
Appendix
In this supplementary material, we provide additional

details about our approach, experiments and results.

A. Discussion of the Architecture
Here we further discuss the architecture of our model.

Feature Extractor To evaluate the importance of using
ViT-DINO features, we compare a number of different
pre-trained self-supervised ViTs in Tab. 1. We find that
our method works best with ViT-DINO features, followed
closely by ViT-MSN [1]. MAE does not seem to learn fea-
tures with strong semantic correspondence properties, pos-
sibly due to its image reconstruction objective.

Method Backbone CUB Spair71k PF-Pascal

MAE [4] ViT-16 34.6 18.4 54.7
MSN [1] ViT-16 62.1 29.5 64.8
DINO [3] ViT-16 64.9 – –

DINO [3] ViT-8 66.2 36.4 73.4

Table 1. Comparison of different backbones. We compare the
PCK of a model trained on CUB with different self-supervised
ViTB-16 backbones (we use ViTS-8 in our all other experiments,
but ViT-8 weights were not available for some of the backbones
we evaluate here).

Fine-tuning the Backbone. We found that keeping the
ViT-DINO backbone frozen to be essential for our method
to work well. If the pre-trained ViT-DINO is fine-tuned to-
gether with the transformer adapter, it returns features Φ
that minimize the contrastive loss in Eq. 2 but have lost
their semantic power. We thus keep the teacher frozen in
all our experiments. Moreover, keeping the features used
in the distillation loss frozen, while fine-tuning the features
that go into the transformer adapter, does not lead to any
significant gains in performance.
Additional ablations We ablate the values of the temper-
ature parameters τH and τd on CUB in Table Tab. 2. We see
that performance is highly dependent on both parameters.

Value Ablated param.
τH τd

1.0 32.4 38.8
0.1 65.3 66.8
0.05 66.8 66.7
0.01 64.1 66.4

Table 2. Ablation of τH and τd . When ablating τH , we keep
τd = 0.1 and when ablating τd, we keep τH = 0.05. We ablate
on CUB.

B. Implementation details
In the contrastive distillation loss in Eq. 2, the denomi-

nator contains negative features from the source and target
image. In practice, we sample 200 features from both im-
ages due to memory constraints. We found that the model
converges faster as more negative features are used, but got
diminishing returns when using more than 200.

When selecting pseudo pairs in training, we discard im-
ages whose salient region is smaller than 20% of the area of
the image. We found that many of the unsupervised masks
of [6] were very small and not representing any object, and
we use this step to filter such masks.

While during training we keep features at their origi-
nal 28 × 28 spatial resolution, during test-time in the final
matching step we bilinearly upsample the target features to
128 × 128, and do this for all baselines and comparisons,
too. We found this improves matching performance for
small objects across the board.

The adapter has 14M parameters and the FLOPs for a
single pass are 15B. We train on a single 48G GPU with
batch size 32 for less than 2 days.

C. Qualitative Evaluations
Our model can track keypoints on an object as it under-

goes significant appearance changes, as shown in Fig. 1.
In Figs. 2 to 5 we qualitatively compare our method to

the baseline ViT-DINO features and the methods from [2, 5]
on random examples from PF-Pascal, Spair-71k, CUB, and
SDogs. We use green squares for correct matches and red
circles for incorrect ones.

We see that as discussed in the paper, PMD performs
very well when the transformations between the objects
can be approximated by a simple warp, as in the PF-Pascal
dataset in Fig. 2. In the evaluations of PMD on Spair-71k,
CUB and Sdogs, we use their weakly-supervised SPair-71k
pre-trained model. We see that in all these cases the model
fails to establish semantic correspondences.

Finally, we note a problem of the SDogs dataset that can
be seen in the last column of Fig. 5. In a large number of the
pairs, there is more than one dog in the target image. This
leads to ambiguous annotated keypoints, where there should
be more than one correct correspondence in the target im-
age. Upon closer inspection, our model (and other models
as well) predicts correct keypoints, but not on the arbitrarily
selected dog with the ground-truth correspondences.
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Query Track

Figure 1. Semantic Correspondences. Given annotations in one frame, our model can find correspondences when the object undergoes
significant appearance and pose changes (transformation to a wolf) in the video.
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Figure 2. Qualitative Evaluation on PF-Pascal. We see that PMD manages to find correct correspondences when the source and target
images are aligned.
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Figure 3. Qualitative Evaluation on SPair-71k. We see this is a much more difficult dataset than PF-Pascal.
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Figure 4. Qualitative Evaluation on CUB. Our method improves on the baseline features in almost all example points. We see that PMD
fails to establish correspondences when there are large pose changes between the source and target images.
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Figure 5. Qualitative Evaluation on SDogs. Our method generally improves on the baseline features. We emphasize the last column,
where the dog on the right is arbitrarily annotated as the correct match.
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