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Abstract

When it comes to clinical images, automatic segmenta-
tion has a wide variety of applications and a considerable
diversity of input domains, such as different types of Mag-
netic Resonance Images and Computerized Tomography
scans. This heterogeneity is a challenge for cross-modality
algorithms that should equally perform independently of the
input image type fed to them. Often, segmentation models
are trained using a single modality, preventing generaliza-
tion to other types of input data without resorting to trans-
fer learning techniques. Furthermore, the multi-modal or
cross-modality architectures proposed in the literature fre-
quently require registered images, which are not easy to col-
lect in clinical environments, or need additional process-
ing steps, such as synthetic image generation. In this work,
we propose a simple framework to achieve fair image seg-
mentation of multiple modalities using a single conditional
model that adapts its normalization layers based on the
input type, trained with non-registered interleaved mixed
data. We show that our framework outperforms other cross-
modality segmentation methods, when applied to the same
3D UNet baseline model, on the Multi-Modality Whole
Heart Segmentation Challenge. Furthermore, we define the
Conditional Vision Transformer encoder, based on the pro-
posed cross-modality framework, and we show that it brings
significant improvements to the resulting segmentation, up
to 6.87% of Dice accuracy, with respect to its baseline ref-
erence. The code to reproduce our experiments and the
trained model weights are publicly available at https:
//github.com/matteo-bastico/MI-Seg.

1. Introduction
Medical image segmentation is one of the most challeng-

ing and studied research fields of deep learning and artificial

intelligence in recent years [18, 28, 41, 54, 66], as shown in

surveys [45, 48]. The precision of segmentation achieved

competitive results thanks to recent efforts in developing

convolution [33, 41] and transformer-based neural networks

[17, 18]. These algorithms are generally trained on a sin-

gle medical imaging modality, such as T1- or T2-Weighted

Magnetic Resonance Images (MRIs) or Computed Tomog-

raphy (CT) scans. Therefore, they often suffer from data

variability when tested on images different from those seen

during training. Data variability is a common issue in the

medical field and it is due to several uncontrollable factors

that depend on the specific clinic or patient needs [47], e.g.,

different imaging methods, different scanners, different ac-

quisition settings or patient limitations. In this scenario,

the most straightforward approach would be to train a sep-

arate model for each domain, requiring a massive amount

of different annotated training data and not exploiting inter-

domain information.

Recently, to tackle this issue, some multi-modal [58] and

cross-modality [28, 54, 63, 66] medical image segmentation

techniques have been proposed. The first group of methods

aims to produce better segmentation by simultaneously ex-

ploiting information from multiple sources. In this case, it

is good practice to stack several images of different types

to generate a combined input for the segmentation model

[65]. Furthermore, multi-modality can also be leveraged to

produce synthetic images of missing domains at inference

time [8]. Here, different modalities are rather seen as sep-

arate inputs for the model that generates a common repre-

sentation and produces synthetic images. However, in both

scenarios, registered medical images [20] are needed. Al-

though registration is relatively simple, the acquisition of

several images of the same patient is often limited by local

resources and time constraints. The second group of meth-

ods, i.e. cross-modality methods, focus on producing seg-

mentation independently of the data type provided in input.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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More specifically, an assistant modality, of which several

annotated data are available, is often used to improve the

segmentation performance on another modality with fewer

annotated data, i.e. target modality. Fine-tuning [50] or

transfer learning [40] are straightforward ways of adapting

deep learning models to target modalities after they have

been trained on some specific assistant modality. However,

these approaches do not fully exploit shared cross-modality

information. One intuitive way to overcome this problem

is joint training [54], where a model is trained simultane-

ously with multiple modalities. Nevertheless, it is relatively

hard to directly learn common features when the domain

shift is significant, e.g MRIs and CTs. Therefore, to di-

rectly learn from multi-modality data with large appearance

discrepancy, the use of several feature extractors, i.e., one

per modality, has been first proposed in an X-shaped ar-

chitecture [54], implying a significant overhead on the seg-

mentation model and requiring adjustment to generalize to

other clinical tasks. To address this issue, several techniques

based on synthetic image generation prior to segmentation

have been introduced [7, 27, 66]. In many cases, the assis-

tant modality is used to synthesize the target, or vice versa,

and train the model on a mix of real and synthetic data [28].

The additional pre-processing step required by these meth-

ods to make the clinical images segmentation-ready adds

computational complexity, which is often critical in real-

time applications such as computer-assisted surgery [51].

In this work, we propose a general framework, applica-

ble to any encoder-decoder literature architecture, aiming

to produce high-quality cross-modality segmentation with-

out introducing overhead on the segmentation model nor

needing registered clinical images for training. With our

framework, medical images from different domains can be

fed individually directly into a single modality-conditioned

model, which generates the desired segmentation by self-

adapting its encoder normalization layers. The adaptation is

based on Conditional Instance Normalization (CIN), which

has been originally proposed for the transfer of arbitrary

artistic styles by Dumoulin et al. [11]. Thanks to that,

and similarly to joint training, our models can be trained

in an end-to-end way. By randomly mixing different data

of several modalities, in what we call interleaved mixed
training fashion, we get rid of prior synthetic image style

transfer. Furthermore, based on the proposed framework,

we formally define the Conditional Vision Transformer (C-

ViT) encoder architecture to build modality-agnostic ViT-

based models [10] for image segmentation or classifica-

tion, as shown in Figure 1. We extensively evaluate our

method on the Multi-Modality Whole Heart Segmentation

(MM-WHS) 2017 Challenge [67]. We show that C-ViT im-

proves the baseline model and other multi-modal techniques

and that our framework outperforms other cross-modality

segmentation methods, when applied to the same baseline

Embeddings
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Figure 1: Overview of the proposed cross-modality clinical

image segmentation technique applied to the Swin-UNETR

segmentation model [17]. The input modality can be arbi-

trarily switched to obtain the desired segmentation, while

keeping the model unchanged. In conditional models, the

modality is also used as input to activate the encoder nor-

malizations corresponding to the data type and generate

common latent spaces.

model. Our contributions are summarized as follows:

• We present a novel framework to enhance the quality

of cross-modality segmentation, while removing ex-

pensive input pre-processing steps and the need of reg-

istered data for training.

• Following the framework, we introduce the Condi-

tional Vision Transformer encoder, which adapts its

normalization layers based on the input modality and

can be used for several tasks.

• We show that the proposed framework outperforms

other cross-modality learning techniques both on UNet

and ViT baselines.

2. Related Works

Multi-Modality Learning in Medical Imaging. In re-

cent years, several deep learning architectures have been

proposed for image segmentation, achieving extremely

good performance [6, 17, 18, 35, 43]. Among them, UNet

[41] is surely the most popular and is used as a baseline

to create better performing models [45]. More recently,

some variation based on vision transformers (ViT) [10] and

swin-transformers [31], such as TransUNET [6], UNETR

[18] and Swin-UNETR [17], have been shown to outper-

form previous versions of UNet. In the clinical imaging
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field, multi-modality learning is a similar, yet challeng-

ing, task. Multiple medical image domains have been ex-

ploited for synthetic image generation based on Generative

Adversarial Networks (GAN) [8, 9, 15, 49, 61] or multi-

modal image segmentation [13, 16, 58, 65]. Interestingly,

the two tasks have also been merged by Zhang et al. [62]

in a cross-task feedback fusion GAN that first generates

synthetic CT and then performs multi-modal segmentation.

The latter uses cross-domain information to achieve better

performances, but it is restricted to when registered im-

ages are available. To relax the need of aligned medi-

cal images and exploit inter-domain features during train-

ing, cross-modality segmentation approaches have recently

gained attraction. Firstly, Zheng et al. [64] investigated

the effectiveness of shape priors learned from an assistant

modality to improve the segmentation on a target modality

by marginal space learning. Valindria et al. [54] devel-

oped dual-stream encoder-decoder models having different

branches for each modality and implementing weights shar-

ing techniques to extract cross-modality features. Similarly

to our work, some researchers tried to play with the nor-

malization layers of the models to improve their generaliza-

tion capacities [12, 38, 42, 44, 66]. Among others, Pan et
al. [38] introduced the IBN-Net which simultaneously ex-

ploiting Instance and Batch Normalization to capture both

appearance changes and content information. Segu et al.
[42] proposed to collect prior domain-dependent statistics

by training ad-hoc Batch Normalization (BN) to map the

modalities on a shared latent space.

With the aforementioned advances in synthetic images

generation, many works have tried to tackle the challenge

by assisting segmentation models with prior image trans-

lation [7, 22, 27, 28, 63, 66]. Among them, Zhang et al.
[63] tried to improve the segmentation for modalities with

limited training samples by easing the appearance gap with

other modalities using a GAN. Similarly, Li et al. [28]

proposed an Image Alignment Module to reduce the ap-

pearance gap between assistant and target modality and in-

troduced a Mutual Knowledge Distillation scheme [21] to

exploit modality-shared knowledge. More recently, Zhou

et al. [66] proposed to simulate the possible appearance

changes of a target domains by non-linear transformation to

augment source-similar and source-dissimilar images.

Different from these methods, which mainly rely on im-

age translation or prior trainings, our framework tries to

shrink the model complexity and, at the same time, improve

the segmentation accuracy extracting all the available cross-

modality features by conditioning the segmentation models

and training them jointly with assistant and target modality.

Moreover, some of the previous techniques [28, 64] do not

allow for arbitrary switch of the input modality, but they just

exploit assistant modality information to improve the target

segmentation.

Normalization Layers. Our work is also related with

normalization layers used in neural networks, which may

differ based on the spatial dimension to which they are ap-

plied. The four main classes of normalization layers are

batch, layer, group, and instance normalization. Batch Nor-

malization was the first technique introduced to deal with

the variability of layers input during training by normaliz-

ing the features across mini-batches [24]. Layer Normaliza-

tion (LN) [2], used mainly in Natural Language Processing

(NLP) and Recurrent Neural Networks (RNNs), was intro-

duced to relax the dependency on the batch, normalizing

only across features. Similarly, Group Normalization [60]

computes the mean and standard deviations in groups of

channels rather than using the entire feature space. Finally,

Instance Normalization (IN) has been introduced, in the

imaging context, to prevent instance-specific mean and co-

variance shift, simplifying the learning process [53]. Huang

et al. [23] proposed a further variation of IN, called Adap-

tive IN to perform arbitrary image style transfer, that is, syn-

thetic image generation, by adjusting the mean and variance

of the content input to match those of the desired style input.

The latter does not have learnable parameters, but it com-

putes them directly from the input style. In our framework,

we propose to use a similar variation of IN recently pro-

posed by Dumoulin et al. [11], called Conditional Instance

Normalization (CIN), which learns a different set of param-

eters γm and βm for each style m ∈ [1,M ]. Given a three-

dimensional volume with C channels, zzz ∈ R
C×H×W×D,

of modality m, the CIN is calculated as

CIN(zzz,m) = γm

(
zzz − μ(zzz)

σ(zzz)

)
+ βm (1)

where μ(zzz) and σ(zzz) are computed across spatial dimen-

sions independently for each channel and each sample [23].

It allows the sharing of all convolutional weights of a style

transfer network across many image styles by only changing

the learnable normalization parameters. Inspired by that,

in this work, CIN is exploited to generate a shared latent

space for different input modalities, which is used to obtain

the segmentation output independently of the medical input

image domain.

3. Method
The overview of the proposed cross-modality segmen-

tation framework is shown in Figure 2. The segmentation

model, which can be chosen among those available in the

literature, is conditioned by the input data modality to adapt

its normalization layers to the fed clinical image. There-

fore, the aim is to produce the desired segmentation inde-

pendently of the input data domain.

In the following, the general framework for creating con-

ditional models is introduced and it is applied to the trans-

former encoder, to obtain the C-ViT encoder. Finally, more
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Figure 2: Overview of the proposed conditional framework:

the conditional encoder, E(·,m), generates S common la-

tent spaces, {C1, . . . , CS}, one for each multi-resolution

step of the encoder, adapting itself to the input modality m.

The decoder, D(·), is unique and does not need adaptation.

details about the framework training procedure, including

the loss function, are reported.

Conditional Segmentation Models. Let any state-of-

the-art encoder-decoder segmentation architecture be con-

sidered as baseline for the proposed framework. In a

straightforward case, for a given data modality m ∈ [1,M ],
let Em(·) : Im → Hm and Dm(·) : Hm → O be the two

functions that describe the encoder and decoder modules

of the chosen architecture, respectively. The role of Em(·)
is to transform the input, xxxm ∈ Im, into a latent feature

space, Hm, which can better represent the information car-

ried by raw data. On the other hand, the purpose of Dm(·)
is to transform this representation into the final segmenta-

tion yyy ∈ O. In general, the space Hm is learned ad-hoc by

the model, based on the type of data used during training.

To make the model independent of the input modal-

ity, we propose to create a general conditional encoding

module, E(·,m) : Im → C, which transforms any input

xxxm ∈ Im, 1 ≤ m ≤ M , into a common shared latent fea-

ture space C. In this way, a single decoder D(·) : C → O
is needed to generate the segmentation of all the modalities.

The relation between any input xxxm and the output yyy in a

conditional model can then be expressed as

yyy = D(E(xxxm,m)) , 1 ≤ m ≤M (2)

More generally, in an architecture with skip connections,

e.g. UNet [41], the encoder may be seen as a sequence of

S sub-modules, each corresponding to a different resolution

step. In this case, to obtain robust cross-modality segmenta-

tion, the framework is applied to each step, generating a set

of multi-resolution common latent spaces, Cs, 0 ≤ s ≤ S,

as shown in Figure 2. Therefore, the decoder will simply

gather the data from all the shared latent spaces to generate

a modality-agnostic segmentation output.

In practice, we propose to generate the conditional en-

coder E(·,m), starting from any simple encoder Em(·),
by adding the data modality as input (often available from

meta-data, without manual intervention) and replacing all

its normalization layers with CIN. In such way, the only

Embeddings
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Output 
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Figure 3: Conditional Vision Transformer Encoder. The

multi-head self-attention (MSA) mechanism is followed by

a MLP and each of them is preceded by CIN. The latter con-

sists of a switch mechanism to activate the IN corresponding

to the modality flag in input. A focus on the different nor-

malizing direction of IN and LN is also shown in the zoom.

overhead on the segmentation model is given by the ex-

tra normalization learnable parameters γm and βm, 1 ≤
m ≤ M , of Equation 1, which are negligible with respect

to the rest of the architecture. Furthermore, we avoid any

pre-processing phase, such as synthetic image generation

through GANs, which can heavily impact on the network

performances, and we let the model directly learn a com-

mon shared latent space for all the input modalities, trying

to fully exploit the inter-modality information.

Conditional Vision Transformer. The proposed C-ViT

encoder is shown in Figure 3. As originally proposed by

Vaswani et al. [55], it has two sub-layers, the first is a multi-

head self-attention mechanism (MSA), and the second is a

simple, position-wise fully connected Multi-Layer Percep-

tron (MLP). Both sub-layers are preceded by a normaliza-

tion [10, 56] and a residual connection is employed around

each of them. Here, we replace the Layer Normalization

(LN) [2], which has historically been used in transformers,

with CIN. In other words, a switch mechanism that selects

the IN corresponding to the input modality is introduced be-

fore each sub-layer.

In a general scenario with M different input modalities,
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Table 1: Quantitative comparison with other methods for cross-modality medical image segmentation on the target modality

(CT). All the techniques have the same UNet basline [54], are trained using 20 MRIs and 10 CTs and are evaluated on the

test set of MM-WHS dataset. The mean DICE score is reported, as well as the ones for all the heart substructures.

Model Avg Dice
Dice of substructures of heart

MYO LA LV RA RV AA PA

Baseline 87.06 87.02 89.22 90.86 83.86 84.60 92.52 81.34

Fine-tune 87.69 87.16 90.40 90.79 84.43 85.26 92.74 83.05

Joint-training 87.43 86.65 90.76 91.23 82.78 84.92 93.02 82.66

X-shape [54] 87.67 87.19 89.79 90.94 85.51 84.44 93.43 82.40

Zhang et al.[63] 88.50 87.81 91.12 91.34 85.14 86.31 94.30 83.42

Li et al. [28] 90.12 89.34 91.90 92.67 87.47 88.14 95.95 85.38
Ours 90.77 90.06 92.68 93.77 88.22 90.85 94.70 84.52

let L, N and K be the number of stacked transformer blocks

that make up a transformer encoder, the number of input

patches and the dimensions of the embedding space, respec-

tively. For a given input embedding of the i-th transformer

block, zzzi−1 ∈ R
N×K , we have

ẑzzi = MSA(CIN(zzzi−1,m)) + zzzi−1 , 1 ≤ i ≤ L (3)

zzzi = MLP(CIN(ẑzzi,m)) + ẑzzi , 1 ≤ i ≤ L (4)

where 1 ≤ m ≤ M is the modality corresponding to the

input and CIN(·, ·) is defined in Equation 1. Note that zzz0
corresponds to the linear projection of the input patches,

i.e. non-overlapping sub-patches of dimension P × P × P

of the input volume, {pppj ∈ R
P 3

: 1 ≤ j ≤ N} , into

a K-dimensional embedding space using a projection ma-

trix EEE ∈ R
P 3×K [18]. Additionally, learnable positional

embeddings, EEEpos ∈ R
N×K , are included to code spatial

information, finally obtaining

zzz0 = [ppp1EEE; . . . ;pppJEEE] +EEEpos. (5)

The rationale for substituting LN, which is inherited

from the applications of the first transformers in NLP [59],

for CIN, or more generally IN, is also motivated on the

zoom of Figure 3. LN computes the average and variance

of the single input patches along the K dimensions of the

embedding space. Therefore, when it comes to images,

the latter produces an independent normalization for each

image patch without considering the entire input data. IN

addresses this issue by computing the metrics for normal-

ization across all the input patches but separately for each

embedding dimension. Intuitively, the model is able to gen-

erate more meaningful embeddings when the input volume

is considered as a whole for normalization.

The technique presented here can also be generalized to

the Swin-transformer model by replacing the MSA of Equa-

tion 3 with W-MSA or SW-MSA, denoting window-based

multi-head self-attention using regular and shifted window

partitioning configurations, respectively [31]. Finally, in

this case, to have a fully conditional encoder, also the patch

merging block, used to generate hierarchical representations

of the input patches, must be adapted in the normalizations.

Loss function and Training. To train cross-modality

segmentation models using our framework, we used a com-

bination of Dice Loss [26], LDice, and Focal Loss [30],

LFocal, as

L = λDLDice + λFLFocal (6)

where λD and λF are scalar factors greater than 0 to adjust

the contribution of each individual loss to the total. We pre-

ferred this version of the loss, rather than the standard com-

bination of Dice loss and Cross-Entropy (CE), to tackle the

unbalancing of clinical image segmentation, which is often

significant between background and foreground. The focal

loss, instead, reshapes the standard CE loss so that it down-

weights the loss assigned to well-classified examples. In

this way, more weight will be given in the loss to hard clas-

sified samples, i.e., labels difficult to segment, improving

the learning process.

Differently from joint training [54], in which training

data is divided into batches of different modalities, condi-

tional models are trained using an interleaved mixed data

training fashion. This means that different modalities are

randomly fed into the model during training, even in the

same batch. Therefore, the overall loss will provide an

overview of the goodness of the segmentation indepen-

dently from the input modality, pushing the network to be

fair with all different types of data.

4. Experiments
In this section we describe the experiments carried out

to evaluate the proposed cross-modality framework with in-

terleaved mixed data training. The experiment settings are

described, including the dataset, the implementation details,

and the algorithms to tune the models hyper-parameters. Fi-

nally, the results are shown and discussed.
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Table 2: Performance comparison on the target modality (CT) of our framework applied to the Swin-UNETR model [17].

All the models are trained using 20 MRI and 10 CT volumes and are evaluated on the test set of MM-WHS dataset. The

mean DICE score is reported, as well as the ones for all the heart substructures and Whole Heart (WH) segmentation.

Model WH Avg Dice
Dice of substructures of heart

MYO LA LV RA RV AA PA

Baseline 83.11 85.32 84.79 88.12 89.80 81.04 84.08 77.58 76.36

Fine-tune 86.33 86.09 82.57 90.03 87.92 83.29 85.51 90.28 83.06

Joint-training 89.03 87.99 86.25 92.07 91.97 85.35 87.98 89.55 82.76

C-ViT [ours] 89.98 89.33 88.13 91.64 92.39 86.36 89.33 93.39 84.05

Table 3: Performance comparison on MRIs, used as as-

sistant modality, of our framework applied to the Swin-

UNETR model [17]. The baseline is the model used to do

fine-tuning on the target modality.

Model WH Mean Dice

Baseline 83.32 81.87

Joint-training 86.65 84.82

C-ViT [ours] 85.57 84.30

4.1. Experiment settings

Dataset. We evaluate the proposed method on the Multi-

modality Whole Heart Segmentation Challenge 2017 (MM-

WHS 2017) dataset [67], which contains non-registered

20 MRI and 20 CT volumes for training and the ground-

truth (GT) annotations of 7 cardiac substructures including

the Left Ventricle blood cavity (LV), the Right Ventricle

blood cavity (RV), the Left Atrium blood cavity (LA), the

Right Atrium blood cavity (RA), the MYOcardium of the

left ventricle (MYO), the Ascending Aeorta (AA), and the

Pulmonary Artery (PA). Following previous cross-modality

segmentation works on this dataset [28], we used MRI as

assistant modality and CT as target modality, since MRI

has better contrast for soft tissue and ideally provide bet-

ter information for heart substructures segmentation. We

evenly and randomly split the CT data in order to perform

a two-fold cross-validation and train the conditional models

with 20 MRIs and 10 CTs at a time, to simulate data short-

age for the target modality. Furthermore, MRI volumes are

pre-processed using the N4 bias field correction algorithm

to correct low frequency intensity non-uniformity present

in MRI image data known as gain field [52]. Finally, all

the volumes are re-sampled to an isotropic space and their

values are normalized between 0 and 1.

Implementation Details. To provide a fair comparison,

we first applied our framework to the same baseline used

by other cross-modality previous works [28, 54]. Namely,

we implemented the network architecture with encoder-

decoder structure proposed by Valindria et al. [54], con-

sisting of a 3D UNet [41] with residual blocks with pre-

activation [19]. After that, we evaluated the efficiency of

the proposed C-ViT encoder applied to the Swin-UNETR

[17] segmentation model, originally consisting of a Swin-

transformer encoder [31] and UNet style decoder, as shown

in Figure 1. For all the models, we define an input size

of 96 × 96 × 96 pixels and sub-patches, in the case of

transformer-based architectures, of 16 × 16 × 16 pixels.

Therefore, at each epoch, a fixed number of random crops

of input size is extracted, for each volume. Note that, in this

way, the effective batch size is given by Ns × Nc, where

Ns and Nc are the number of samples and crops, respec-

tively. For the transformer-based models, we follow the

original implementation of Hatamizadeh et al. [17], with

L = 8 blocks and hidden size K = 768 in the encoder.

Furthermore, data augmentation is applied to artificially in-

crease training data and deal with inter-modality variations

by randomly shifting and scaling the intensity of the input

volumes, along with random flips in all three dimensions.

Finally, to validate and test the models, sliding window in-

ference is used with an overlap of 0.5.

The code is implemented in PyTorch, with the help of the

MONAI library [5], and trained on a cluster equipped with

multiple NVIDIA V100 GPUs. Optimization is performed

using Adam with decoupled weight decay [32] and a cosine-

decay Learning Rate (LR) scheduler with warm-up, for a

maximum of 2500 epochs. All the models are tuned to find

the best set of hyper-parameters as described below.

Hyper-parameters Tuning. To take full advantage of

the segmentation models, we tuned them using the Optuna

framework [1], following the guidelines from [14]. There-

fore, the batch size is not tuned but is kept unchanged

among trials as the maximum that can fit our memory avail-

ability, that is, 16 three-dimensional crops (Ns = 4 and

Nc = 4). The optimal LR is found for each model using

the cyclical learning rate technique [46] and a logarithmic

search space centered on that value is defined for tuning.

The number of LR Warm-Up epochs is chosen among the

values of 2, 4 and 6% of the maximum training epochs [25]

and the optimizer weight decay is also tuned. Finally, the

loss function of Equation 6 is used with λD = λF = 1.

For each trial, the hyper-parameters are sampled form
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Figure 4: Qualitative comparison of the segmentation result on the CT target domain of our framework applied to the Swin-

UNETR model [17] on the MM-WHS dataset. Our framework is compared with the baseline model, trained on the target

modality, fine-tuning and joint-training with interleaved mixed fashion.

the search space using the Tree-structured Parzen Estima-

tor (TPE) algorithm [4, 37]. This technique aims to find

the best set of parameters by fitting two Gaussian Mixture

Models (GMMs) to the good and bad trials and minimizing

their ratio. Furthermore, Asynchronous Successive Halv-

ing (ASHA) [29] is used to early-stop bad trials and save

computational time and resources.

4.2. Experiment results

We report here the results of our experiments using the

proposed framework on the MM-WHS dataset [67], quan-

titative using the Dice similarity coefficient and qualitative

by comparing segmentation images. In the following, we

first compare our proposal with other techniques and then

we evaluate the accuracy of the proposed C-ViT.

Comparison with Other Methods. The comparative

quantitative results for heart substructures segmentation are

shown in Table 1. In fine-tuning the model is first trained

using the assistant modality only and then, the acquired

knowledge is transferred to the target modality with a subse-

quent training. In join-training the baseline model is trained

with both modalities simultaneously by alternating them

on different batches. We also compare the accuracy with

the X-shape architecture proposed by Valindria et al. [54]

and the online training with synthetic image generation ap-

proach of Zhang et al. [63]. Finally, a knowledge distilla-

tion cross-modality segmentation technique is also consid-

ered for comparison [28]. As highlighted by the latter, fine-

tuning, joint-training and the X-shaped architecture bring

marginal improvements on the segmentation accuracy since

they do not fully exploit cross-modality information. Online

GAN-based synthetization with and without mutual knowl-

edge distillation start to significantly improve the mean ac-

curacy of target modality segmentation, up to 3.06%. Nev-

ertheless, in both cases, significant overhead is introduced

on the model, limiting its possible real-time applications.

Our method achieves significant improvements in the

segmentation accuracy, while reducing the complexity of

both training and inference. We observe an enhancement of

0.65% in the mean Dice and up to 2.71% on the single heart

substructures, namely in the RV. However, a small decrease

in performances is registered for AA and PA, probably due

to the fact that the manual segmentation of these structures

generally covers beyond the real size of the vessels while

the test tool cuts them to a limited length [67].

Evaluation of C-ViT and Ablation Study. We compare

the performance of the C-ViT-based segmentation model

with its baseline [17] and the result obtained by fine-

tuning and joint training the same model (with interleaved

mixed fashion). Table 2 summarizes the quantitative re-

sults in terms of Dice accuracy of Whole Heart Segmen-

tation (WHS) and single substructures segmentation. Fur-
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GTJoint-Training C-ViT [Ours]Baseline Fine-tuning

Figure 5: Comparison of the 3D segmentation of heart sub-

structures from CT using different cross-modality methods.

MRI C-ViT [Ours] GTJoint-TrainingBaseline

RA RV AAMYO LA LV PA

Figure 6: Qualitative comparison of the segmentation re-

sult, on the MRI assistant domain, of our framework applied

to the Swin-UNETR model [17] on the MM-WHS dataset.

thermore, Figure 4 shows a qualitative comparison on single

slices of the segmentation obtained on CT by using different

methods, and Figure 5 directly compares the 3D segmenta-

tion of a whole sample. Our framework enhances of 4% the

mean Dice of heart substructures, with significant improve-

ments in each of them, and 6.87% the accuracy of WHS,

with respect to the baseline model. Qualitative, we can see

important improvements when using C-ViT with respect to

other methods, that may also result in refinement of the GT

(e.g. the segmentation of PA on the second row of Figure 4).

In the 3D comparison, we observe the improvement in the

segmentation produced by C-ViT which does not contain

false positives outside the region of the GT. The proposed

framework is robust with respect to the fold used for cross-

validation (mean Dice of 91.18% ± 0.68 for the ViT-based

and 90.76% ± 0.55 for UNet-based). Moreover, the ViT-

based conditional model performs better than the UNet one

in validation, but it has slightly worst performances on the

test set, probably due to the fact that transformers usually

need more data for finer generalization [39].

Differently from some other related works [27, 28] our

framework do not just exploit assistant modality to improve

the segmentation of the target one, but it keeps the abil-

ity of producing high-quality segmentation for the assistant

modality by switching the input domain. To confirm that,

In Table 3, WHS and Mean Dice of MRI segmentation is

reported, where the baseline is considered to be the model

trained only with assistant modality and used to fine-tune

the target modality. Also the assistant modality segmen-

tation accuracy benefits of our framework, as well as of

joint-training, improving with respect to the baseline model.

Moreover, Figure 6 also shows some qualitative improve-

ments of the MRI segmentation, especially from baseline

to C-ViT. As previously mentioned, transformers are ”data-
hungry” [57], in the sense that they suffer from significant

performance drops on small-size datasets. We have shown

that, with our conditional framework applied to ViT, it is

possible to relax the need of an huge dataset for training by

gathering several small datasets of different modalities.

5. Conclusions

In this work, we proposed a simple framework that aims

to segment different types of medical images, while reduc-

ing the model overhead and the need of registered data for

training, using a single cross-modality conditional model

trained with interleaved mixed data. We introduced a gen-

eral definition of a conditional model, based on CIN, that

can be applied to all state-of-the-art medical image seg-

mentation architectures. Furthermore, we developed a new

C-ViT encoder that can be used to create conditional ViT-

based models. We validated our framework using a public

multi-modal dataset for heart substructures segmentation,

which collects both MRI and CT data. Our framework

achieves new state-of-the-art performance for the cross-

modality medical image segmentation with assistant and

target modality. We have shown that not only the first one

helps the learning on the latter when few annotated data are

available, but also the segmentation of the assistant modal-

ity benefits of our framework. We believe that our work can

be an important contribution for developing robust cross-

modality medical image segmentation methods, to tackle

cases in which the acquisition of a specific kind of im-

age is limited by environmental or patient-specific restric-

tions. Furthermore, in the future, other datasets with sev-

eral modalities [3, 36, 34] may be tested and the proposed

framework may be extended in an Unsupervised Domain

Adaptation fashion, to make possible the training on a sin-

gle labeled modality with adaptation to unlabeled domains.
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