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m.vandroogenbroeck@uliege.be

Abstract

Deep learning has emerged as an effective solution for
solving the task of object detection in images but at the cost
of requiring large labeled datasets. To mitigate this cost,
semi-supervised object detection methods, which consist in
leveraging abundant unlabeled data, have been proposed
and have already shown impressive results. These methods
however often rely on a thresholding mechanism to allocate
pseudo-labels. This threshold value is usually determined
empirically for a dataset, which is time consuming and re-
quires a new and costly parameter search when the domain
changes. In this work, we introduce a new teacher-student
method, named Adaptive Self-Training for Object Detection
(ASTOD), which is simple and effective. ASTOD selects
pseudo-labels adaptively by examining the score histogram.
In addition, we also introduce the idea to systematically re-
fine the student, after training, with the labeled data only to
improve its performance. While the teacher and the student
of ASTOD are trained separately, in the end, the refined stu-
dent replaces the teacher in an iterative fashion.

Our experiments show that, on the MS-COCO dataset,
our method consistently outperforms other adaptive state-
of-the-art methods, and performs equally with respect to
methods that require a manual parameter sweep search,
and are therefore of limited use in practice. Additional
experiments with respect to a supervised baseline on the
DIOR dataset containing satellite images lead to similar
conclusions, and prove that it is possible to adapt the score
threshold automatically in self-training, regardless of the
data distribution. The code is available at https://
github.com/rvandeghen/ASTOD.

1. Introduction
On the path to consolidate on the successes of supervised

deep learning on large labeled datasets, semi-supervised

learning is growing in interest to leverage unlabeled data

and improve the performance in many computer vision ar-

eas, when the amount of labeled data is scarce. Particularly,

semi-supervised learning has led to many improvements for

the task of image classification [2, 3, 18, 28, 29, 33], and is

currently growing in interest for object detection. Accord-

ing to current state-of-the-art research [7, 10, 17, 25, 27,

34], semi-supervised learning methods for object detection

(SSOD) are usually based on the principle of self-training,

wherein a teacher model is first trained with the labeled

data in order to generate pseudo-labels for unlabeled data.

Then a second model, called the student, is trained with the

pseudo-labeled data. Most of the time, the teacher and the

student are trained at the same time in a mutual way.

How can we effectively endorse candidate labels gen-

erated by methods in the context of SSOD? This question

becomes particularly important when considering state-of-

the-art classification methods applied to object detection

tasks. More precisely, one has to answer the question of

how far endogenous (candidate) labels created by a teacher

are to be trusted so that, when added to the labeled dataset,

the detection performance of a student network twinned

with the teacher network can be improved. Keeping only

trustable labels by thresholding the predictions provided by

the teacher based on their confidence scores is a simple yet

effective method. But beyond this simplicity, determining

the adequate threshold value remains tricky. Current works

in SSOD often require a costly parameter sweep across dif-

ferent values to determine a suitable threshold. While it

is easy to understand the behavior of such a threshold re-

garding the generation of false positives or false negatives,

it is not clear which threshold to choose, as evidenced by

previous works where the reported optimal threshold value

ranges between 0.5 and 0.9 depending on the datasets and

network architectures. Also, most works only cover the case

of natural scenes, such as MS-COCO [15] and PASCAL

VOC [4], preventing drawing conclusions for other datasets.

In this paper, we introduce our Adaptive Self-Training

for Object Detection method (ASTOD) to perform the task

of object detection. The main idea of our method is to deter-

mine the threshold value applied to the confidence score to

select pseudo-labels adaptively which is based on the score

histogram of the pseudo-labels. In addition, this strategy

has the benefit of determining a threshold value for each

class without additional cost, which would be very costly

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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with a parameter sweep for most practical semi-supervised

setups. On top of this adaptive threshold, we use differ-

ent views of the unlabeled images during the generation of

pseudo-labels to improve the predictions of the teacher by

reducing the number of missed objects, and to improve the

predictions of the bounding box coordinates. It is also im-

portant to account for the uncertainty in the pseudo-labeled

data when we use them. To do so, we downscale the contri-

bution of pseudo-labels in the loss based on their confidence

scores. Lastly, we refine our student with the labeled dataset

before using it as our new teacher in an iterative way.

In Section Section 3, we delve into the details of our AS-

TOD method, whose pipeline is illustrated in Figure 1, af-

ter a formal definition of our problem statement. Later, in

Section 4, we validate the principle of adaptive self-training

with ASTOD for two experimental setups, namely COCO-
standard and DIOR.

Our contributions can be summarized as follows.

• We present a novel end-to-end SSOD method, called

ASTOD, based on an iterative teacher-student frame-

work. This method includes a computational-free

heuristic based on the score histogram to determine the

threshold value for the selection of pseudo-labels.

• We show that using multiple views to generate candi-

date labels is a simple yet effective technique to im-

prove the labeling process.

• We show that the systematic use of a refinement step

is crucial to improve the performance of the student.

• We demonstrate its effectiveness against state-of-the-

art methods for two setups.

2. Related Work

Semi-supervised learning. Semi-supervised learning has

already been thoroughly studied for image classification.

Among the achievements, some methods are based on the

principles of consistency training [1, 2, 3, 8, 28, 33], which

forces the invariance of a model with respect to input noise

by introducing a regularization loss for the unlabeled data.

For example, Zhai et al. [32] used consistency training to

improve the robustness of the model under adversarial at-

tacks. Xie et al. [28] have tried another approach in which

they minimize the divergence between the output prediction

of an unlabeled image and its augmented counterpart.

Another principle for semi-supervised learning is self

training [9, 12, 19, 21, 23, 29]. It consists of three parts.

First, a teacher model is trained with the labeled data. Then,

the trained teacher model is used to generate pseudo-labels

on the unlabeled data. Finally, a student model is trained

with a dataset comprising the original labels and the pseudo-

labels. In particular, Xie et al. [29] showed that adding noise

during the training of the student model and increasing the

network capacity lead to state-of-the-art results.

Semi-supervised object detection. Driven by the suc-

cesses obtained for image classification, different semi-

supervised learning methods have been tailored for the spe-

cific task of the object detection [6, 7, 12, 16, 17, 10, 23,

25, 27, 34, 36], even though pioneering work began in

2005 [21]. Among them, most methods [7, 10, 12, 16, 17,

23, 27, 34] use a threshold value determined empirically to

select or reject a pseudo-label. Only few of them are de-

signed without threshold [6, 25]. Particularly, one of the

first work was done by Jeong et al. [6], who proposed a

consistency-based semi-supervised learning method by ap-

plying consistency between a horizontally flipped image

and the original one for the classification part, with the

Jensen-Shannon divergence, as well as for the localization

part, with a weighted sum of the squared errors of the four

different components of the localization loss. They ap-

plied this consistency loss for labeled and unlabeled data.

Given that this loss can be dominated by the background

class, they performed a background elimination, which re-

moves predictions likely to belong to the background. An-

other approach is to use soft pseudo-labels [25], which

means that the whole distribution of class probabilities is

used rather than the hard pseudo-label. Those methods give

more flexibility as they do not need any threshold value.

Among the threshold-based methods, the field of SSOD has

grown in interest after that Sohn et al. [23] introduced a

semi-supervised learning method based on self-training and

augmentation-driven consistency regularization. They start

by training a teacher in a supervised manner. Afterwards,

they use the teacher to generate candidate labels, which are

selected when their confidence scores are above a thresh-

old of 0.9. The method then uses a second model, which

is trained on both the labeled and pseudo-labeled data by

jointly minimizing a conventional supervised loss and a

weighted unsupervised loss based on consistency regular-

ization with strong data augmentations. In [12], Li et al.
presented a selective self-supervised self-training for ob-

ject detection method. They started with a teacher-student

self-training method with a threshold value of 0.7 dur-

ing pseudo-labeling, and improved the pseudo-labeling step

with a so-called selective network. This network splits the

set of pseudo-labels into three categories (positive, negative,

and ambiguity), but only the positive pseudo-labels are con-

sidered in the loss term. They also implemented a consis-

tency term in their loss based on the work presented in [6],

which is also only used for the positive pseudo-labels. Liu

et al. [16] proposed an unbiased teacher, which is a teacher-

student method trained in a mutual setting. The teacher

generates pseudo-labels for the training of the student and,

then, the teacher is updated with exponential moving aver-

age (EMA), leading to continually improving models. The
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Figure 1: Pipeline of our self-training ASTOD method. (1) A teacher is trained with the labeled dataset. (2) We use the

teacher to generate candidate labels on the unlabeled data using multiple views. We apply the inverse view transformation

to gather the different predictions in the same dimensional space. The predictions are then merged with NMS. (3) Based on

the confidence score histogram, we determine the threshold value τ to filter the candidate boxes, leading to a pseudo-labeled

dataset. (4) Next, we train the student with the labeled and pseudo-labeled datasets. (5) Finally, we refine the student with

the labeled dataset and use it to replace the teacher. ASTOD can then be used in an iterative fashion by replacing the teacher

(2) with the refined student.

authors also used a threshold value of 0.7 to remove boxes

with low confidence scores and they addressed the problem

of class imbalance by replacing the standard cross-entropy

loss with the focal loss [14]. They also published a second

version of their unbiased teacher [17] for anchor-free detec-

tors. Zhang et al. [34] also addressed the problem of class

imbalance with two modules. The first module addresses

the problem of foreground-background imbalance by past-

ing synthetic objects from the training/pseudo dataset in the

training images. The second module addresses the prob-

lem of foreground-foreground imbalance, which changes

the sampling probability with respect to the class occur-

rence. Kim et al. [7] presented a data augmentation tech-

nique for the unlabeled dataset that mixes image tiles and

feature tiles together and then unmixes the features for the

student. Those unmixed feature maps are then processed

by the RPN and ROI heads with the pseudo-labels being

generated by the teacher with the same weakly augmented

images. Li et al. [10] also adopted the teacher-student dual

learning but took into account the noisy nature of pseudo-

boxes regression. Their method is based on a learning

scheme that uses multiple views for both the images and

the feature maps to enforce consistency. Tanaka et al. [24]

recently proposed to optimize the threshold based on the β-

score and without iterating on the student.

The current literature on the topic of semi-supervised learn-

ing for object detection exhibits a wide variety of nuances

around a teacher-student scheme and the calculation of

pseudo-labels. Alongside, this often results in the heuristic

determination of parameters among which the determina-

tion of a threshold on the confidence score during the gen-

eration of pseudo-labels. As opposed to most approaches of

current literature, we intentionally skip this process thanks

to an adaptive calculation of such threshold embedded into

a new iterative, multiple-view, and refined teacher-student

scheme. This forms the basis of our concept of adaptive

self-training. In the case of ASTOD, this calculation oc-

curs by analyzing the histogram of scores associated to the

generation of pseudo-labels in a fully automatic fashion.
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3. Method

Problem statement. We consider a set, D, of images, xi,

containing several classes of objects to be detected. Among

D, only a subset of images, xl
i, are annotated with the class

and localization of all objects of interest, yl
i (called “labels”

or ground-truths), and compose the subset of labeled im-

ages Dl = {xl
i,y

l
i}Nl

i=1, where Nl is the number of labeled

images in D. Each ground-truth yl
i is composed by a set

of classes c and bounding box coordinates b. The remain-

ing images of D with no labels, xu
i , compose the subset of

unlabeled images Du = {xu
i }Nu

i=1, where Nu is the number

of unlabeled images in D. These subsets are complemen-

tary sets (that is D = Dl ∪ Du), and we assume that they

come from the same data distribution. In semi-supervised

learning setups, we often have Nl � Nu.

Teacher warm up. Our method relies on a teacher-student

scheme, where the student learns from the pseudo-labels

generated by the teacher. Thus, the first step is to learn a

teacher that is able to generate high-quality candidate labels,

which are all the predictions made by a model without re-

strictions. The first step of our method then consists in train-

ing the teacher model with the labeled data only. We use the

conventional training loss for object detection, which is the

sum of the classification and regression losses:

Ll =
∑
i=1

⎡
⎣∑

j=i

(Lcls (p(cj |xi), cj) + Lreg (p(bj |xi), bj))

⎤
⎦ ,

(1)

where the index j corresponds to the index of an anchor,

p(cj |xi) is the predicted class probability of anchor j in the

image xi, and p(bj |xi) are the 4 bounding box coordinates

of a predicted bounding box.

Multi-view pseudo-labeling and ground threshold. After

we warm up the teacher model, we use it to generate can-

didate labels for the unlabeled data. Since we want to mit-

igate the false negatives due to missed predictions and we

want the most accurate predictions, the inference of each

unlabeled image is processed under multiple views: origi-

nal image, horizontally flipped image, rescaled image, and

both flipped and rescaled image. Afterwards, we apply the

inverse transformations to the predictions so that they can

be aggregated in the same dimensional space. To reduce

redundancy, we apply non-maximum suppression (NMS)

on each prediction before and after aggregation. This leads

to a subset of candidate pseudo-labels Dû = {xu
i , ŷ

u
i }Nc

i=1,

with Nc being the number of unlabeled images which have

at least one prediction ŷ, given that we automatically dis-

card images without prediction. Note that each prediction

ŷu
i is composed by the set of predicted classes, its cor-

responding bounding box coordinates, and the confidence

scores s associated to each box. Now that we have access

to high-quality candidate labels, we need to select among

them those that can be considered as true positives. In con-

trast to classification tasks, where we can select the class

with the highest probability, this is a challenging step for

SSOD. Indeed, there can be multiple objects in the same

image, meaning that an independent decision must be taken

for each anchor. The most straightforward and, by far, most

common solution is to threshold the candidates based on

their score predictions.

Previous works in the field use a threshold value, de-

noted by τ , which suits at best their method and the dataset

on which they evaluate it. Typical values for this thresh-

old range between 0.5 and 0.9. However, this threshold

value is often determined with a costly parameter sweep,

unique for all classes, and is optimized for only one image

distribution (natural scenes with MS-COCO). To account

for those shortcomings, we propose a new heuristic, called

ground thresholding, based on the score histogram to deter-

mine the threshold value: ground thresholding selects the

bin with the lowest density. From our experience, taking the

bin with the lowest density is a heuristic that constitutes a

well-suited compromise solution for eliminating false posi-

tives (bins on the left) while preserving a high enough recall

(bins on the right). The final pseudo-labeled dataset is then

Dp = {xp
i , ŷ

p
i }Np

i=1, with Np being the number of candi-

date images which have at least one prediction that satisfies

ŷc ≥ τ . Since this heuristic does not require the burden of

a parameter sweep to find the threshold value, it can be ap-

plied independently for each class, which does not bias the

threshold value with respect to the class occurrence. It also

means that our method can easily generalize to any dataset

without any additional computational cost.

Iterative student training. We train the student model in

the same manner as for the teacher, but with the labeled and

pseudo-labeled data (Dl′ = Dl ∪ Dp). During the training

of the student, we do not distinguish images coming from

Dl or Dp. However, to account for the uncertainty in the

pseudo-labeled data, we generalize the weighting term

αj =

{ sj−τl
τh−τl

if τl ≤ sj < τh,

1 otherwise.
(2)

used in [26] for the loss by fixing τh = 1, where τh and τl
represent a high and a low threshold value and sj the score

prediction. This leads to the weighted loss function:

Lu =
∑
i=1

⎡
⎣∑

j=i

αj (Lcls + Lreg)

⎤
⎦ , (3)

where Lcls and Lcls are the same classification and regres-

sion losses as in Equation (1). The weighting factor αj used

to reduce the contribution of each prediction is then defined

as

αj =

{
sj−τj
1−τj

if τj ≤ sj ≤ 1,

1 otherwise,
(4)
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with sj and τj being the score and the class-wise threshold

value associated to the prediction. Since the score value of

labeled data are implicitly set to 1, only pseudo-labeled data

contribute to the weighting factor of the loss.

The final step consists in the refinement of the trained

student model with the labeled data only. Our method can

then be used in an iterative pipeline, where the refined stu-

dent model will become the new teacher. Since we expect

that the student model achieves better results compared to

the teacher, its predictions for the candidate labels should be

of higher quality which thus leading to an even better new

student.

4. Experiments
4.1. Experimental setup

Datasets. Our experimental setup follows the methodol-

ogy introduced in STAC [23]. In particular, we evalu-

ate our method on two setups: (setup 1) natural images

on MS-COCO [15] and (setup 2) satellite images from

the DIOR [11] dataset. For the first setup (called COCO-
standard hereafter), we randomly sample 1, 2, 5 and 10%
labeled training data out of the 118k images available in the

train2017 split and use the remaining ones as unlabeled

training data. For the second setup (DIOR), we first shuffle

all the labeled images in two parts: the training part with

80% and the validation part with the remaining 20%. Then,

we sample 10% of the training dataset as labeled data and

the remaining 90% as unlabeled data. Unlike most of the

other works in semi-supervised for object detection, which

use PASCAL VOC [4] as second dataset, we evaluate our

method on satellite images with the DIOR dataset to ana-

lyze our method for a totally different image distribution.

For both COCO-standard and DIOR, we report the mean

and standard deviation of the AP50:95 (mAP) over 5 folds.

Implementation details. For a fair comparison with previ-

ous works, we use Faster-RCNN [20] with FPN [13] and a

ResNet-50 [5] backbone pretrained on ImageNet [22] as ob-

ject detector. For the teacher warm-up, we train the model

for 20k steps of gradient descent with a starting learning

rate of 0.08 that decays after 13k and 18k steps by a fac-

tor 10. For the generation of pseudo-labels, we use 4 dif-

ferent views of the unlabeled image: (1) normal view, (2)
upscale of the original image by a factor of 2, (3) horizon-

tal flip of the original image, and (4) both upscaling and

flipping of the original image. From the score histogram,

we set the threshold by selecting the bin with the lowest

density between 0.5 and 1 with 21 bins —the choice of

the [0.5, 1] range was motivated by the need to select only

pseudo-labels with enough confidence, while we choose 21
bins because we wanted an odd number of bins and, by ex-

perience, the impact of more bins on the threshold value

was insignificant. The student models are trained for 180k

steps, with the same learning rate as the teacher, which fol-

lows the same decay strategy after 120k and 160k steps. Fi-

nally, the student models are refined on the labeled dataset

for 10k steps with a learning rate starting at 0.0008 which

decays after 6k steps. All the models for COCO-standard
are trained on 4 GPUs, with a batch size of 16 per GPU. We

apply random color and scale jitter as data augmentation.

When we train the student models, the batches are formed

with 2 labeled and 14 unlabeled images. For DIOR, we use

3 scale levels per anchor to better match the different bound-

ing box shapes. The batch size is reduced to 8 per GPU and

the student is trained for 90k steps.

4.2. Results

COCO-standard. We compare our model with the state-

of-the-art semi-supervised object detection methods on

COCO-standard, as it is the main benchmark adopted by

the SSOD community. We group the different methods ac-

cording to how their threshold value is set, if any. In par-

ticular, we group methods that perform a parameter search

to find the optimal threshold value. This kind of meth-

ods represents most of previous works in the field, such as

STAC [23], Soft Teacher [30] or Unbiased Teacher [16, 17].

The second group is for methods that do not need an empir-

ical search for their threshold, such as CSD [6], Humble

Teacher [25] and our method. One could say that the for-

mer group are dataset dependent while the latter ignore the

dataset distribution. Even though our ASTOD method has a

threshold parameter, it is adaptive to the dataset, thus closer

to the second group than the first. The results are shown in

Table 1, where our results are obtained after 3 iterations of

student training plus refinement. While being competitive

w.r.t. to the state-of-the-art methods with empirical thresh-

old, like Unbiased Teacher v2 [17] and PseCo [10], our

method consistently outperforms methods that do not take

into account the dataset distribution [6, 25]. It is important

to note that if Unbiased Teacher v2 [17] and PseCo [10]

have better performances than ASTOD, they would be more

challenging to use in practice on a new dataset, simply be-

cause there is no data to fine-tune their thresholds.

DIOR. It is important to design SSOD methods that are

usable and effective in many different setups. While pre-

vious works in the field have mainly focused on natural

scene images with MS-COCO and PASCAL-VOC, we de-

cided to evaluate our method with a different and challeng-

ing setup. We targeted the field of satellite images because

of the growing interest around it, with the DIOR dataset.

Since there is no baseline for SSOD methods for that

dataset, we will compare with the supervised baseline

achieved by our teacher model. We generated candidate

labels with the Flip+Scale strategy and used a class-wise

ground threshold. We also refine the student model to fur-

ther improve its performance. The results of the different
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Table 1: Experimental results on COCO-standard for the mAP: we report the mean and standard deviation over 5 randomly

sampled dataset. We group the different methods w.r.t. to their thresholding strategy. The methods in the middle of the table

use a manual empirical search for the threshold value (these methods are thus intractable when applied on a new unknown

domain), while methods in the lower part are fully automatic. The results of Supervised† represents the performance of our

teacher, which sets our supervised baseline. The results of our method are obtained after 3 iterations of student with refined

models, where we used our ground threshold and the multi-views strategies during the pseudo-labeling step.

1% 2% 5% 10%

Supervised 9.05± 0.16 12.70± 0.15 18.47± 0.22 23.86± 0.81
Supervised† 12.14± 0.21 16.67± 0.30 23.59± 0.20 29.34± 0.20
STAC [23] 13.97± 0.35 18.25± 0.25 24.38± 0.12 28.64± 0.21

Instant Teaching [35] 18.05± 0.15 22.45± 0.15 26.75± 0.05 30.40± 0.05
ISMT [31] 18.88± 0.74 22.43± 0.56 26.37± 0.24 30.53± 0.52

Unbiased Teacher [16] 20.75± 0.12 24.30± 0.07 28.27± 0.11 31.50± 0.10
Soft Teacher [30] 20.46± 0.39 - 30.74± 0.08 34.04± 0.14
Omni-DETR [27] 18.6 23.2 30.2 34.1

Unbiased Teacher v2 [17] 25.40± 0.36 28.37± 0.03 31.85± 0.09 35.05± 0.02
PseCo [10] 22.43± 0.36 27.77± 0.18 32.50± 0.08 36.06± 0.24

CSD [6] 10.51± 0.06 13.93± 0.12 18.63± 0.07 22.46± 0.08
Humble Teacher [25] 16.96± 0.38 21.72± 0.24 27.70± 0.15 31.61± 0.28

Ours (ASTOD) 19.47± 0.39 24.85± 0.21 30.43± 0.50 34.58± 0.22

Table 2: Comparison between models trained on DIOR. The

refined student models are trained with candidates labels

generated with the Scale+Flip technique and a class-wise

threshold. We report the mean and standard deviation over

5 randomly sampled dataset.

Supervised Student Refined

mAP 47.59± 0.36 51.23± 0.35 52.89± 0.33

models are presented in Table 2. The gain obtained af-

ter one iteration shows the effectiveness and robustness of

our method towards completely different data distribution,

meaning that it can be further used in other applications.

4.3. Ablation study

We study our method w.r.t. to its different components

on COCO-standard with a labeled dataset size of 10%.

Pseudo-labeling. It is important to rely on high-quality

pseudo-labels. To obtain those high-quality pseudo-labels,

it is possible to use a high threshold value but at the cost

of rejecting potential true positives with lower confidence

scores. However, it is not possible to avoid false negatives

due to missed predictions. Our multi-view pseudo-labeling

strategy can help to reduce their numbers. Figure 2 shows

the predicted candidate labels for the different views we

consider. We can effectively see that only using the nor-

mal view fails to predict some objects in the image, such as

the right snowboard, and adding the predictions of the other

views solves the problem. Since our aggregation of boxes is

performed with NMS, which is a score-based method, the

final boxes are a mix of the different views, leading to the

best possible candidates.

Ground threshold. The key component of our method is its

ability to determine a suited threshold value without empir-

ical search. The proposed strategy is to compute the score

histogram and set the threshold value to the bin with the

lowest number of instances. While the number of bins and

the score range are parameters of the proposed method, Fig-

ure 3 shows that the shapes of the histograms are the same,

that is U-shaped with high density regions for very low and

very high scores, and that they do not influence the posi-

tion of the lowest density bin. Since this heuristic is inde-

pendent on the data distribution, it can be applied for each

class separately, which gives the possibility to have a set

of thresholds rather than a single one. However, training

with a uniform threshold seems to achieve better results on

COCO-standard, as can be seen in Table 4. Looking at Fig-

ure 4, which shows the score histogram for a single class

and for all the classes jointly, we can see that both of them

define a U-shape. This is the shape that we expect since a

threshold value lower than the ground threshold would lead

to more pseudo-labels, with many of them having a high

probability to be false positives. Also, if the score threshold

was higher than the ground threshold, we would probably

create false negatives. But the problem arises for classes

that are hard to learn. For those classes, the chosen heuristic

can fail. Since most of the predictions for those classes may

have a low confidence score, the histogram can be mono-

tonically decreasing, leading to a ground threshold equal
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(a) Normal view (b) Scaled view (c) Flipped view (d) Scaled+Flipped view (e) Aggregated view

Figure 2: Comparison between the candidate labels for the different views. The normal view (a) misses two snowboards.

Both flipped and scaled+flipped views (c) and (d) miss the small snowboard. Only the scaled view (b) has detected all the

snowboards. The aggregated view (e) combines the information of all images (with NMS) to produce the final candidate

labels. Note that images (b), (c) and (d) are transformed back to the original space.
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(a) Histogram ranging from 0.5
to 1 with 21 bins.
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(b) Histogram ranging from 0.1
to 1 with 101 bins.

Figure 3: Histograms for different parameters.

to the last bin. There are multiple consequences to that

scenario. First, we generate a lot of false negatives in the

pseudo-labeled dataset. Then, the student trains on noisy

labels, which will again emphasize the problem of classes

hard to learn. Taking a uniform threshold sets the threshold

value at a lower score than their ground threshold, leading

to fewer false negatives. However, in the DIOR setup, we

observe that this problem is not present, which we explain

by the fact that the teacher is able to better learn the different

classes. As shown in Table 4, the student model performs

better with a class-wise threshold.

The key advantage of our method is that it eliminates

the need for a parameter search to find the threshold value.

However, it is interesting to see how it behaves against this

parameter search. Table 3 shows the performance of the

student model trained with different threshold values and

trained with our method. The results depict two interest-

ing behaviors: (1) the optimal threshold from the parameter

search does not always gives a better performance, as can

be seen on DIOR, (2) the optimal threshold value with pa-

rameter search for two distinct image distributions does not

give the same threshold (0.7 for COCO-standard and 0.8 for

DIOR). This emphasizes that a manual sweep is unsuitable

for generalization purposes. It is also important to note that
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Score value

0

200

400
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800

1000

(a) Score histogram for a single

class.
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0
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10
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25

×104

(b) Score histogram for all

classes.

Figure 4: Score histograms for a single class (τ = 0.7) (a),

and for all the classes (τ = 0.75) (b).

we can process our candidate labels using 6 bins ranging

from 0.5 to 1. In this setup, the width of a bin is 0.1, mean-

ing that the bin with the lowest density will match a value

that could have been selected with this classical grid search.

On COCO-standard, we observed that the ground thresh-

old value in this particular setup is 0.7, which appears to be

the optimal value in Table 4. This result further consolidate

that our ground threshold strategy gives a good threshold

value at no cost. Although this particular setup would give

the best result for the COCO-standard setup, we argue that

restraining our method to this particular example does not

fulfill our idea to be adaptive to any dataset, which is con-

firmed with the result obtained on DIOR.

Table 3: Performances obtained with a parameter search on

the threshold compared to our method. We report the mean

over 5 randomly sampled dataset for both setups.

τ 0.5 0.6 0.7 0.8 0.9 Ours

COCO 10% 32.81 32.83 33.02 32.82 32.57 32.91
DIOR 52.14 52.29 52.55 52.61 52.49 52.89

Iterative students + Refinement. Since our method is not
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Figure 5: Comparison between the different learning curves

of student and refined models w.r.t. the batch size configura-

tion. The vertical dashed line indicate when the refinement

step begins.

Table 4: Comparison between refined student models

trained with different thresholding strategies. We report the

mean and standard deviation over 5 folds for both setups.

Surprisingly, using a uniform value performs better than us-

ing one determined class-wise on COCO-standard.

Setup Class-wise τ Uniform τ
COCO-standard 32.56± 0.11 32.91± 0.16

DIOR 52.89± 0.33 52.52± 0.25

based on a mutual training between the teacher and student

models, the pseudo-labels used for the student are fixed.

However, if we can obtain better results by the end of its

training, we can expect to have better candidate labels by

using the student as our new teacher. Before we replace the

student as our new teacher, we refine the student on the la-

beled dataset only for a few gradient descent steps. This

idea has already been used by Vandeghen et al. [26] to im-

prove the ROI Heads with only trustable ground-truth la-

bels. As it is shown in Table 5 for COCO-standard and in

Table 2 for DIOR, this final trick is highly effective. The re-

sults obtained for 3 iterations, before and after refinement,

are shown in Table 5.

During our experiments, we performed an analysis on

the batch size distribution between the labeled and pseudo

labeled images. The different configurations were 0|16,

Table 5: Comparison between the different iterations of stu-

dent and refined models for the mAP on COCO-standard.

There is a twofold message from those results: (1) Consec-

utive iterations of student training consistently improve the

performance compared to the previous iteration. (2) Refin-

ing the student is a simple yet effective way to boost the

performance. We report the mean and standard deviation

over 5 randomly sampled dataset.

1% 2% 5% 10%
Supervised 9.05± 0.16 12.70± 0.15 18.47± 0.22 23.86± 0.81
Supervised† 12.14± 0.21 16.67± 0.30 23.59± 0.20 29.34± 0.20

Student 1 16.57± 0.46 21.53± 0.34 27.64± 0.17 31.77± 0.14
Refined 1 16.67± 0.36 21.93± 0.36 28.47± 0.43 32.91± 0.16
Student 2 17.75± 0.31 23.23± 0.29 29.17± 0.45 32.88± 0.18
Refined 2 17.95± 0.37 23.62± 0.33 29.54± 0.45 33.86± 0.18
Student 3 18.71± 0.30 24.23± 0.34 29.65± 0.41 33.40± 0.23
Refined 3 19.47± 0.39 24.85± 0.21 30.43± 0.50 34.58± 0.22

2|14, 4|12 and 8|8, for the labeled and unlabeled size re-

spectively. The averaged learning curves of the first student

models are shown in Figure 5, where the training of the stu-

dent models stops at 180,000 iterations. From the student

results, it could be obvious to discard the first two config-

urations. However, those refined models tend to perform

better than the last two configurations. This analysis shows

that (1) refining the student models is a crucial step to im-

prove their performance, and (2) drawing some conclusions

with only the student performance may not be sufficient.

5. Conclusion
In this paper, we present ASTOD, an iterative end-to-

end self-training method for object detection. Our method

solves the problem of parameter sweep for the threshold

value in SSOD with a heuristic threshold value which adapts

easily to different setups. We also present the systematic

use of a refinement step of the student models to improve

their performance. Our experiments show that our method

largely outperforms state-of-the-art methods in SSOD, that

are threshold-free methods.

Limitations and further work. While our method shows

an excellent capacity to adapt to diverse data distributions,

there is still potential to adapt it to methods which ap-

proach the teacher-student scheme with mutual learning.

We believe that more work should address the problem of

thresholding methods based on parameter search. Finally, a

deeper investigation regarding the refining step may be use-

ful, as we have shown that this step consistently improves

the performance.
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