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1. Visual presentation of the Bayesian analysis

The figures presented below are representations of the
posterior probabilities from performing a Bayesian signed-
rank test on the results of our evaluation protocol. The ex-
perimental set considers 9 architectures: NAS-DIP [2], ar-
chitectures A and C from HNAS [5], architectures A and
B from FALSR [3], architecture A from MoreMNAS [4],
ESRN and ESRN-V from [9], and DLSR from [6]. We mea-
sure architecture performance using their default parame-
ters over three different resolutions of Set5 [1], Set14 [10],
BSD100 [8] and Urban100 [7].

(a) ESRN-V VS DLSR

Figure 1: The probabilities of ESRN performing better than
DLSR. Each vertex of the simplex describes numerically which
algorithm has a larger probability of performing better. The blue
dots represent the Monte Carlo samples computed for each com-
parison. A lack of visible blue dots on a graph signifies that all
samples rest directly on the edge and vertex of a specific simplex
region; this region is delimited with red.

Each simplex is generated plotting 1,500,000 Markov-
Chain Monte Carlo samples, based on the probabilities of
paired models, allocated in barycentric coordinates: each
vector of probabilities is a point in a simplex having ver-
tices (1,0,0),(0,1,0),(0,0,1). The vertices of the triangular
structure seen on the images represent decisions that favor
model A, equal performance, or model B, respectively.

(a) ESRN VS ESRN-V

(b) ESRN VS DLSR

Figure 2: The probabilities of ESRN performing better than the
other models. Each vertex of the simplex describes numerically
which algorithm has a larger probability of performing better. The
blue dots represent the Monte Carlo samples computed for each
comparison. A lack of visible blue dots on a graph signifies that all
samples rest directly on the edge and vertex of a specific simplex
region; this region is delimited with red.

Some graphs seemingly present no blue dots, this indi-
cates that the probability samples are located on the edge
and vertex of a particular region. A situation that derives
from the posterior probabilities determining a negligible
chance for the other vertex to attract samples. We delimit
with a red bold line the region where samples cluster on the
edges of the simplex.



(a) MoreMNAS-A VS ESRN (b) MoreMNAS-A VS ESRN-V

(c) MoreMNAS-A VS DLSR

Figure 3: The probabilities of MoreMNAS-A performing better than the other models. Each vertex of the simplex describes numerically
which algorithm has a larger probability of performing better. The blue dots represent the Monte Carlo samples computed for each
comparison. A lack of visible blue dots on a graph signifies that all samples rest directly on the edge and vertex of a specific region of the
simplex, this region is delimited with red.

(a) HNAS-C VS MoreMNAS-A (b) HNAS-C VS ESRN

(c) HNAS-C VS ESRN-V (d) HNAS-C VS DLSR

Figure 4: The probabilities of HNAS-C performing better than the other models. Each vertex of the simplex describes numerically which
algorithm has a larger probability of performing better. The blue dots represent the Monte Carlo samples computed for each comparison.
A lack of visible blue dots on a graph signifies that all samples rest directly on the edge and vertex of a specific simplex region; this region
is delimited with red.



(a) HNAS-A VS HNAS-C (b) HNAS-A VS MoreMNAS-A

(c) HNAS-A VS ESRN (d) HNAS-A VS ESRN-V

(e) HNAS-A VS DLSR

Figure 5: The probabilities of HNAS-A performing better than the other models. Each vertex of the simplex describes numerically which
algorithm has a larger probability of performing better. The blue dots represent the Monte Carlo samples computed for each comparison.
A lack of visible blue dots on a graph signifies that all samples rest directly on the edge and vertex of a specific simplex region; this region
is delimited with red.



(a) FALSR-B VS HNAS-A (b) FALSR-B VS HNAS-C

(c) FALSR-B VS MoreMNAS-A (d) FALSR-B VS ESRN

(e) FALSR-B VS ESRN-V (f) FALSR-B VS DLSR

Figure 6: The probabilities of FALSR-B performing better than the other models. Each vertex of the simplex describes numerically which
algorithm has a larger probability of performing better. The blue dots represent the Monte Carlo samples computed for each comparison.
A lack of visible blue dots on a graph signifies that all samples rest directly on the edge and vertex of a specific simplex region; this region
is delimited with red.



(a) FALSR-A VS FLSR-B (b) FALSR-A VS HNAS-A

(c) FALSR-A VS HNAS-C (d) FALSR-A VS MoreMNAS-A

(e) FALSR-A VS ESRN (f) FALSR-A VS ESRN-V

(g) FALSR-A VS DLSR

Figure 7: The probabilities of FALSR-A performing better than the other models. Each vertex of the simplex describes numerically which
algorithm has a larger probability of performing better. The blue dots represent the Monte Carlo samples computed for each comparison.
A lack of visible blue dots on a graph signifies that all samples rest directly on the edge and vertex of a specific simplex region; this region
is delimited with red.



(a) NAS-DIP VS FALSR-A (b) NAS-DIP VS FALSR-B

(c) NAS-DIP VS HNAS-A (d) NAS-DIP VS HNAS-C

(e) NAS-DIP VS MoreMNAS-A (f) NAS-DIP VS ESRN

(g) NAS-DIP VS ESRN-V (h) NAS-DIP VS DLSR

Figure 8: The probabilities of NAS-DIP performing better than the other models. Each vertex of the simplex describes numerically which
algorithm has a larger probability of performing better. The blue dots represent the Monte Carlo samples computed for each comparison.
A lack of visible blue dots on a graph signifies that all samples rest directly on the edge and vertex of a specific simplex region; this region
is delimited with red.
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