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2CRAN UMR 7039, Université de Lorraine and CNRS, Nancy, France

3CINVESTAV, Guadalajara, Mexico
4CHRU Nancy, Service d’urologie de Brabois, Nancy, France

Abstract

This contribution presents a deep-learning method for
extracting and fusing image information acquired from dif-
ferent viewpoints, with the aim to produce more discrimi-
nant object features for the identification of the type of kid-
ney stones seen in endoscopic images. The approach was
specifically designed to mimic the morpho-constitutional
analysis to visually classify kidney stones by jointly using
surface and section images of kidney stone fragments. The
model was further improved with a two-step transfer learn-
ing approach and by attention blocks to refine the learned
feature maps. Deep feature fusion strategies improved the
results of single view extraction backbone models by more
than 6% in terms of accuracy of the kidney stones classifi-
cation.

1. Introduction
The formation of kidney stones that cannot freely pass

through the urinary tract is a major public health issue

[2, 15, 13]. In industrialized countries, it has been reported

that at least 10% of the population suffers from a kidney

stone episode once in their lifetime. In the United States

alone, the risk of relapse of the same type of kidney stone

has increased by up to 40% [24, 27]. The formation of

kidney stones is caused by different factors such as diet,

low fluid intake, and a sedentary lifestyle [25, 6]. How-

ever, there are other unavoidable factors such as age, ge-

netic inheritance, and chronic diseases that increase the risk

of forming kidney stones [12]. Therefore, methods for iden-

tifying the different types of kidney stones are crucial for the

prescription of appropriate treatments and to reduce the risk

of relapses [14, 12]. In order to carry out this identification

in clinical practice, different procedures have been devel-

oped, such as the Morpho-Constitutional Analysis (MCA),

and Endoscopic Stone Recognition (ESR) [5, 11].

MCA is commonly accepted as the standard procedure

for determining the different types of kidney stones (up

to 21 different types and sub-types including pure and

mixed compositions are recognized during the MCA) [3].

MCA consists of a double laboratory analysis of kidney

stone fragments extracted from the urinary tract during an

ureteroscopy [7].

First, a biologist performs a visual inspection of the kid-

ney stone which is observed with a magnifying glass. This

inspection aims to describe kidney stones in terms of col-

ors, textures, and morphology [3]. This visual analysis is

done both for the surface view (the external part of the kid-

ney stone fragment), and for a cross-section of the kidney

stone fragment (the internal stone part may consist of sev-

eral layers surrounding a nucleus). Then, the kidney stones

are ground up and the resulting powder is used to perform

a biochemical analysis using a Fourier Transform Infrared

Spectroscopy (FTIR) [16]. The FTIR provides a detailed

description of the chemical composition of the kidney stone.

Finally, the MCA analysis returns the type of kidney stone

through a detailed report of the biochemical and morpho-

logical characteristics of both views of the kidney stone.

However, MCA has some major drawbacks: the results are

often available only after several weeks, and it is difficult to

have a specialized team in each hospital to perform MCA.

Therefore, urologists have proposed, as a possible al-

ternative, the Endoscopic Stone Recognition (ESR) proce-

dure in which the most common kidney stones are visu-

ally identified on the video displayed on a screen during

the ureteroscopy itself [9]. However, this visual analysis of

the surface and section views requires a great deal of ex-
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pertise due to the high similarities between classes. Only a

limited number of specialists have this expertise. In addi-

tion, this technique is more operator dependent and subjec-

tive than MCA. Therefore, new approaches based on deep-

learning (DL) methods have been proposed to automate and

speed-up the kidney stone identification. Such automated

recognition can potentially assists urologists for a real-time

decision-making during an ureteroscopy.

This paper has two contributions: i) it proposes a novel

DL-model for fusing information included in endoscopic

images of the two views (surface and section) of a kidney

stone fragment with the aim to increase the discrimination

performance and, ii) it shows how a multi-branch model can

be trained using a two-step transfer learning (TL) approach

in order to improve the model generalization capabilities.

This paper is organized as follows. Section 2 reviews the

literature on automated ESR and introduces the key con-

cepts used in this work, namely multi-view fusion and two-

step TL. Section 3 describes the construction of the dataset,

details the two-step TL setup, and presents the pre-training

stage of the multi-view model. Section 4 compares the re-

sults obtained with the proposed model in several configu-

rations, with that of other models given in previous works.

Finally, section 5 discusses future research directions.

2. State-of-the-art
Different DL approaches for an automated classification

of kidney stones demonstrated encouraging results [17, 23].

However, DL-models require large data amounts to yield

accurate results [22, 21]. In ureteroscopy, it is difficult

to collect such large datasets. A solution to this issue

lies in methods such as TL and fine-tuning from other

distributions (ImageNet) as a weight initialization tech-

nique [18]. Such techniques also enable to avoid training

from scratch. However, for an automated endoscopic stone

recognition (aESR), these initialization techniques are not

useful, since the distribution of ImageNet and endoscopic

(ureteroscopic) images are substantially different. Thus,

customized TL methods that initialize useful weights closer

to the target domain are required.

Furthermore, most models performing aESR were

trained on surface or section images taken separately [9, 10,

22]. However, the visual inspection in MCA (by biologists)

and ESR (by urologists) is based on both views by jointly

exploiting information from fragment surfaces and sections

[3, 5, 4]. So far, the DL-models in the literature did not

use together surface and section information to improve the

classification efficiency. Multi-View (MV) classification is

exploited in this contribution to combine the features ob-

served in the two fragment-type views.

The aim of this paper is to show that an MV-model out-

performs models without an elaborated fusion strategy. MV

is performed by fusing features (of shallow models) or fea-

ture maps (for DL-models) determined for various images

with the aim to learn more complete representations and to

obtain more effective classifiers [28, 26]. Contrary to a MV-

approach, previous works for aESR were based on a DL-

model, trained three times (only with section data, only for

surface data, and for surface and section data gathered in the

same class). This contribution leverages recent advances in

DL-based models that combine information from multiple

viewpoints and improve the results using domain adaptation

techniques.

3. Materials and Methods

3.1. Datasets

Two kidney stone datasets were used in our experiments

[3, 8]. According to the dataset, the images were acquired

either with standard CCD cameras or with an ureteroscope

(i.e., an endoscope). These datasets are described below.

Dataset A, [3]. This ex-vivo dataset of 366 CCD cam-

era images (see, Figure 1a, left column Table 1) is split

in 209 surface and 157 section images, and contains six

different stone types sorted by sub-types denoted by WW

(Whewellite, sub-type Ia), CAR (Carbapatite, IVa), CAR2

(Carbapatite, IVa2), STR (Struvite, IVc), BRU (Brushite,

IVd), and CYS (Cystine, Va). The stone fragment images

were acquired with a digital camera under controlled light-

ing conditions and with a uniform background. The dimen-

sions of the images in dataset A are 2848×4288 pixels.

Dataset B, [8]. The endoscopic dataset consists of 409

images (see Figure 1b, right column Table 1). This dataset

includes 246 surface and 163 section images. Dataset B

involves the same classes as dataset A, except that the Car-

bapatite fragments (sub-types IVa1, and IVa2) are replaced

by the Weddelite (sub-type IIa) and Uric Acid (IIIa) classes.

The images of dataset B were captured with an endoscope

by placing the kidney stone fragments in an environment

simulating in a quite realistic way in-vivo conditions (for

more details, see [8]). The dimensions of the images in

dataset B are 576×768 pixels.

Automatic kidney stone classification is usually not per-

formed on full images due to the limited size of the datasets.

Therefore, as in previous works [18], patches of 256×256

pixels were extracted from the original images to increase

the size of the training dataset (for more details, see [17]).

However, it should also be mentioned whether the disad-

vantages have been taken into account, some of which are

(i) loss of context since by cropping small regions of an

image, contextual and spatial information may be lost, (ii)

when patching an image, certain features may be present in

multiple patches. On the other hand, one of the advantages

is that by using patches it is possible to train machine learn-

ing models (which are complicated with few samples) and

ensure an increase in the number of samples, and balance
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(b) Dataset B: Endoscopic images (ex-vivo)

Figure 1: Examples of ex-vivo kidney stone images acquired with (a) a CCD camera and (b) an endoscope. SEC and SUR

stand for section and surface views, respectively.

Table 1: Description of the two ex-vivo datasets.

Dataset A. M. DAUDON et al. [3] Dataset B. J. EL-BEZE et al. [8]

Subtype Main component (Key) Surface Section Total Subtype Main component (Key) Surface Section Total

Ia Whewellite (WW) 50 74 124 Ia Whewellite (WW) 62 25 87

IVa1 Carbapatite (CAR) 18 18 36 IIa Weddelite (WD) 13 12 25

IVa2 Carbapatite (CAR2) 36 18 54 IIIa Uric Acid (UA) 58 50 108

IVc Struvite (STR) 25 19 44 IVc Struvite (STR) 43 24 67

IVd Brushite (BRU) 43 17 60 IVd Brushite (BRU) 23 4 27

Va Cystine (CYS) 37 11 48 Va Cystine (CYS) 47 48 95

Number of images dataset A 209 157 366 Number of images dataset B 246 163 409

between classes.

A total of 12,000 patches were generated for each dataset

which is organized into six classes as follows: For dataset

A (WW, STR, CYS, BRU, CAR, CAR2) and dataset B

(WW, WD,UA, STR, BRU, CYS). For each data set, 80%
of the patches (9600 patches) are used for the training and

validation steps, while the remaining 20% of the patches

(2400 patches) act as test data (200 patch-images for each

class). Patches of the same image contribute either only to

the training/validation data or solely to the test data. The

patches were also “whitened” using the mean mi and stan-

dard deviation σi of the color values Ii in each channel [17].

3.2. Proposed approach

Several approaches [17] have demonstrated the ability

of DL-based models to recognize in single views (SUR

or SEC) different types of kidney stones with high perfor-

mance. However, in most cases, they have been trained by

fine-tuning with a totally different distribution than kidney

stones, or worse, they have been trained from scratch with

the endoscopic images for individual views. On the other

hand, although in the work [17], it was observed that com-

bining features (color and texture) from both views of an

endoscopic kidney stone image (surface and section) pro-

duces more useful vectors for classification using shallow

machine learning methods, or training surface and section

patches together in a DL-based model produce more dis-

criminative features compared to models trained with sur-

face or section images, so far no elaborated technique was

exploited to combine the surface and section information.

Usually, to exploit the information from SUR and SEC

images, the patches of the two views of a fragment are sim-

ply seen as instances of the same class. Although such

methods fuse both views information and more data avail-

able for the training, the way in which image features are

extracted and combined is far from being optimal, as it does

not emulate how the visual inspection of MCA/ESR is per-

formed. To make matters worse, mixing the features in

this way does not always improve the classification results.

As can be observed in the MIX column of Table 4 (val-

ues marked by the * symbol), in some cases fusing features

from SUR and SEC patches does not produce better feature

maps, as this information combination is not optimal and

hinders the model performance [18].

In order to exploit the best features of both views, the

proposed DL-model (see Figure 2) combines the informa-

tion in a systematic way using a fusion strategy based on

a multi-view scheme, introducing attention mechanisms to
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Figure 2: Proposed multiview-fusion model assisted by two-step transfer learning for aESR.

further filter out unnecessary features maps of our CNN-

model. Moreover, instead of training from the scratch the

individual branches, we assist the model training with a

two-step TL approach as a method of initializing weights

from a similar distribution (CCD-camera images) to the en-

doscopic images.

ImageNet
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Figure 3: Two-step Transfer Learning. Model A was ini-

tialized with the weights of a ResNet50 network pre-trained

with ImageNet, and fine-tuned with Dataset A. Next, Model

B starts with the weights learned from Model A and is fi-

nally fine-tuned with Dataset B. The objective is to pre-train

dataset B with weights similar to its distribution (kidney

stone images).

3.3. Two-step Transfer Learning

There are different ways to acquire knowledge for a DL

model (e.g. training from scratch). However, in applica-

tions where data scarcity is a constraint, techniques such

as Two-step Transfer Learning (Figure 3) are useful as a

pre-training or initialization method for a specific domain

(dataset) [18].

Two-step Transfer Learning learns weights from differ-

ent distributions approaching the final domain/target (en-

doscopic dataset). First, during the HeTL (HeTL stands

for heterogeneous TL), the pre-training is performed with

a general domain (ImageNet). The model weights are up-

dated during a HoTL (homogeneous TL) using a domain

whose data distribution is the closest to that of the target

(domain adaptation process). In the kidney stone applica-

tion, the pre-training on ImageNet improves the general-

ization capabilities of the DL-model and the CCD camera

images of ex-vivo fragments are used as a first fine-tuning.

This fine-tuning is finalized using a part of the target dataset

B (fragment images acquired with endoscopes), the remain-

ing patches of dataset B being used for the validation and

testing steps. More specifically, during the HeTL-step, the

large ImageNet dataset is used to transfer knowledge into a

ResNet50 network which is fine-tuned by the smaller kid-

ney stone image set acquired under controlled acquisition

conditions (dataset A) as shown on the left part of Figure

2. Then, fine-tuning is achieved for each branch (i.e. in-

dividual model for each view) during the HoTL-step. This

final tuning exploits dataset B which is composed of endo-

scopic images close to dataset A, but with higher variability

in terms of image contrast, noise, and resolution, emulating

thus the illumination and scene conditions actually encoun-

tered in ureteroscopy when patient data are acquired with

an endoscope. The second-step TL is performed for each of

the views (SUR/SEC) by obtaining two independent mod-

els trained with dataset B of endoscopic images for their

respective views (for more details, see [18]). As described

below, a MV-model, assisted by the second TL-step, is used

to combine the SUR and SEC views into a mixed model

(MIX).
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Table 2: Comparison of the performance of various kidney stone identification methods. The value of the accuracy over all

classes was determined with dataset B for all methods.

View TL Step Accuracy Precision Recall F1-Score Training details

SUR

– 0.702±0.012 0.718±0.010 0.702±0.012 0.701±0.008 Trained with endoscopic images

1 0.649±0.050 0.655±0.039 0.649±0.050 0.642±0.046 Fine-tuning with ImageNet weights

2 0.832±0.012 0.845±0.012 0.832±0.012 0.829±0.012 Fine-tuning with microscopic images weights

SEC

– 0.738±0.022 0.772±0.015 0.738±0.022 0.722±0.023 Trained with endoscopic images

1 0.824±0.022 0.834±0.020 0.824±0.022 0.820±0.023 Fine-tuning with ImageNet weights

2 0.904±0.048 0.915±0.037 0.904±0.048 0.903±0.050 Fine-tuning with microscopic images weights

MIX

– 0.760±0.024 0.773±0.029 0.760±0.024 0.752±0.024 Trained with endoscopic images

1 0.800±0.013 0.809±0.013 0.800±0.013 0.797±0.013 Fine-tuning with ImageNet weights

2 0.856±0.001 0.868±0.002 0.856±0.001 0.854±0.001 Fine-tuning with microscopic images weights

Table 3: Comparison of different fusion strategies (concatenation and pooling) applying attention in different blocks (last and

second last).

Fusion method Accuracy Precision Recall F1-score Attention block

Concatenation 91.00±3.03 92.00±3.16 91.00±3.03 91.00±3.03 Without attention

Pooling 90.40±3.29 90.80±3.11 90.40±3.29 90.40±3.29 Without attention

Pooling 88.33±6.43 88,33±5.51 88.00±6.08 88.00±6.08 Last block

Pooling 91.25±0.50 91.75±0.50 91.25±0.50 91.25±0.50 Last and second last block

3.4. Multi-view model

Once the two SUR and SEC models are trained through

the previous two-step TL, the feature extraction layers of

this single-view network are frozen to ensure that each

branch of the multi-view model extracts the same features

and that any variation in performance depends on the non-

frozen layers (merge and full connection layers). These

frozen layers are connected to a fusion layer, which is re-

sponsible for mixing the information of the two views.

In this work, the two late-fusion methods proposed for

kidney stone classification [28] were exploited (concate-

nation and max-pooling). The first fusion method (con-

catenation) concatenates the feature vectors obtained from

each view and merges the resulting representation through

a fully connected layer. On the other hand, in the second

fusion method (max-pooling), feature vectors are stacked

and max-pooling is applied to them. Three configurations

were used to implement max-pooling. The first corresponds

to a model without attention mechanisms. The second con-

sists of one layer of attention (last block). Finally, the third

consists of two-layer of attention (the last, and second last

block, arranged as shown in Figure 2). Lastly, the output of

the late-fusion layer is connected to the remaining part of

the MV-model, which merely consists of the classifier. The

full proposed model is shown in Figure 2.

4. Results and Discussion

4.1. Two-step Transfer Learning results

Three experiments (SUR model, SEC model, MIX

model) were carried out to assess the performance of the

two-step TL approach applied to the patch data described in

Section 3.1. In the first and second experiments, the two-

step TL approach described in Section 3.3 was used to pre-

dict kidney stone types in endoscopic images for individual

SUR and SEC views. Then, in the third experiment, the

SUR and SEC datasets are mixed into a single dataset de-

noted as MIX. The model is trained by taking into account

the patches of both views during training. The results ob-

tained are shown in Table 2.

In order to describe the results, in this work we will use

the Accuracy metric, since the testing set is balanced and

all the metrics (Precision, Recall and F1-Score) follow the

same trend (as shown in Table 2).

SUR model. The Two-step Transfer Learning (fine-

tuning with microscopic images weights) results for the

SUR view patch dataset is 83.2±01.2 (in % measured with

accuracy). The performance of the Two-Step based model

outperforms training from scratch with endoscopic images

(70.2±01.2), and also greatly improves on the performance

obtained by doing a single step of Transfer Learning with

ImageNet (64.9±05.00%). Although the latter result would

be expected to be superior to training from scratch (with en-

doscopic images), we assume that the ImageNet weights for
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(a) SUR (b) SEC

(c) MIX

Figure 4: UMAP [20] dimensionality feature reduction (a) SUR, (b) SEC, and (c) MIX patch sets.

the SUR view are not useful for this task. Which gives us a

slight hint that weight initialization is not always useful.

SEC model. The results obtained in the SEC view

(90.4±04.8) are promising using two-step Transfer Learn-

ing, and suggest better performance than the SUR view

(83.2±01.2), probably due to the extraction of more dis-

criminant features. In comparison, training a SEC model

from scratch with endoscopic images (73.8±02.2), the per-

formance improved significantly. On the other hand, pre-

training with ImageNet (82.4±02.2) shows an increase in

accuracy quite useful for this task.

MIX model. In order to measure the performance of

a model that considers both views during training, MIX

model was evaluated. An overall yield of 85.6±0.10 was

obtained by applying two-step TL to the MIX assembly.

The results are good, with respect to training from scratch

with endoscopic images (76.0±02.4) or fine-tuning with

ImageNet (80.0±01.3). However, it would be expected that

combining the information during training would yield bet-

ter features than individual views (SUR 83.2±01.2 and SEC

90.4±04.8). These results for MIX suggest that combining

information during training does not always generate good

results. To deal with this problem, it is proposed to use the

models trained on SUR and SEC datasets implemented with

two-step Transfer Learning were combined using the MV-

model described in Section 3.4.

4.2. Multiview-fusion model

The individual SUR and SEC models trained with two-

step Transfer Learning are used as two individual branches

for the fusion scheme. In this work, two fusion methods

were implemented: max-pooling and concatenation. For

max-pooling, three variants were implemented (without at-

tention, with attention in the last block, and with attention

in the last two blocks). The results of these experiments are

gathered in Table 3 and discussed below.

Concatenation. For a simple fusion technique that does

not require attention mechanisms, promising results were

obtained. For this technique, a performance of 91.00±3.03

was obtained in the inference of surface or section patches.

With respect to the MIX model of section (4.1) imple-

mented with two-step Transfer Learning , it can be observed

that a significant improvement of up to 6% accuracy.

Pooling without attention. The performance obtained

with max-pooling without attention (90.40±3.29, max-

pooling slightly below concatenation) as well as concatena-

tion (91.00±3.03) maintains a similar accuracy. This sug-

gests that both techniques of fusing information in an orga-

nized manner and assisted by two-step Transfer Learning,

are a viable alternative for the classification of renal calculi

in endoscopic images, outperforming the MIX model by a

good margin (up to 6%).
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Pooling with attention (last block). Under the premise

of extracting better features from the individual SUR and

SEC models, an attention mechanism was applied to the last

block of the fusion scheme. The results for pooling with

attention in the last block (88.33±6.43), remained slightly

below concatenation and max-pooling, and are still superior

to MIX.

Pooling with attention (last and second last block). In

order to improve the performance of the max-pooling re-

sults, attention was applied to the last two blocks of the

model (as shown in Figure 2). In addition, the results

show an improvement over the other experiments with max-

pooling and concatenation. The max-pooling with attention

(last and second last block) approach is the model selected

for comparison with the state of the art that will be described

below.

4.3. Comparison with the state-of-the-art

In order to compare the results obtained in this work for

SEC, SUR and MIX models, the works [19, 9, 1, 18] were

reimplemented and trained with the datasets described in

Sec. 3.1. The evaluation of the models was performed with

the same testset.

Regarding the SUR view, the performance obtained in

this contribution using two-step Transfer Learning exceeds

the performance obtained by related works. Qualitatively,

we can observe in Figure 4a, that the features extracted and

plotted by UMAP remain dispersed among elements of the

same classes. However, the qualitative performance is good,

surpassing the results of the state of the art which follows

the same trend.

On the other hand, in the SEC view, the model presented

in this work shows better results than those described in pre-

vious works, and maintains a superior performance. In Fig-

ure 4b, it can be observed that the features extracted by the

SEC view are more discriminative with respect to the SUR

view. Also, it can be seen that elements of the same class are

grouped correctly, and that the extra-class distance is large,

supporting the quantitative results of Table 2.

Finally, the fusion scheme has been shown to be efficient

combining both views (SUR/SEC) in a ”mixed” model. In

addition the proposed model can maintain the performance,

contrary to the models of state-of-the-art that do not have

an organized way of combining information (marked by the

* symbol). The latter shows that combining the SUR and

SEC information of stones in a single class leads to a per-

formance decrease. Qualitatively (Figure 4c), the MIX view

presents compact clusters for all classes; however, the inter-

class distance is desired to increase. Applying attention

techniques at deeper levels could improve these features,

or implement them to the concatenation model.

Table 4: Comparison of the performance of various aESR

DL-methods. The classification accuracy (in percentage)

overall classes was determined with test dataset B for all

methods.

Method SUR SEC MIX

Martinez, et al. [19] 56.2±23.3 46.6±12.8 *52.7±18.9

Estrade, et al. [9] 73.7±17.9 78.8±10.6 *70.1±22.3

Black, et al. [1] 73.5±19.0 76.2±18.5 *80.1±13.8

Lopez-Tiro, et al. [17] 81.0±03.0 88.0±02.3 *85.0±03.0

This contribution 83.2±01.2 90.4±04.8 *91.2±0.50

5. Conclusion and future work
This contribution shows that, by mixing information

from two views, it is possible to train more accurate models

to identify kidney stones acquired with endoscopes. Thus,

AI technology can be an interesting solution for assisting

urologists. However, these contributions used a very lim-

ited dataset in terms of class number and patch samples.

The learning approaches on few samples must be improved

to cope with the small amount of training data, and espe-

cially to increase the class separability when more kidney

stone types have to be identified.
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Baudouin Denis de Senneville. Towards automatic recog-

nition of pure and mixed stones using intra-operative endo-

scopic digital images. BJU international, 129(2):234–242,

2022.

[10] V Estrade, M Daudon, O Traxer, and P Meria. Why

should urologist recognize urinary stone and how? the ba-

sis of endoscopic recognition. PROGRES EN UROLOGIE,

27(2):F26–F35, 2017.

[11] V Estrade, M Daudon, O Traxer, P Méria, et al. Pourquoi
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