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Abstract

Obtaining labelled data to train deep learning meth-
ods for estimating animal pose is challenging. Recently,
synthetic data has been widely used for pose estimation
tasks, but most methods still rely on supervised learn-
ing paradigms utilising synthetic images and labels. Can
training be fully unsupervised? Is a tiny synthetic dataset
sufficient? What are the minimum assumptions that we
could make for estimating animal pose? Our proposal ad-
dresses these questions through a simple yet effective self-
supervised method that only assumes the availability of un-
labelled images and a small set of synthetic 2D poses. We
completely remove the need for any 3D or 2D pose anno-
tations (or complex 3D animal models), and surprisingly
our approach can still learn accurate 3D and 2D poses si-
multaneously. We train our method with unlabelled images
of horses mainly collected for YouTube videos and a prior
consisting of 2D synthetic poses. The latter is three times
smaller than the number of images needed for training. We
test our method on a challenging set of horse images and
evaluate the predicted 3D and 2D poses. We demonstrate
that it is possible to learn accurate animal poses even with
as few assumptions as unlabelled images and a small set
of 2D poses generated from synthetic data. Given the min-
imum requirements and the abundance of unlabelled data,
our method could be easily deployed to different animals.

1. Introduction
One of the main bottlenecks for supervised animal pose

estimation is obtaining pose annotations for training deep-

learning models. While plenty of labelled data is available

in the human domain, annotated animal datasets are scarce.

In order to overcome the annotation issue, new alternatives

have been adopted, such as training models with synthetic

data.

We adapt a method from the human domain that learns

human 3D poses from unlabelled images and a prior on 2D

poses [27]. Our implementation translates this method to

the animal domain, demonstrating that it applies to differ-

ent body structures. Another essential addition to our ap-

proach is the origin of the 2D poses composing the prior.

Unlike the original implementation [27], which uses a set

of unpaired 2D poses from the training datasets, we further

reduce the assumptions by using 2D poses from an existing

CAD model of a horse [22]. Our model is unique in its sim-

plicity compared with previous approaches for animal pose

estimation with synthetic data. It does not require annotated

training data. It uses only unlabelled images and a small

set of synthetically generated 2D poses, which means that

no synthetic images, pre-trained models, or complicated 3D

models are required.

We train and test the model with unlabelled images of

horses. Additionally, we use a prior on 2D pose generated

from synthetic data [22]. By evaluating 2D and 3D pre-

dictions from our model, we demonstrate that our approach
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produces accurate 2D and 3D pose representations of the

horses, although we are not using any annotations for the in-

put images. Since the requirements for training our model

are minimal, it could be easily applied to animal species

with different body structures.

2. Related work
2.1. Animal pose estimation

Supervised deep learning methods for human pose esti-

mation have been widely explored and perform well under

different conditions [23, 29, 18]. However, in animal pose

estimation, getting the labels needed for supervision is diffi-

cult in most cases. In particular, labelling key points is more

expensive and laborious than producing other annotations,

e.g. bounding boxes. On top of this, it would be infeasible

to generate labelled data for the entire diversity of animal

species in the world.

Since the 3D pose annotations are even more challeng-

ing to acquire than the 2D ones, many works on animal

pose estimation have been focused only on estimating 2D

pose [19, 20, 24, 26]. Not surprisingly, the backbones for

most of these approaches are network architectures initially

designed for the human domain, for example, stacked hour-

glass networks [23], ResNet [12], and OpenPose[6].

Although the problem of 3D animal pose estimation is

more constrained and challenging, relevant work has also

been carried out [1, 15, 11]. In this context, methods com-

monly rely on lower supervision levels to overcome the

scarcity of labelled training data. For instance, the self-

supervised approach of [33] estimates 3D pose for monkeys

and dogs relying on multi-view supervision and a tiny por-

tion of pose annotations. Dai et al. [8] proposes an simi-

lar method, but instead of multiview images, they assume

the availability of actual 2D poses for each input image and

lift these to 3D through self-supervision based on geomet-

ric consistency. Similar to [8] our method also estimates 3D

pose using self-supervision with the same geometric consis-

tency constraint. However, we learn the 2D and 3D poses

directly from images in an end-to-end manner. Most impor-

tantly we do not require any annotations for the inputs.

2.2. Animal pose estimation with synthetic data

Synthetic data is a low-cost alternative to generate data

with ground truth annotations with minimum effort. Re-

cently, works on human [17, 10, 30] and animal pose

[4, 22, 16, 6, 3, 2, 25, 36, 35, 28] estimation have adopted

synthetic data to overcome the scarcity of keypoint labels.

Many animal pose estimation methods with synthetic

data follow a supervised approach, meaning they use syn-

thetically generated images and pose annotations for train-

ing. However, there is often a gap between synthetic and

real data, so these approaches typically perform domain

adaptation with samples from actual data. For example,

[22] learns 2D pose for animals using images and labels

generated from CAD models. They also incorporate a

consistency-constrained semi-supervised method to adapt

the predictions to real data. Similarly, [16] focuses on do-

main adaptation by generating pseudo-labels from the syn-

thetic domain and then updating these to match the actual

data. Unlike these approaches, our formulation helps to

reduce the complexity and requirements for training even

more. It is as simple as using unlabelled real images and a

set of synthetically generated 2D poses, i.e. there is no need

to generate pictures from the synthetic data. Furthermore,

an adversarial loss helps to learn poses that do not necessar-

ily appear in the prior of synthetic 2D poses without having

additional processes to align domains.

More related to our work, [28] relies on a self-supervised

method that assumes synthetic 2D poses and real images for

estimating 2D mouse pose. However, we advance [28] by

incorporating geometry consistency, allowing our model to

further estimate 3D pose.

Synthetic data also plays an essential role in several

works that learn richer structures, such as animal shapes,

mainly for different quadrupeds like dogs [2, 25, 3], tigers,

lions, horses [36], and zebras [35]. However, the success of

these approaches is constrained by having access to sophis-

ticated and expensive animal models, which is not required

in our approach.

3. Method
The method is essentially that from [27]. Unlike Sosa

[27] we translate this method to the animal domain and most

importantly we change the origin of the prior. In the origi-

nal paper they use a prior of 2D poses coming from unpaired

annotations of the training dataset. We remove this by gen-

erating the 2D poses from synthetic data. We reproduce the

method here so that the current paper is self-contained.

The main component of the approach is an image to 3D

pose mapping, indicated with a dotted box in Figure 1. The

first part of this mapping employs a CNN Φ to map the input

image x to an intermediate skeleton image s. Then, another

CNN Ω maps s to a 2D pose representation y. In the final

stage, y is mapped to the 3D pose v by means of a fully

connected network Λ. For training this set of networks, we

incorporate it within a larger structure which allows for self

supervision. In particular, we rely in a loop of transforma-

tions of the 3D pose v. We also use a discriminator D to-

gether with the prior on synthetic 2D poses, to ensure that

the generated skeletons s are realistic.

3.1. Main mapping

The image to pose mapping consists of 3 networks Φ,

Ω, and Λ that allows the input image x to be mapped to its

3D pose representation v. This mapping also produces two
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Figure 1. The method is an adaptation of [27]. The main difference is the origin of the prior on 2D poses. In this case we use a publicity

available set of 2D poses from an existing CAD model of a horse from [22].

intermediate representations of the input, a skeleton image

s, and a 2D pose y. Specifically, Φ learns to align the input

image with its respective skeleton image representation, i.e.

s = Φ(x). Then, Ω learns to extract keypoints from s, ob-

taining a 2D pose as output y = Ω(Φ(x)). Finally, Λ acts

as a lifter of the 2D pose y to get the 3D pose v. For each

pair of joint positions (xi, yi) in y, the network estimates a

depth zi = d+Δ, where Δ is a constant depth.

Overall, we use the same network structure as in [27]

with exception of Λ. Since we are not trying to learn eleva-

tion angles for the geometry transformations like [27, 31],

we opt for a simpler structure as in [7, 18].

3.2. Self-supervision

As illustrated by Figure 1, we include the main mapping

within a large network structure that allows to self-supervise

the training. This structure uses a discriminator network

D, which relies on a prior of synthetic 2D poses to help

the mapping produce skeleton images that are as realistic as

possible. Furthermore, it incorporates a loop of random ro-

tations and projections of the 3D pose v to ensure geometry

consistency for the 3D predictions.

3.2.1 Synthetic pose prior

To create the prior of 2D poses, we use a publicly avail-

able dataset of synthetic 2D poses generated from a CAD

model of a horse [22]. The prior is needed during training

to ensure the estimated skeleton image looks as realistic as

possible. Note that generating the prior from synthetic data

and not from annotations of the dataset like [27] provides

more flexibility to the method to be trained with completely

unlabelled datasets, which are abundant in the animal do-

main. Our synthetic prior contains around 10k different 2D

poses, representing approximately one-third of the available

images for training. Figure 2 provides examples of some 2D

poses p in the prior.

Figure 2. Random 2D poses from the syntethic prior.

The purpose of having a prior of 2D poses is to use these

as a reference distribution for the discriminator network D.

Since our implementation of D works directly with images,

we must first render the synthetic 2D poses to skeleton im-

ages. This is done by using the rendering function β from

[14], which given a set of 2D joint positions p and their con-

nections, can generate a skeleton image w = β(p). Then,
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the goal of D is to evaluate whether or not the predicted

skeleton image s = Φ(x), looks like an authentic skeleton

image w such as those in the prior. Following [27, 14] we

use an adversarial loss to compare w and s:

LD = Ew(log(D(w)) + Es(log(1−D(s)) (1)

3.2.2 Geometry consistency

We rely on the idea of geometric consistency from [7] to

facilitate the learning of the lifting network Λ and, there-

fore, the whole mapping. Essentially this involves a series

of rotations and projections of the 3D pose v. First, v is

randomly rotated to v̂ using a rotation matrix, which is con-

structed by sampling azimuth and elevation angles from a

fixed uniform distribution [7]. Then, v̂ is projected to a 2D

pose ŷ. Given the projection of the rotated 3D pose v̂, the

same lifting network Λ estimates its 3D representation v̂′.
Lastly, the inverse rotation is applied to the 3D pose v̂′ to

obtain v′, and v′ is projected to 2D to get the 2D pose y′.
After the loop of projections and rotations we expect the

poses on the forward and backward parts to be as similar

as possible. For example, the 3D poses v and v′ should be

similar, and the same with v̂ and v̂′. This also applies to the

2D poses y and y′. Therefore, we can derive the following

component loss functions:

L2D = ||y′ − y||2 (2)

L3D = ||(v′(j) − v′(k))− (v(j) − v(k))||2 (3)

Lr3D = ||v̂′ − v̂||2 (4)

Note that for Equation 3 we follow [31, 27] and instead

of comparing the v and v′ with a L2 loss we measure the

degree of deformation between 3D poses using two samples

j and k in a batch. For simplicity, we refer to the sum of

these three losses as LGC given by

LGC = L2D + L3D + Lr3D (5)

3.2.3 Training and additional losses

Following [14] we include an extra loss term LΩ to evaluate

the mapping y = Ω(s), i.e. from the skeleton image s to the

2D pose y.

LΩ = ||(Ω(β(p))− p)||2 + λ||β(y)− s||2 (6)

where λ represents a balancing coefficient, p is a 2D pose

from the unpaired prior and β is rendered from [14].

We train all the networks from scratch using a loss func-

tion L consisting of three components from Equation 1,

Equation 5, and Equation 6.

L = LD + LGC + LΩ (7)

At inference time, we only keep the elements from the

main mapping as illustrated in the dotted box from Figure 1,

i.e. the loop of rotations and projections, and D are only

needed during training.

4. Experiments
4.1. Data

We train the model with a dataset of video frames depict-

ing full-body horses. First, we select the horse subset from

the latest version of the TigDog dataset [9]. We use video

frames for all the horse sequences in the dataset, discard-

ing video frames showing partially visible horses. To in-

crease the diversity of horses in the training set, we automat-

ically collect video frames for a manually defined group of

YouTube videos that are expected to show horses through-

out (i.e, in most video frames). To gather the video frames

automatically from a video, we follow a three-step process:

1. Download the video from YouTube and split it into

frames.

2. Process each frame using a pre-trained model from

[32], which identifies the horse and produces a seg-

mentation mask. Remove frames that do not contain a

horse.

3. Resize the frames showing a horse to a predefined size

(128× 128) and save them along with their respective

segmentation mask generated by the model.

We collect frames containing complete horses from

about 60 videos, representing 47k frames (plus around 6k

from [9]). Note that this dataset is relatively small com-

pared to what is required for training human pose estima-

tion models — our horse dataset is only 1.3% of the size

of the Human3.6M dataset [13] and 3.6% of the size of the

MPI-INF-3DHP dataset [21].

4.1.1 Test data

In real life applications we cannot assume that test data will

come from the same source as the training data. Thus, in-

stead of selecting a hold-out set of frames for each training

video (which potentially could lead to better performance),

we use more challenging data to test our model. In par-

ticular, we utilise images from a different collection: the

Weizmann dataset [5]. However, this data does not contain

annotations for 2D or 3D poses. We therefore manually

annotate the 2D poses consisting of 15 joint positions (3

for each front and rear limb, 1 for the chin, and 2 for the

eyes) for all the images in the Weizmann dataset showing
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Figure 3. 3D poses estimated by our method. The first and sixth columns show the images with their estimated (red) and ground truth

(green) 2D poses. The rest of the columns illustrate novel views of the predicted 3D pose.

full-body horses (around 300). We use the pose annotations

as ground truth to quantitatively evaluate the estimated 2D

poses from our method.

4.2. Evaluation

Since there is a lack of available horse datasets with 3D

pose annotations for a quantitative performance evaluation,

we only assess the quality of the 3D predictions qualita-

tively. While obtaining 2D poses is more feasible than

3D poses, we evaluate the emergent 2D pose predictions y
quantitatively and qualitatively. Note that although the goal

of the model is predicting 3D poses, the emergent 2D pose

representations are also worth evaluating. We assume that

if the 2D poses are good, it is very likely the 3D poses will

be reasonable as well.

In line with previous works for 2D animal pose es-

timation, we use the Percentage of Correct Keypoints

(PCK@0.05) to quantitatively evaluate our 2D predictions.

Our predicted poses are composed of 20 joint positions.

However, we use only 15 in order to compare with the

ground truth 2D poses from the Weizmann dataset.

4.3. Results & Discussion

4.3.1 Results on 3D pose predictions

Given the scarcity of ground truth 3D data for horses, we

provide only a qualitative evaluation of the 3D poses esti-

mated by our trained model in Figure 3.

Additionally, we test the generalisation capability of our

model by evaluating it on a dataset of zebras [35]. Because

of the anatomical similarities between zebras and horses,

the trained model with the horse data can still estimate plau-

sible 3D poses for zebras (although it has never seen a zebra

during training). Figure 4 displays some 3D predictions for

zebras. Given the slight differences between the two species

Figure 4. 3D pose predictions for zebras. First column shows

the input image. Following columns show novel views of the 3D

poses.

(zebras having slightly wider chests and shorter legs), these

results show the robustness of our method to different do-

mains.

4.3.2 Results on 2D pose predictions

Using the trained model, we produce 2D poses for all the

images in the test set. Each pose prediction consists of 20

joint positions. However, when comparing against ground

truth, we only keep 15 joint positions to match the anno-

tations. Figure 5 shows some predicted 2D poses by our

model compared with their respective ground truth.

In addition, we reproduce the method from [28] that

originally estimates 2D poses for mice. We train it with

the same assumptions that our method, i.e. our same horse

dataset and synthetic 2D poses. We use the Weizmann

dataset to evaluate and compare their predictions with the

ones obtained with our 3D method. As illustrated by Fig-
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Method Evaluation Data Eyes Chin Shoulders Knees Hooves Mean
Syn - Mu et al. [22] TigDog dataset 46.08 53.86 20.46 24.20 17.45 25.33

Sosa [28] Weizmann dataset 45.67 44.67 33.00 37.67 26.67 37.54

CycleGAN [34] TigDog dataset 70.73 84.46 56.97 49.91 35.95 51.86

Ours Weizmann dataset 49.3 58.3 34.2 44.7 31.2 43.50
Table 1. Horse 2D pose estimation accuracy. We calculate the accuracy of our predicted 2D poses using the PCK@0.05 metric. For each

image in the Weizmann dataset, the predicted 2D pose is compare against its respective ground truth. We also list some works that estimate

2D poses using synthetic data.

Figure 5. Predicted 2D poses with our method. Each image

comes from the test set; the red lines represent the connections be-

tween our method’s estimated 2D joint positions. The green lines

represent the connections between the ground truth joint positions.

ure 6, our model for 3D poses can produce more accurate

2D pose representations than the 2D pose estimator from

[28]. This comparison demonstrates the value of incorpo-

rating the geometry consistency idea for lifting 2D poses to

3D.

We use the PCK@0.05 metric to evaluate the predicted

2D poses against their respective ground truth. Table 1

shows the accuracy results of our quantitative evaluation

for 2D pose. It also includes results for approaches that

work under similar conditions. However, note that except

for [28], which assumes the same setting as our method,

the others methods apply supervised learning during train-

ing. Although the performance is not better than some of

the methods listed in the table, it is also competitive, given

the minor requirements of our method.

Furthermore, we experiment by training our method on

the synthetically generated images of zebras from [35], and

using the same synthetic 2D horse poses as prior. We then

test on the same dataset of real zebras [35] as in previous ex-

periments (model trained with horse images and synthetic

2D poses as prior). Despite the differences between do-

mains, the model trained with purely synthetic data (syn-

thetic images of zebras and synthetic 2D poses of horses)

produces similar 2D poses as the model trained with real

horse images and the synthetic 2D horse poses. Figure 7

shows the predicted 2D poses for different images from both

configurations.

Figure 6. Comparison of 2D pose predictions with a similar
method. The first and fourth columns show the ground truth joint

positions (green). The second and fifth columns show the esti-

mated 2D poses by [28] (orange). The third and sixth columns

display the estimated 2D poses by our method (red).

A) B)

Figure 7. Predicted 2D poses. Block A, shows 2D poses predicted

by the model trained with images of horses and the prior on syn-

thetic 2D poses. Block B, display 2D predictions using synthetic

images of zebras and a the same prior on synthetic 2D poses from

horses.

4.3.3 Failed cases

Note that the quality of the emergent 2D pose estimations

influences the accuracy of the final 3D pose predictions.

Therefore, when the previous 2D predictions depict proper

horse poses, the 3D predictions are expected to be more ac-

curate. Surprisingly, even for some non-accurate 2D predic-

tions, our model can still recover a plausible 3D horse pose,

as shown in Figure 8.
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Figure 8. Failed cases for the estimated 2D poses. We select the

2D poses with lower accuracy (PCK@0.05) to have a look at their

respective 3D predictions.

5. Conclusion
We have successfully adapted a method originally de-

signed to estimate 3D human poses to the animal domain.

We further reduce its requirements by generating the needed

prior from synthetic data. We show that with only unla-

belled images and a small set of synthetic 2D poses, it is

possible to learn 3D representations. By reducing the data

requirements for training to a minimum, our proposal could

be applied to many unlabelled detests without collecting an-

notations needed for supervised training.

From our results, there is clearly room for further im-

provement. Two ideas for exploration in future are (1) to

incorporate temporal information into the approach, and (2)

to follow previous work in fine-tuning with small amounts

of actual data to reduce the gap between the synthetic and

real domains.
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