
Appendix

Scenarios Defect Types

Electrical Insulator crack
Metal Welding weld beading, weld pit

Photovoltaic Module broken, miss, foreign body
Wind Turbine crack

Catenary Dropper looseness, broken, miss
Nut and Bolt looseness, bolt miss, nut miss
Witness Mark looseness

Table A.1. Defect types for each scenario in MIAD.

A.1. Defect Types in MIAD
MIAD contains 14 reasonable and common defect types

in total, detailed defect types for each scenario are listed in
Table A.1.

A.2. Implementation Details on Experiments
For each method, we give a detailed description of the

code repository, image input size, data augmentation, neu-
ral net architecture and training strategy (e.g. learning rate,
batch size).

A.2.1. Reverse Distillation

We use the publicly available code in Anomalib [1] as
the implementation of Reverse Distillation [3]. Both train-
ing and testing images are zoomed to the input size of 256 ×
256 pixels. No data augmentation is applied, as this requires
prior knowledge about class-retaining augmentations. We
adopt WideResNet50 as the backbone in the T-S model.
During training, we utilize Adam optimizer [4] with the
learning rate of 0.005, β1 of 0.5 and β2 of 0.999. All ex-
periments on the MIAD dataset are run with a batch size of
32 on 1 GPU (NVIDIA Tesla V100 32GB). The other pa-
rameters not mentioned are consistent with the default con-
figuration in Anomalib.

A.2.2. PatchCore

We use the publicly available code in Anomalib [1] as the
implementation of PatchCore [8]. Both training and testing
images are zoomed to the input size of 224 × 224 pixels and
no data augmentation is applied. We adopt WideResNet50

as the backbone. All experiments on the MIAD dataset are
run with a batch size of 32 on 1 GPU (NVIDIA Tesla V100
32GB). Specifically, due to the limitation of GPU memory,
PatchCore failed to run when training data size is larger than
2000. Therefore, we randomly sample 2000 images to train
the model. The other parameters not mentioned are consis-
tent with the default configuration in Anomalib.

A.2.3. FastFlow

We implement the code of FastFlow following the setting
of the original paper [12]. Both training and testing images
are resized to the input size of 256 × 256 pixels and no data
augmentation is applied. We adopt Wide-ResNet50-2 as the
backbone and directly use the embedding of the last layer
in the first three blocks, and then put these features into the
2D flow model to obtain their respective anomaly heatmaps,
then we average the outputs of each heatmap. All the back-
bones used in the network are initialized from Imagenet pre-
trained weights. We use 8-step flows for Wide-ResNet50-2.
We train this model using Adam optimizer with the learning
rate of 1e-3 and weight decay of 1e-5. We evaluate the final
results after 500 epochs training with a batch size of 32 on
1 GPU (NVIDIA 1080Ti 12GB).

A.2.4. DRAEM

For the implementation of DRAEM [13], we use the
publicly available code at https://github.com/vitjanz/draem.
Both training and testing images are zoomed to the input
size of 256 × 256 pixels. Random augmentation sampling
is applied during training by a set of 3 random augmen-
tation functions sampled from the set: {posterize, sharp-
ness,solarize, equalize, brightness change, color change,
auto-contrast}. Additional image rotation in the range of
(−45, 45) degrees is used as a data augmentation method
on non-defective images during training. The neural net-
work, which consists of a reconstructive sub-network and
a discriminative sub-network following DRAEM [13], is
trained for 700 epochs with a batch size of 8 on 1 GPU
(NVIDIA Tesla V100 32GB). The learning rate is set to
10−4 and is multiplied by 0.2 after 560 and 630 epochs
with the Adam [4] optimizer. The l2 and SSIM loss [10]
are applied on the reconstructive sub-network, and the Focal
Loss [5] is applied on the discriminative sub-network out-
put to increase robustness towards accurate segmentation of



hard examples.

A.2.5. Auto-Encoder

We implement the code of the Auto-Encoder following
the setting of MVTecAD [2]. A modified U-Net [7] is used
for the backbone instead of a simple stack of convolution
layers. All input RGB image is normalized by a mean of 0.5
and an standard deviation of 0.5. Both training and testing
images are zoomed to the input size of 256 × 256 pixels and
no other data augmentation is used. All experiments on the
MIAD dataset are run for 100 epochs with a batch size of
16 on 1 GPU (NVIDIA Tesla V100 32GB). All models are
trained using the Adam [4] optimizer with a learning rate of
0.0001 and a weight decay of 0.0005.

A.2.6. UniAD

For the implementation of UniAD [11], we use the pub-
licly code at https://github.com/zhiyuanyou/UniAD. A pre-
trained EfficientNet-b4 [9] model is used for feature extrac-
tion, and the feature maps from stage-1 to stage-4 are re-
sized and concatenated together to form a 272-channel fea-
ture map. Both training and testing images are zoomed to
the input size of 224 × 224 pixels and no data augmen-
tation is applied. The model is trained for 500 epochs on
8 GPUs (NVIDIA Tesla V100 32GB) with batch size 64.
AdamW [6] optimizer with weight decay 0.0001 is used and
the learning rate is 0.0001 initially, and dropped by 0.1 after
400 epochs. Other settings are consistent with the original
code.

A.3. More Anomaly Localization Visualiza-
tions

More qualitative results of each method are shown in
Figure A.1. The photovoltaic module scenario is only af-
fected by uncontrolled viewpoints, and is similar to indoor
texture anomaly in MVTec AD. Therefore, many methods
including Reverse Distillation, FastFlow and DRAEM per-
form well. The wind turbine is relatively easy for Reverse
Distillation, PatchCore, FastFlow and DRAEM. However,
the other scenarios are very difficult. For example, meth-
ods fail on the electrical insulator, the nut and bolt mainly
due to uncontrolled viewpoints. Methods fail on the metal
welding mainly result from uncontrolled surface. Methods
fail on the catenary droper mainly because of uncontrolled
background. And the combination of uncontrolled view-
points, background and surface result in the failure cases of
all methods on the witness mark.

Moreover, DRAEM is more preferable for surface
anomaly because it is intended for surface anomaly detec-
tion and simulates surface anomalies by augmented images.
However logical anomalies can not be simulated well by
simple data augmentation, which coincides with the imper-
fect performance of DRAEM.
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Figure A.1. Qualitative anomaly segmentation results for each evaluated method on the MIAD dataset.


