3, 9], we constructed the training set by re-

ducing the number of images per class exponentially by the

desired imbalance ratio, where the validation set remained.

The imbalance ratio refers to the difference in the ratio of

the number of data between the class with the most data

and the class with the least data. In this paper, this value

was set to 10, 50, and 100. For comparison, we measured

the overall top-1 accuracy.

ImageNet-LT The long-tailed version of ImageNet

dataset in [30] consists of 115.8K images for 1,000 classes

and the imbalance ratio was set to 256. Following [30],

we measured each top-1 accuracy by constructing three

subsets according to the number of samples within the

dataset: Many (number of samples more than 100 samples),

Medium (number of samples not less than 20 and not more

than 100), and Few (number of samples no more than 20).

4.2. Implementation Details

In all experiments, we used ResNet as the backbone, but

we used different architectures for each dataset. We used

ResNet-32 for MNIST-LT, Fashion-MNIST-LT and CIFAR-

10/100-LT datasets. On the other hand, ResNeXt-50-32x4d

was used for ImageNet-LT dataset. Dimensions of feature

vector (DE) were set to 512 and 2048 for ResNet-32 and

ResNeXt-50-32x4d, respectively. Also, dimensions of pro-

jected feature (DP ) were set to 128 and 1024 for ResNet-32

and ResNeXt-50-32x4d, respectively. Implementation and

learning of the proposed model used PyTorch [36] and SGD

with a moment of 0.9 and weight decay of 1× 10−4 as op-
timizers. The learning rates of phase 1 and 2 were set to 0.5

and 0.005, respectively. Also, the batch sizes of phase 1 and

2 were set to 256 and 128. The reason for reducing the batch

size in phase 2 is for reducing memory overhead to sample

several features in the dictionary and to perform a loss com-

putation in parallel. In addition, experimentally setting it to

128 shows the best results. The sum of epochs in phase 1

and phase 2 was 200 for CIFAR-10/100-LT, and each epoch

was heuristically selected. For ImageNet-LT, MNIST-LT

and Fashion-MNIST-LT, overall epochs were set to 100. To

control the impact between the Lce, Lsc, Ladv , and Lasc,

we set the value of λ as follows: λce = 1.0, λsc = 0.1,
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Table 1. Classification performance for the MNIST-LT and

Fashion-MNIST-LT datasets.

Datasets MNIST-LT Fashion-MNIST-LT
ACSA GM ACSA GM

CE 0.88 0.87 0.82 0.80

SMOTE [4] 0.88 0.87 0.82 0.80

DOS [32] - - 0.82 0.81

cGAN [37] 0.88 0.87 0.81 0.78

GAMO w/o D [32] 0.87 0.86 0.81 0.80

GAMO [32] 0.89 0.88 0.82 0.80

Hybrid-SC [45] 0.93 0.92 0.76 0.72

FACoG 0.95 0.95 0.83 0.82

λadv = 1.0, and λasc = 0.1. The temperature parameter
τ is set to 0.1. Following [8], we used AutoAugment [7]
and Cutout [11] for training of fcls and SimAugment for
training of fproj for CIFAR-10/100-LT dataset. We traind
the proposed model on a server with Intel(R) Xeon(R) Gold

6330 CPU @ 2.00GHz, 512 GB memory, and NVIDIA

A100 tensor core GPU.

4.3. Comparisons with State-of-the-art methods

In this section, we compare the proposed method to the

state-of-the-art methods: re-weighting [29, 9, 3, 21, 39, 28,

18], re-sampling [24, 35, 19], contrastive learning [45], and

others related to long-tailed classification [30, 22, 46]. Ad-

ditionally, we set a baseline method that trains the backbone

and classifier using cross-entropy loss (denoted as CE). For

comparison, we conducted experiments with MNIST-LT,

Fashion-MNIST-LT, CIFAR-10/100-LT, and ImageNet-LT

datasets.

MNIST-LT and Fashion-MNIST-LT In this experi-
ment, the recent oversampling and supervised contrastive

learning-based methods are compared. Table 1 shows the

top-1 accuracy (%) for MNIST-LT and Fashion-MNIST-

LT datasets. The baseline shows the lowest performance

because it does not consider the effect of the long-tailed

datasets. As shown in Table 1, the proposed model out-

performs state-of-the-art methods for all experiments.

CIFAR-10-LT and CIFAR-100-LT Table 2 shows the
classification performance for CIFAR-10-LT and CIFAR-

100-LT datasets. As one of the representative re-weighting

methods, the Focal loss [29] shows a slightly higher per-

formance than CE. We also experiment on models that

combine several re-weighting (e.g., LDAM, KCL) and

re-sampling (e.g., M2m, Hybrid-SC, TSC, RIDE+CMO,

LDAM+SAFA) methods to consider class imbalance when

sampling learning batches. Table 2 shows the top-1 ac-

curacy (%) of state-of-the-art methods and the proposed

model for CIFAR-10-LT and CIFAR-100-LT datasets with

various imbalance ratios. It shows that the proposed model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CIFAR-100, =100

Baseline Proposed

Figure 3. Top-1 accuracy on tail-classes in CIFAR-100-LT dataset

with the imbalance ratio of 100 (β = 100). Here, the tail-classes
refer to classes that correspond to the bottom 20% of the number

of data in CIFAR-100-LT. The blue and orange bars indicate the

results of Ours trained until phase 1 and phase 2, respectively. It

can be seen that the performance has improved through generative

oversampling in most tail-classes.

has higher performance than the existing model. The pro-

posed model has an average performance improvement of

2-3% over the latest model performance.

ImageNet-LT To evaluate the proposed method in a
large-scale dataset, we used the ImageNet-LT dataset. As

shown in Table 3, FACoG outperformed SOTA model on

top-1 accuracy for overall datasets. While there was a slight

0.2% performance drop compared to RIDE (4 experts) for

the “Many” subset, there were notable improvements of

1.4% and 2.9% for the “Medium” and “Few” subsets, re-

spectively. Particularly, a significant performance improve-

ment was observed for the ’Few’ subset, which corresponds

to the tail class.

4.4. Effectiveness of FACoG on Tail-classes

In this paper, we proposed the FACoG to improve per-

formance in long-tailed classification by generating artifi-

cial samples and complementing data for minority classes.

To investigate the effect of the proposed method for tail-

classes, we conducted the experiment for validating top-1

accuracy for each tail-class with a lower 20% number of

data in the CIFAR-100-LT dataset. The baseline and the

proposed model are models without and with the classi-

fier fine-tuning process through FACoG, respectively. Fig-

ure 3 shows the performance of tail-classes as a histogram

when the imbalance ratio of the CIFAR-100-LT dataset was

set to 100. Blue and orange bar means the results of the

proposed model trained until phase 1 and phase 2, respec-

tively. As shown in Fig. 3, the proposed model in most

tail-classes showed higher performance than the baseline

model. When the performance for tail-classes was av-

eraged, the baseline model showed 17.7%, the proposed

model showed 25.6%, and the average performance im-

provement was 7.9%. Through this experiment, it can be

seen that the performance improvement of minority classes
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Table 2. Classification performance for the CIFAR-10-LT and CIFAR-100-LT. The highest and second-highest results are marked in bold.

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance Ratio (β) 100 50 10 100 50 10

CE 70.36 74.81 86.39 38.32 43.85 55.71

Focal loss [29] 70.38 76.72 86.66 38.41 44.32 55.78

CB-Focal [9] 74.57 79.27 87.10 39.60 45.17 57.99

CE-DRW [3] 76.34 79.97 87.56 41.51 45.29 58.12

LDAM [3] 73.40 76.80 87.00 39.60 45.00 56.90

M2m-LDAM [24] 79.10 - 87.50 43.50 - 57.60

KCL [21] 77.60 81.70 88.00 42.80 46.30 57.60

Hybrid-SC [45] 81.40 85.36 91.12 46.72 51.87 63.05
TSC [28] 79.70 82.90 88.70 43.80 47.40 59.00

RIDE+CMO [35] - - - 50.00 53.00 60.20

LDAM+SAFA [19] 80.48 83.57 88.94 46.04 50.02 59.11

FACoG 83.90 87.86 92.22 51.34 56.64 68.11

Table 3. Classification performance for the ImageNet-LT dataset.

The highest results are marked in bold.

Method Many Medium Few All
CE 65.9 37.5 7.7 44.4

Focal [29] 63.3 37.4 7.7 43.2

OLTR [30] 52.1 39.7 20.3 41.2

τ -norm [22] 59.1 46.9 30.7 49.4

Balanced Softmax [39] 62.2 48.8 29.8 51.4

LWS [22] 60.2 47.2 30.3 49.9

LADE [18] 62.3 49.3 31.2 51.9

RIDE (4 experts) [46] 68.2 53.8 36.0 56.8

LDAM-SAFA [19] 63.8 49.9 33.4 53.1

FACoG 68.0 55.2 38.9 57.8

through generative oversampling was well achieved.

4.5. Ablation Studies

To verify the effectiveness of the proposed method, we

conducted the ablation studies: 1) effect of loss functions

used for training the proposed method, and 2) effect of ad-

ditional training strategies.

Ladv and Lasc Table 4 shows the top-1 accuracy ob-

tained by varying the loss type. The baseline is the model

that has been trained up to phase 1 named as “Phase1”.

WhenLadv andLasc are used individually, the performance

improvement is insignificant or rather reduced. In the case

of Ladv , there is little performance improvement because

the augmentation feature constitutes different distributions

from the real feature. In the case of Lasc, the augmented

feature imitates the real feature well, so the performance

has improved to some extent, but it is not large. On the

other hand, models using both Ladv and Lasc effectively

improve performance.

Table 4. Performance for analyzing the contribution of Ladv and

Lasc for the proposed method on CIFAR-100-LT datasets.

CIFAR-100-LT
Imbalance Ratio (β) 100 50 10

Phase1 48.35 53.00 67.39

Phase1+Lasc 49.03 53.28 66.76

Phase1+Ladv 49.73 54.21 67.25

Phase1+Ladv+Lasc 49.85 55.24 68.17

Re-weight and Data Augmentation Table 5 reports top-
1 accuracy depending on whether the re-weighting method

and data augmentation strategy are used. “Rew.” refers the

model that has been trained with Deferred Re-Weighting

(DRW) [3] method. ”Aug.” means the model that uses

AutoAugment [7] and Cutout [11] for data augmentation

strategies. There is little difference in performance for mod-

els learned simply by the DRW method, but when used

with FACoG, it helps to improve performance. In addition,

data augmentation strategies are very helpful in improv-

ing overall performance, especially for models learned with

FACoG, which significantly increase their accuracy. When

real features have various distributions through various data

augmentation methods, more diverse augmentation features

are generated through FACoG, enabling effective minority

oversampling. Finally, when both DRW and augmentation

techniques are used, the greatest performance improvement

is shown.

4.6. Visualization Results

To analyze the effect of the proposed feature augmen-

tation qualitatively, we visualize the feature space for the

Fashion-MNIST-LT dataset using t-SNE [42]. In Fig. 4,

the left figure shows the embedding space for the real fea-
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(a) w/o Generative Oversampling (b) w/ Generative Oversampling

Figure 4. t-SNE visualization results of the proposed model

without and with generative oversampling in Fashion-MNIST-LT

dataset. (a) presents real features from the proposed model without

generative oversampling. (b) shows real and augmented features

by the proposed model with generative oversampling.

Table 5. Performance for analyzing the contribution of re-weight,

augmentation strategies and FACoG. ”Rew.” refers the model that

has been trained with re-weighting method. ”Aug.” is the model

that uses AutoAugment and CutMix for data augmentation strate-

gies.

Rew. Aug. FACoG CIFAR-100-LT
100 50 10

- - - 48.08 53.77 65.45

� - - 47.95 53.98 65.85

- � - 48.31 54.38 66.22

- - � 49.07 55.19 62.93

� - � 48.90 55.20 65.20

- � � 49.85 55.24 68.17
� � � 51.34 56.64 68.11

tures without the proposed feature augmentation. And,

the real and augmented features by the proposed method

are visualized in the right figure. Through the visualiza-

tion results, we observe that the proposed method generates

well-distributed features within each class cluster. In other

words, this result shows that the classification performance

can be improved by the proposed method as the diversity is

improved without loss of discrimination power.

4.7. Effect of Ns

In this section, we analyze the trend of classification per-

formance changes for the hyperparameter Ns. As intro-

duced in Section 3.2, Ns is the number of reference fea-

tures used for the feature augmentation from real samples.

Since the generator generates features within the convex

hull formed by the real data of the selected class, training

becomes difficult when many samples are included. In addi-

tion, the training time increases in proportion to the number

of real samples. Therefore, choosing this hyperparameter

properly is one of important training heuristics. Figure 5

shows the classification performance (top-1 accuracy) and

Figure 5. Results of top-1 accuracy and training time obtained by

varying Ns on CIFAR-100-LT dataset with 100 imbalance ratio.

The values on the x-axis refer to Ns. The left and right sides of

the y-axis refer to top-1 accuracy and training time, respectively.

training time (sec) for CIFAR-100-LT (β = 100) depend-
ing onNs. As expected, the training time increases linearly

with the number of real samples. However, we observe that

it is desirable to select the hyperparameter ranging from 4

to 6 that shows high performance. From these experimental

results, we set Ns as 5.

5. Conclusion
In this paper, we proposed a novel Feature Augmenta-

tion methodology using Contrastive learning-based Gener-

ative model named as FACoG. The proposed method sup-

plements the number of samples for minority classes by

features through generative adversarial learning. At the

same time, it prevents boundary distortion by ensuring that

the generated features cluster within the feature represen-

tation space of the minority class through supervised con-

trastive learning. To effectively perform supervised con-

trastive learning on the generated features and features ex-

tracted from the training data, we propose the augmented

supervised contrastive loss. To ensure the stable training of

FACoG, we divided the training process into two phases.

First, we built a feature dictionary through pretraining of

the backbone network and then trained a generative model

based on it. We demonstrate the effectiveness of FACoG

through extensive experiments on various long-tailed clas-

sification benchmarks.
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