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Abstract

Neural architecture search has seen continual progress
due to the interest in automating architecture design in deep
learning following the promise of finding the best possi-
ble neural network architecture tailored for a particular
task. Recently, many works focused on tackling tasks like
image classification and language modeling, allowing sig-
nificant developments in computer vision and NLP. As re-
search in such directions has established standard criteria
and benchmarking tasks for algorithmic performance com-
parison, the same cannot be said of other applications and
tasks. Our work presents an experimental comparison pro-
tocol that narrows down the process of evaluating super-
resolution image restoration architectures in neural archi-
tecture search approaches. Such protocol consists of two
datasets for training and validation during and after the ar-
chitecture search, and the application of a Bayesian statis-
tical test for studying the observable results.

1. Introduction
Deep learning rapidly became a predominant tool in

many fields of machine learning due to its impressive per-

formance on unstructured data, as different authors demon-

strate that the structure of a network allows the extrac-

tion of dominant features from data [22]. The automatic

feature extraction ingrained within deep models makes ar-

chitectural design crucial to ensure good predictive perfor-

mance, where extensive area-specific knowledge and expe-

rience are necessary for designing the proper neural archi-

tecture structures by hand. Even then, constructing a net-

work becomes highly dependent on time-consuming trial-

and-error processes, in which inherent limitations of human

knowledge make it difficult for researchers to leave behind

preconceived notions of well-studied and well-performing

known paradigms used on specific tasks. The field of Neu-

ral Architecture Search (NAS) originates in an attempt to

alleviate the cumbersome process of deep architecture de-

sign by automating the discovery of novel structures, ideally

reducing any human intervention.

In the past, NAS has found broad success at discovering

innovative models capable of surpassing hand-crafted net-

works, focusing mainly on computer vision and natural lan-

guage processing tasks [24, 9, 10], yet experts claim that the

true potential of NAS is yet to be studied in broader areas

of application [24, 9]. The ever-increasing demand for in-

telligent image processing, striving to achieve better image

representations with more detail even from poor capturing

conditions, has motivated experts to study the possibility of

addressing the problem of Super-Resolution Image Restora-

tion (SRIR) from a NAS perspective. The SRIR task tries

to predict a high-resolution image from one or more low-

resolution samples, thus improving the visual information

of images after capture [16]. As a central task within im-

age restoration, SRIR has found relevance in various ap-

plications ranging from medical image processing [2, 15]

to surveillance and security [18], being able to help other

models reach higher performance by improving perceptual

quality before and after training.

While it is indubitable the success that NAS approaches

have, being an emerging field, it still poses many issues in

need of a solution if we wish for research in this direction to

maintain momentum. One such challenge is the process of

machine-crafted model evaluation for pipeline comparison.

In the current state of the art, it has become the norm that

novel developments are only compared by contrasting any

found architectures against others, either machine- or hand-

crafted. A priory, direct empirical comparisons can help

motivate continual improvements in both NAS and Deep

Learning (DL) while pushing forward any existing base-

line. Yet, in the longer term, this could prove insufficient to

demonstrate the advantages that some NAS pipelines could

have against competing approaches or even human-driven

architectural design. Several contemporary works that study

the application of NAS in the context of image restoration

tasks follow very narrow experimental protocols, contrast-

ing architectures just by evaluating final models over bench-

marking tasks [17, 20]. The narrow scope presents more

than enough reasons to motivate a necessity for incorporat-
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ing additional elements as part of experimental protocols,

such as standardized data sets for training and testing of

machine-crafted models and statistical analyses of any ob-

tained result as part of experimentation.

Inspired by recurring trends emerging within various sci-

entific areas that rely on empirical observations, we intro-

duce in this manuscript what we believe are the first steps

towards achieving a fair experimental contrasting protocol

for machine-crafted DL models improving the discussion

of results for NAS applied to SRIR in Section 2. Our pro-

posal delimits the tasks that will serve for both the training

and testing of machine-crafted models as well as the met-

rics used for both direct and statistical contrast of the per-

formance and efficiency of models. With this, we seek to

motivate future experimental protocols to consider the ap-

plication of more advanced inferential statistics while quan-

tifying the significance of presented results, beyond merely

discussing the observable differences found among compet-

ing approaches. Moreover, the simplicity of this protocol

aims at extending the contemporary standards of NAS ap-

plied to SRIR, while maintaining enough simplicity to be

further extended and applied in later instances.

The proposed comparison protocol is described piece-

wise in the following sections of this article, starting with

the specifics of the data used for training and testing

machine-crafted models in Section 3, the necessary infor-

mation on the use and interpretation of a Bayesian signed-

rank test for statistical analysis of results as presented in

work [3] can be found in Section 4. This comparison exclu-

sively deals with the performance and complexity of found

architectures. Lastly, remarks on the importance of this kind

of research and conclusions are located in Section 5.

All data sets and codes necessary for the

application of this protocol are publicly avail-

able at https://github.com/jesusllg/
An-Experimental-Protocol-for-NAS-SR.
git.

Deep learning rapidly became a predominant tool in

many fields of machine learning due to its impressive per-

formance on unstructured data, as different authors demon-

strate that the structure of a network allows the extrac-

tion of dominant features from data [22]. The automatic

feature extraction ingrained within deep models makes ar-

chitectural design crucial to ensure good predictive perfor-

mance, where extensive area-specific knowledge and expe-

rience are necessary for designing the proper neural archi-

tecture structures by hand. Even then, constructing a net-

work becomes highly dependent on time-consuming trial-

and-error processes, in which inherent limitations of human

knowledge make it difficult for researchers to leave behind

preconceived notions of well-studied and well-performing

known paradigms used on specific tasks. The field of Neu-

ral Architecture Search (NAS) originates in an attempt to

alleviate the cumbersome process of deep architecture de-

sign by automating the discovery of novel structures, ideally

reducing any human intervention.

In the past, NAS has found broad success at discovering

innovative models capable of surpassing hand-crafted net-

works, focusing mainly on computer vision and natural lan-

guage processing tasks [24, 9, 10], yet experts claim that the

true potential of NAS is yet to be studied in broader areas

of application [24, 9]. The ever-increasing demand for in-

telligent image processing, striving to achieve better image

representations with more detail even from poor capturing

conditions, has motivated experts to study the possibility of

addressing the problem of Super-Resolution Image Restora-

tion (SRIR) from a NAS perspective. The SRIR task tries

to predict a high-resolution image from one or more low-

resolution samples, thus improving the visual information

of images after capture [16]. As a central task within im-

age restoration, SRIR has found relevance in various ap-

plications ranging from medical image processing [2, 15]

to surveillance and security [18], being able to help other

models reach higher performance by improving perceptual

quality before and after training.

While it is indubitable the success that NAS approaches

have, being an emerging field, it still poses many issues in

need of a solution if we wish for research in this direction to

maintain momentum. One such challenge is the process of

machine-crafted model evaluation for pipeline comparison.

In the current state of the art, it has become the norm that

novel developments are only compared by contrasting any

found architectures against others, either machine- or hand-

crafted. A priory, direct empirical comparisons can help

motivate continual improvements in both NAS and Deep

Learning (DL) while pushing forward any existing base-

line. Yet, in the longer term, this could prove insufficient to

demonstrate the advantages that some NAS pipelines could

have against competing approaches or even human-driven

architectural design. Several contemporary works that study

the application of NAS in the context of image restoration

tasks follow very narrow experimental protocols, contrast-

ing architectures just by evaluating final models over bench-

marking tasks [17, 20]. The narrow scope presents more

than enough reasons to motivate a necessity for incorporat-

ing additional elements as part of experimental protocols,

such as standardized data sets for training and testing of

machine-crafted models and statistical analyses of any ob-

tained result as part of experimentation.

Inspired by recurring trends emerging within various sci-

entific areas that rely on empirical observations, we intro-

duce in this manuscript what we believe are the first steps

towards achieving a fair experimental contrasting protocol

for machine-crafted DL models improving the discussion

of results for NAS applied to SRIR in Section 2. Our pro-

posal delimits the tasks that will serve for both the training
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and testing of machine-crafted models as well as the met-

rics used for both direct and statistical contrast of the per-

formance and efficiency of models. With this, we seek to

motivate future experimental protocols to consider the ap-

plication of more advanced inferential statistics while quan-

tifying the significance of presented results, beyond merely

discussing the observable differences found among compet-

ing approaches. Moreover, the simplicity of this protocol

aims at extending the contemporary standards of NAS ap-

plied to SRIR, while maintaining enough simplicity to be

further extended and applied in later instances.

The proposed comparison protocol is described piece-

wise in the following sections of this article, starting with

the specifics of the data used for training and testing

machine-crafted models in Section 3, the necessary infor-

mation on the use and interpretation of a Bayesian signed-

rank test for statistical analysis of results as presented in

work [3] can be found in Section 4. This comparison exclu-

sively deals with the performance and complexity of found

architectures. Lastly, remarks on the importance of this kind

of research and conclusions are located in Section 5.

All data sets and codes necessary for the application of

this protocol are publicly available and will be included as

part of this manuscript later to preserve anonymity during

the Double-blind peer review process.

2. Protocol for evaluating SRIR NAS methods
Evaluating machine- or hand-crafted model performance

requires various elements to ensure an adequate and fair

comparison among different approaches. The complexity

of result replicability and the expense of empirical analysis

of NAS pipelines has forced many current works, especially

in SRIR, to compare results by direct contrast of reported

results, greatly disregarding differences that could exist in

both the training and testing of models. Proper compari-

son studies require more than selecting comparable models

over comparable tasks to allow a solid discussion. Here we

present the very first steps in the consolidation of a fair ex-

perimental protocol, proposing the construction of training

and testing data sets and homogenizing neural architecture

performance evaluation. Moreover, we enforce the incor-

poration of statistical testing as part of the analysis of re-

sults following the insights proposed and detailed in [3],

including such tests as part of model evaluation validates

the significance of observable results. Exploring results us-

ing statistics in the particular case of NAS can highlight the

advantages that accompany novel discovered architectures

and the algorithms that generated them.

The following three subsections will describe the differ-

ent elements that form this protocol in more detail, allow-

ing researchers to apply it as part of their experimentation.

The discussion that accompanies these sections should con-

vince other researchers of the benefits that employing pro-

tocol can provide in their analysis of NAS-produced results.

2.1. The Data sets needed for the evaluation

The first element that defines this protocol is a collec-

tion of data sets for training, validation, and testing of au-

tomatically discovered neural architectures. This element

propitiates compatibility of the protocol in various practi-

cal environments allowing researchers to contrast proposals

against results found in this work and future advancements

in the area. It is crucial to mention that these datasets alone

do not evaluate the process of architecture search, as eval-

uating this process would require prohibitive amounts of

computational resources. Moreso, performing that kind of

evaluation would require future research to follow the same

hardware specifications to apply this protocol as a point of

contrast.

Ensuring that a common agreement on the tasks used

during architectural search and model training exists within

the NAS pipeline will allow a clearer quantization of the

progression of any novel proposal that studies this partic-

ular task. Next, we present a set of key tasks for eval-

uating architectures following this proposal. These tasks

in the form of data sets, take well-known classical super-

resolution problems preferred by convention in the field and

process them using various techniques.

The first two sets we describe with this work extract

instances from the DIV2K [1] data set to consolidate two

tasks. Using this dataset for training and validation is com-

mon in the literature, making it perfect as a baseline for on-

going research. Not only its properties have been widely

studied through many works but the availability of these

datasets allows easier access to the components of our pro-

tocol.

The first task we obtain from DIV2 is a proxy ded-

icated to the process of architecture search, which con-

tains a smaller but representative group of images that help

maintain a reduced computational cost while training super-

resolution architectures. Such a proxy task should help

NAS approaches to identify promising architectures, allow-

ing a quicker identification of well-performing models. The

second set introduces a full SRIR task using data augmen-

tation techniques applied over the previous proxy task. As

such this increases the total number of instances processed

by models at the end stage of NAS, increasing significantly

the computational cost of training, the reason why is di-

rected to be used only during the final training and valida-

tion of any architecture found by the search.

The DIV2k data set presents a total of 800 high-quality

(2k resolution) images for training and 100 for valida-

tion. To form the proxy task data set of this protocol,

patches of 64 by 64 pixels are extracted from the total 900

high-resolution images resulting in a total of 522K images

for training and 66,651 images for validation. We per-
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form a bicubic degradation over these images using Pil-

low (9.4.0V)’s PIL.Image.BICUBIC function, which

reduces image resolution by an arbitrary ratio. For the proxy

task, this data set resolution is reduced by half, and used as

is for model training and validation posing a ×2 SRIR task.

In the full task, images are also down-sampled to a third

of the original resolution on the ×3 task and one-fourth in

the ×4 task. The three resolution sets are subjected to im-

age flipping horizontally and vertically, as well as a 90◦ ro-

tation, increasing the amount of data instances and adding

more variety of patterns given to models during training in

the final evaluation.

Once architectures are found and fully trained, comput-

ing their performance over unseen data is necessary to con-

tinue with the experimental contrast protocol. The data used

for the test and evaluation of architectures incorporates four

well-known groups of super-resolution problems, that are

considered to be the norm by the literature of NAS in the

context of super-resolution. These sets include Set5 [4],

Set14 [25], BSD100 [19], and Urban100 [14], each contain-

ing different examples of images having different character-

istics and patterns that need to be reconstructed. The proxy

and training task sets use only the bicubic down-sample in-

stances for each group, keeping things within the same do-

main. The data set composition is described as follows:

• Set5 is a classical data set and only contains five test

images. These images comprise a baby, a bird, a but-

terfly, a head, and a woman.

• Set14 consists of 14 images of varying subjects, which

include animals with complex patterns, people, food,

scenery, and text.

• BSD100 presents another classical data set contain-

ing 100 test images ranging from images of nature to

object-specific, including plants, people, and food.

• Urban100 is a more recent data set introduced by

Huang et al. This set comprises 100 images focusing

on human-made structures and urban scenes.

Thus, the entire set for evaluation comprises 219 high

and low-resolution images, each representing a super-

resolution image restoration problem. Models that wish to

use this protocol need to be evaluated on the ×2,×3, and

×4 tasks for each data set, meaning that each model recon-

structs a total of 657 high-resolution images with increas-

ing degrees of degradation. These experiments should allow

us not only to identify the best-performing state-of-the-art

models and their characteristics but to asses in reality how

different a model is from its counterparts at different lev-

els of task complexity. This comparison scheme aims to

highlight the impact that the search space design and the

objectives guiding the search have on the optimal candidate

architectures.

2.2. Performance measures while training and con-
trasting architectures

Image quality takes a decisive role in NAS not only as a

way to train found models into generating visually accept-

able results in super-resolution images but to guide the ar-

chitectural search toward novel well-performing structures.

There is a lot of work trying to discern the best way to

measure crucial visual information as part of image quality,

and even more attempts at trying to capture important hu-

man perception information. These attempts seek to tackle

different applications of image restoration tasks, from im-

proving the performance of machine learning approaches

by restoring data that was lost due to noise [23], to produc-

ing images that cater better to our visual perception [15].

This resulted in the definition and application of many tech-

niques assessing the quality of images, examples of which

are: MSE (Mean Square Error), UIQI (Universal Image

Quality Index), PSNR (Peak Signal to Noise Ratio), SSIM

(Structured Similarity Index Method), HVS (Human Vision

System) and FSIM (Feature Similarity Index Method).

The entirety of measures presented above in conjunc-

tion with other model-related measures such as loss vari-

ation during the architectural search, the memory footprint

of architectures, prediction latency, and robustness, provide

different insights that allow comparing different approaches

based solely on the evaluation. Nonetheless, generally

speaking, two metrics have dominated the mainstream ad-

vances in NAS for SRIR, those being PSNR and SSIM, the

former used more commonly during search than the latter.

Here and in later sections we focus on the usage of PSNR

and the total amount of trainable parameters required by a

model as ways to quantify the overall quality of found ar-

chitectures and the resulting models.

On the effectiveness side, we focus on using PSNR given

the strong correlation between it and SSIM as shown by

Horé and Ziou in [12]. This measure evaluates the differ-

ences between a high-resolution image and the predicted

super-resolution image as decibels, with a higher ratio rep-

resenting a better prediction. On the efficiency side, cal-

culating the total amount of trainable parameters of an ar-

chitecture provides some insights into the complexity of a

model, with deeper and wider architectures requiring more

parameters. The amount of trainable parameters that result

from constructing a model based on a particular architecture

becomes relevant as it can be decisive in its deployment un-

der hardware limitations.

2.3. Bayesian Statistical Assessment of experimen-
tal results

Experimentally contrasting different models, especially

in machine learning, implicates the desire to identify

whether or not a particular model will be able to outper-

form others, how large the difference between observable
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results and how significant will it be in practice [8]. It is

true, that frequentist approaches for hypothesis testing com-

pute the probability of observing the expected difference in

performance between classifiers. However, the statistics ob-

tained by these approaches do not measure the probability

of a model showing better accuracy than others [3]. More-

over, the common application of these techniques follows

the assumptions that p-values are estimators of the proba-

bility of observing the null hypothesis and that statistical

significance is the same in practice, both assumptions being

incorrect. Approaches based on Bayesian statistics demon-

strate to naturally provide posterior probabilities that align

with the information researchers expect when performing

these tests.

To further study any obtained results and assess their

practical significance, Benavoli et al. present in [3], the use

of a Bayesian signed-rank test analysis. We incorporate this

test as a final integrating element of the protocol present in

this work, such that not only do we assess the relative merit

of algorithms in terms of efficiency and efficacy, but also

calculate how probable it is for models in practice to keep

the behavior showcased on the observed empirical results.

The test used as part of this evaluation protocol allows us to

ascertain whether an algorithm A will perform better than

an algorithm B and the probability that this case will repeat

when encountering new data, as long as it is similar to the

data used for testing. We compute this probability, taking

into account all the resulting performance of models over

each of the data sets. After applying the Bayesian test, we

end up with a set of three posterior probabilities as follows:

• P (A � B) the probability that A is practically better

than B.

• P (A = B) the probability that A and B are practically

equivalent.

• P (A � B) the probability that B is practically better

than A.

To perform a fair statistical test, first, results need to be

normalized in a way that the performance of the models is

measurable as a percentage. Second, we need to establish

a parameter (rope) to determine whether or not the perfor-

mance of the two models could be considered equivalent in

practice. Depending on the problem, a greater or smaller

threshold may be necessary to deem model performance

significantly different. In the case of this protocol, we have

determined the rope = 0.01, as it would be sensible for

any SRIR task to consider that two classifiers are practi-

cally equivalent when the mean difference of their accuracy

lies below the 1%, resulting in images being very similar

perceptually.

The Bayesian test follows the implementation made

available as part of the Baycomp 1.0 library in [3]. The

functions of this library allow practitioners to compute the

posterior probabilities of two models, after being evaluated

over either a single or multiple data sets. Given the struc-

ture of this protocol posterior probabilities are calculated

following a signed-rank test taking into consideration the

different evaluation tasks as implemented in the function

baycomp.two on multiple.

3. Evaluating architectures following the pro-
tocol

Using this protocol, we evaluated the performance of

six rival NAS techniques in the context of SRIR, encom-

passing only machine-crafted models with similar param-

eters. We take NAS-DIP [5] and models A and C from

HNAS [11], models A and B from FALSR [6], model A

from MoreMNAS [7], ESRN and ESRN-V from [21] and

DLSR from [13]. These models were selected based avail-

ability of source codes, impact, and similarity in the number

of trainable parameters each model possesses. The perfor-

mance of each model is evaluated based on its capacity for

accurately predicting super-resolution images similar to the

high-resolution samples used for a baseline taking each of

the test images as an independent test and the total amount

of trainable parameters required by each of the found mod-

els.

We summarize results in Tables 1 to 3. For each table, we

highlight the best results of models disregarding size with

bold text. Furthermore, we used the number of trainable pa-

rameters as an additional measurement of architecture qual-

ity with the first and second algorithms having the smallest

footprint highlighted in light gray. Results highlighted with

a darker tone of gray and white text represent the best results

seen on architectures that incorporated less than 400K train-

able parameters. We make these distinctions as the evalu-

ation protocol is employed to evaluate two specific objec-

tives, performance regarding architecture effectiveness and

architecture complexity regarding efficiency.

These results indicate that in 8 of the cases, ESRN

achieves a closer reconstruction of the original high-

resolution image. The ESRN model achieved outstanding

performance in three sets for the ×2 task, three data sets

on the ×3, and two on the ×4 tasks. Achieving such re-

sults suggests that ESRN has better capabilities for recon-

structing high-resolution images concerning the other mod-

els, given that each new resolution diminishment represents

a more demanding problem. While the ×2 task of each set

presents a challenge, the ×3 and ×4 tasks of each data set

present more significant challenges. The difference in diffi-

culty among each task is that a model requires achieving the

same high-resolution image from smaller LR inputs each

time. Moreover, each new data set after the first presents

an increasing number of images that a model has to recon-

struct. Each image in a data set represents a subproblem
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Table 1. Performance comparison of SRIR machine-crafted archi-

tectures. This table presents the observed performance of the stud-

ied models at the super-resolution ×2 task of each data set. A

higher Peak-Signal-to-Noise-Ratio value represents better results.

The table highlights the best results of models disregarding size

with bold text. A gray background highlights architectures with

the least and second least total trainable parameters. The darker

gray and white text emphasizes the best result per task obtained by

a model with less than 400k parameters.

Model # of params.
PSNR on the ×2 Task

Set5 Set14 B100 Ubran100

NAS-DIP 1,800K 35.32 31.58 29.99 29.81

FALSR-A 1,021K 37.82 33.52 32.12 31.93

FALSR-B 326K 37.61 33.29 31.97 31.28

HNAS-A 139K 37.84 33.39 32.06 31.50

HNAS-C 380K 38.11 33.60 32.07 31.73

MoreMNAS-A 1039K 37.63 33.23 31.95 31.24

ESRN 1039K 38.04 33.69 32.23 32.37
ESRN-V 324K 37.85 33.42 32.10 31.79

DLSR 322K 38.04 33.67 32.21 32.26

Table 2. Performance comparison of SRIR machine-crafted archi-

tectures. This table presents the observed performance of the stud-

ied models at the super-resolution ×3 task of each data set. A

higher Peak-Signal-to-Noise-Ratio value represents better results.

The table highlights the best results of models disregarding size

with bold text. A gray background highlights architectures with

the least and second least total trainable parameters. The darker

gray and white text emphasizes the best result per task obtained by

a model with less than 400k parameters.

Model # of params.
PSNR on the x3 Task

Set5 Set14 B100 Urban100

NAS-DIP 1,800K 30.81 27.84 26.16 26.003

FALSR-A 1,021K 32.97 29.65 28.41 28.14

FALSR-B 326K 32.80 29.34 27.88 27.31

HNAS-A 139K 32.35 29.32 27.65 27.17

HNAS-C 380K 33.01 28.52 27.30 27.10

MoreMNAS-A 1039K 32.82 29.41 27.85 27.23

ESRN 1039K 34.46 30.43 29.15 28.42
ESRN-V 324K 34.23 30.27 29.03 27.95

DLSR 322K 34.49 30.39 29.13 28.26

making B100 and Urban100 pose the biggest challenge to

the models’ capacity for generalization and adaptation.

To continue analyzing the results, in second place, we

find the DLSR model capable of achieving the highest per-

formance in 3 cases, one time on the ×3 task and twice on

the ×4 task. All this while presenting a parameter reduc-

tion compared with ESRN and against the others. While

ESRN has over one million learnable parameters, DLSR

only contains 322K. This difference helps envision that

larger, deeper, and more complex models can outperform

smaller and simpler ones in most cases. Nevertheless, this

also demonstrates that the quality of a model depends much

on its architectural configuration. Here, a smaller model

achieved comparable performance against the one found to

Table 3. Performance comparison of SRIR machine-crafted archi-

tectures. This table presents the observed performance of the stud-

ied models at the super-resolution ×4 task of each data set. A

higher Peak-Signal-to-Noise-Ratio value represents better results.

The table highlights the best results of models disregarding size

with bold text. A gray background highlights architectures with

the least and second least total trainable parameters. The darker

gray and white text emphasizes the best result per task obtained by

a model with less than 400k parameters.

Model # of params.
PSNR on the ×4 Task

Set5 Set14 B100 Urban100

NAS-DIP 1,800K 26.41 24.59 22.42 22.28

FALSR-A 1,021K 30.33 28.21 26.11 25.36

FALSR-B 326K 28.12 26.92 23.90 23.38

HNAS-A 139K 28.22 25.43 23.40 23.27

HNAS-C 380K 28.44 25.16 24.48 23.91

MoreMNAS-A 1039K 28.72 25.87 23.93 23.40

ESRN 1039K 32.26 28.63 27.62 26.24
ESRN-V 324K 31.99 28.49 27.50 25.87

DLSR 322K 32.33 28.68 27.61 26.19

be the best of the set, with practically a third of the param-

eters.

In the case of smaller models limited to 400k parame-

ters at most, DLSR obtained the best performance gener-

ally. This model achieved the best performance in 11 out

of 12 tests, only surpassed by HNAS-C once in the set5

×2 task. The DLSR employs a hierarchical and differen-

tiable NAS method to discover and allocate cell-level blocks

within an architecture based on three components: shallow

residual networks, an information distillation mechanism,

and a contrast-aware attention mechanism. This way, the re-

sulting model considers a small number of parameters and

operations required for its deployment while maintaining

good performance. From the discussion presented in pre-

vious paragraphs and the observed results, it is possible to

state that DLSR achieved the most consistent performance

across the various tasks, significantly reducing the compu-

tational cost. Neural Architectures, efficient and robust, are

highly desirable in the context of SRIR, even at the expense

of not surpassing the best performance of the state-of-the-

art.

4. Statistical analysis within the experimental
protocol

The next step in the execution of this protocol serves as a

way to provide more support to the discussion found in the

previous section. We analyze the studied algorithms using

the Bayesian signed-rank test as described in section 2.3.

4 shows if a model in a row is better (�), equal (=), or

worse (�) than the other. Additionally, we have defined a

threshold ε over the probabilities to determine which model

is more likely to be significantly better or whether they are

equivalent. For this case, we consider ε = 0.95, as deter-
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mined in [3], to ensure enough statistical significance. El-

ements in the table that are marked with an ∗ achieved a

probability ≥ 95% of being the best algorithm. This prob-

ability provides enough evidence to confirm that the model

performed better, worse, or equally than the one it is com-

pared against.

The Bayesian test validates the discussion in subsection

4.2, further reinforcing that models ESRN and DLSR are

the overall best-performing of the entire group, with ESRN

being the best. While ESRN and DLSR have a 70.1% prob-

ability of achieving the same practical performance, declar-

ing ESRN as better comes from this model having a 28.9%

chance of achieving a better performance over its counter-

part. In the entirety of the cases, the probability of both

models outperforming the others, by at least 1% more per-

formance, surpassed 95%. However, ESRN does present

approximately three times more parameters than DLSR,

meaning that ESRN incorporates a costlier and more elab-

orate architecture. This difference in trainable parameters

makes it difficult to establish the best between the two.

Please refer to the supplementary material to see visual rep-

resentations of the posterior probabilities calculated by the

Bayesian signed-rank test.

5. Conclusions

Even in contemporary NAS research, it is clear that

comparing different approaches that solve the same prob-

lem continues to pose many challenges needing address-

ing. Approaches that alleviate this issue are needed, not

only for image restoration tasks if we wish a continual study

and deployment of architecture search pipelines. We intro-

duced an experimental protocol for NAS in the context of

SRIR, allowing the possibility of comparing various super-

resolution architectures more rigorously and under similar

circumstances. With this protocol, we hope to motivate

NAS researchers to push for more accessible and repro-

ducible approaches. Works like this one should help bridge

this methodology gap, allowing researchers to take steps to-

ward constructing benchmarking procedures and establish-

ing baselines expanding the range of applications for NAS.
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